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Abstract

This paper introduces a new approach to prediction by bringing together two different

nonparametric ideas: distribution free inference and nonparametric smoothing. Specifically, we

consider the problem of constructing nonparametric tolerance/prediction sets. We start from the

general conformal prediction approach and we use a kernel density estimator as a measure of

agreement between a sample point and the underlying distribution. The resulting prediction set is

shown to be closely related to plug-in density level sets with carefully chosen cut-off values.

Under standard smoothness conditions, we get an asymptotic efficiency result that is near optimal

for a wide range of function classes. But the coverage is guaranteed whether or not the smoothness

conditions hold and regardless of the sample size. The performance of our method is investigated

through simulation studies and illustrated in a real data example.
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1. INTRODUCTION

1.1 Prediction sets and density level sets

Suppose we observe iid data Y1, … , Yn ∈ ℝd from a distribution P . Our goal is to construct

a prediction set Cn = Cn(Y1, … , Yn) ⊆ ℝd such that
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(1)

for a fixed 0 < α < 1, where ℙ = P n+1 is the product probability measure over the (n + 1)-

tuple (Y1, … , Yn+1). In general, we let ℙ denote P n or P n+1 depending on the context.

The prediction set problem has a natural connection to density level sets and density based

clustering. Given a random sample from a distribution, it is often of interest to ask where

most of the probability mass is concentrated. A natural answer to this question is the density

level set L(t) = {y ∈ ℝd : p(y) ≥ t}, where p is the density function of P . When the

distribution P is multimodal, a suitably chosen t will give a clustering of the underlying

distribution (Hartigan 1975). When t is given, consistent estimators of L(t) and rates of

convergence have been studied in detail (Polonik 1995; Tsybakov 1997; Baillo, Cuestas-

Alberto & Cuevas 2001; Baillo 2003; Cadre 2006; Willett & Nowak 2007; Rigollet & Vert

2009; Rinaldo & Wasserman 2010). It often makes sense to define t implicitly using the

desired probability coverage (1 − α):

(2)

Let μ(·) denote the Lebesgue measure on ℝd. If the contour {y : p(y) = t(α)} has zero

Lebesgue measure, then it is easily shown that

(3)

where the min is over {C : P (C) ≥ 1 − α}. Therefore, the density based clustering problem

can sometimes be formulated as estimation of the minimum volume prediction set.

The study of prediction sets has a long history in statistics under various names such as

“tolerance regions” and “minimum volume sets”; see, for example, Wilks (1941), Wald

(1943), Fraser & Guttman (1956), Guttman (1970), Aichison & Dunsmore (1975),

Chatterjee & Patra (1980), Di Bucchianico, Einmahl & Mushkudiani (2001), Cadre (2006),

and Li & Liu (2008). Also related is the notion of quantile contours (Wei 2008). In this

paper we study a newer method due to Vovk, Gammerman & Shafer (2005) which we

describe in Section 2.

1.2 Main results

Let Cn be a prediction set. There are two natural criteria to measure its quality: validity and

efficiency. By validity we mean that Cn has the desired coverage for all P (for example, in

the sense of (1)). We measure the efficiency of Cn in terms of its closeness to the optimal

(oracle) set C(α). Since p is unknown, C(α) cannot be used as an estimator but only as a

benchmark in evaluating the efficiency. We define the loss function of Cn by

(4)

where Δ, denotes the symmetric set difference. We say that Cn is efficient at rate rn for a

class of distributions P if, for every P ∈ P, ℙ(R(Cn) ≥ rn) → 0 as n → ∞. Such loss
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functions have been used, for example, by Chatterjee & Patra (1980) and Li & Liu (2008) in

nonparametric prediction set estimation and by Tsybakov (1997); Rigollet & Vert (2009) in

density level set estimation.

In this paper, we construct Cn with the following properties.

1. Finite sample validity: Cn satisfies (1) for all P and n under no assumption other

than iid.

2. Asymptotic efficiency: Cn is efficient at rate (log n/n)cp,α for some constant cp,α >

0 depending only on the smoothness of p.

3. For any y ∈ ℝd, the computational cost of evaluating 1(y ∈ Cn) is linear in n.

Our prediction set is obtained by combining the idea of conformal prediction (Vovk et al.

2005) with density estimation. We show that such a set, whose analytical form may be

intractable, is sandwiched by two kernel density level sets with carefully tuned cut-off

values. Therefore, the efficiency of the conformal prediction set can be approximated by

those of the two kernel density level sets. As a by-product, we obtain a kernel density level

set that always contains the conformal prediction set, and satisfies finite sample validity as

well as asymptotic efficiency. In the efficiency argument, we refine the rates of convergence

for plug-in density level sets at implicitly defined levels first developed in Cadre (2006);

Cadre, Pelletier & Pudlo (2009), which may be of independent interest. We remark that,

while the method gives valid prediction regions in any dimension, the efficiency of the

region can be poor in higher dimensions.

1.3 Related work

The conformal prediction method (Vovk et al. 2005; Shafer & Vovk 2008) is a general

approach for constructing distribution free, sequential prediction sets using exchangeability,

and is usually applied to sequential classification and regression problems (Vovk,

Nouretdinov & Gammerman 2009). We show that one can adapt the method to the

prediction task described in (1). We describe this general method in Section 2 and our

adaptation in Section 3.

In multivariate prediction set estimation, common approaches include methods based on

statistically equivalent blocks (Tukey 1947; Li & Liu 2008) and plug-in density level sets

(Chatterjee & Patra 1980; Hyndman 1996; Cadre 2006). In the former, an ordering function

taking values in ℝ1 is used to order the data points. Then one-dimensional tolerance interval

methods (e.g. Wilks (1941)) can be applied. Such methods usually give accurate coverage

but efficiency is hard to prove. Li & Liu (2008) proposed an estimator, with a high

computational cost, using the multivariate spacing depth as the ordering function.

Consistency is only proved when the level sets are convex. On the other hand, the plug-in

methods (Chatterjee & Patra 1980) give provable validity and efficiency in an asymptotic

sense regardless of the shape of the distribution, with a much easier implementation. As

mentioned earlier, our estimator can be approximated by plug-in level sets, which are similar

to those introduced in Chatterjee & Patra (1980); Hyndman (1996); Cadre (2006); Park,

Huang & Ding (2010). However, these methods do not give finite sample validity.
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Other important work on estimating tolerance regions and minimum volume prediction sets

includes Polonik (1997), Walther (1997), Di Bucchianico et al. (2001), and Scott & Nowak

(2006). Scott & Nowak (2006) does have finite sample results but does not have the

guarantee given in Equation (1) which is the focus of this paper. Bandwidth selection for

level sets is discussed in Samworth & Wand (2010). There is also a literature on anomaly

detection which amounts to constructing prediction sets. Recent advances in this area

include Zhao & Saligrama (2009), Sricharan & Hero (2011) and Steinwart, Hush & Scovel

(2005).

In Section 2 we introduce conformal prediction. In Section 3 we describe a construction of

prediction sets by combining conformal prediction with kernel density estimators. The

approximation result (sandwich lemma) and asymptotic properties are also discussed. A

method for choosing the bandwidth is given in Section 4. Simulation and a real data

example are presented in Section 5. Some technical proofs are given the Appendix.

2. CONFORMAL PREDICTION

Let Y1, …, Yn be a random sample from P and let Y = (Y1, …, Yn). Fix some y ∈ ℝd and let

us tentatively set Yn+1 = y. Let σi = σ({Y1, … , Yn+1}, Yi) be a “conformity score” that

measures how similar Yi is to {Y1, … , Yn+1}. We only require that σ be symmetric in the

entries of it first argument. We test the hypothesis H0 : Yn+1 = y by computing the p-value

By symmetry, under H0 the ranks of the σi are uniformly distributed among {1/(n + 1), 2/(n

+ 1) … 1} and hence for any α ∈ (0, 1) we have  where

. Let

(5)

It follows that under H0 we have . Based on the above

discussion, any conformity measure σ can be used to construct prediction sets with finite

sample validity, with no assumptions on P . The only requirement is exchangeability of the

data. In this paper we will  where  is an appropriate density estimator.

3. CONFORMAL PREDICTION WITH KERNEL DENSITY

3.1 The method

For a given bandwidth hn and kernel function K, let

(6)
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be the usual kernel density estimator. For now, we focus on a given bandwidth hn. The

theoretical and practical aspects of choosing hn will be discussed in Subsection 3.3 and

Section 4, respectively. For any given y ∈ ℝd, let Yn+1 = y and define the augmented density

estimator

(7)

Now we use the conformity measure  and the p-value becomes

The resulting prediction set is . It follows that 

for all P and all n as required.

Figure 1 shows a one-dimensional example of the procedure. The top left plot shows a

histogram of some data of sample size 20 from a two-component Gaussian mixture. The

next three plots (top middle, top right, bottom left) show three kernel density estimators with

increasing bandwidths as well as the conformal prediction sets derived from these estimators

with α = 0.05. Every bandwidth leads to a valid set, but undersmoothing and oversmoothing

lead to larger sets. The bottom middle plot shows the Lebesgue measure of the set as a

function of bandwidth. The bottom right plot shows the estimator and prediction set based

on the bandwidth whose corresponding conformal prediction set has the minimal Lebesgue

measure.

3.2 An approximation

The conformal prediction set is expensive to compute since we have to compute πn(y) for

every y ∈ ℝd. Here we derive an approximation to  that can be computed quickly and

maintains finite sample validity. Define the upper and lower level sets of density p at level t,

respectively:

(8)

The corresponding level sets of  are denoted Ln(t) and , respectively. Let Y(1), … ,

Y(n) be the reordered data so that , and define the inner and outer

sandwiching sets:
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where ψK = supu,u′ |K(u) − K(u′)|. Then we have the following “sandwich” lemma, whose

prrof can be found in Appendix B.

Lemma 3.1 (Sandwich Lemma). Let  be the conformal prediction set based on the

kernel density estimator. Assume that supu |K(u)| = K(0). Then

(9)

According to the sandwich lemma,  also guarantees distribution free finite sample

coverage and is easier to analyze. Moreover, it is much faster to compute since it avoids ever

having to compute the kernel density estimator based on the augmented data. The inner set,

, which is used as an estimate of C(α) in related work such as in Chatterjee & Patra

(1980); Hyndman (1996); Cadre et al. (2009), generally does not have finite sample validity.

We confirm this through simulations in Section 5. Next we investigate the efficiency of

these prediction sets.

3.3 Asymptotic properties

The inner and outer sandwiching sets  and  are plug-in estimators of density level sets

of the form: , where  for the inner set  and

 for the outer set . Here we can view  as an estimate

of t(α). In Cadre et al. (2009) it is shown that, under regularity conditions of the density p,

the plug-in estimators  and Ln( ) are consistent with convergence rate  for a

range of hn. Here we refine the results under more general conditions. We note that similar

convergence rates for plug-in density level sets with a fixed and known level are obtained in

Rigollet & Vert (2009). The extension to unknown levels is nontrivial and needs slightly

stronger regularity conditions.

Intuitively speaking, the plug-in density level set Ln( ) is an accurate estimator of L(t(α)) if

 and  are accurate estimators of p and t(α), and p is not too flat at level t(α). The

following smoothness condition is assumed for p and K to ensure accurate density

estimation.

A1. The density p is Hölder smooth of order β, with β > 0, and K is a valid kernel of order β.

Hölder smoothness and valid kernels are standard assumptions for nonparametric density

estimation. We give their definitions in Appendix A.

Remark: Assumption A1 can be relaxed in a similar way as in Rigollet & Vert (2009). The

idea is that we only need to estimate the density very accurately in a neighborhood of ∂C(α)

(the boundary of the optimal set). Therefore, it would be sufficient to have the strong β′-

Hölder smoothness condition near ∂C(α), together with a weaker β′-Hölder smoothness

condition (βt ≤ β) everywhere else. For presentation simplicity, we stick with the global

smoothness condition in A1.
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To control the regularity of p at level t(α), a common assumption is the γ-exponent

condition, which was first introduced by Polonik (1995) and has been used by many others

(see Tsybakov (1997) and Rigollet & Vert (2009) for example). In our argument, such an

assumption is also related to estimating t(α) itself. Specifically, we assume

A2. There exist constants 0 < c1 ≤ c2 and ∈0 > 0 such that

(10)

The gamma exponent condition requires that the density to be neither flat (for stability of

level set) nor steep (for accuracy of ). As indicated in Audibert & Tsybakov (2007), A1
and A2 cannot hold simultaneously unless γ(1 ^ β) ≤ 1. In the common case γ = 1, this

always holds.

Assumptions A1 and A2 extend those in Cadre et al. (2009), where β = γ = 1 is considered.

The next theorem states the quality of cut-off values used in the sandwiching sets  and

.

Theorem 3.2. Let , where  is the kernel density estimator given by eq.

(6), and Y(i) and in,α are defined as in Section 3.2. Assume that A1-A2 hold and choose

. Then for any λ > 0, there exist constants Aλ,  depending only on

p, K and α, such that

(11)

We give the proof of Theorem 3.2 in Appendix C. Theorem 3.2 is useful for establishing the

convergence of the corresponding level set. Observing that , it

follows immediately that the cut-off value used in  also satisfies (11). The next theorem,

proved in Appendix C, gives the rate of convergence for our estimators.

Theorem 3.3. Under same conditions as in Theorem 3.2, for any λ > 0, there exist constants

Bλ,  depending on p, K and α only, such that, for all ,

(12)

Remark: In the most common cases γ = 1, or β ≥ 1/2, γβ ≤ 1, the term (log n/n)βγ/(2β+d)

dominates the convergence rate. It matches the minimax risk rate of the plug-in density level

set at a known level developed by Rigollet & Vert (2009). As a result, not knowing the cut-

off value t(α) does not change the difficulty of estimation. When βγ/(2β + d) > 1/2, the rate is
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dominated by (log n/n)1/2 and does not agree with the known minimax lower bound and we

do not know if the  can be eliminated from the result.

Remark: The theorems above were stated for the optimal choice of bandwidth. The method

is still consistent with similar arguments whenever  and hn → 0, although

the resulting rates will no longer be optimal.

Remark: The same conclusions in Theorems 3.2 and 3.3 hold under a weaker version of

Assumption A1. To make this idea more precise, suppose the density function is only β-

Hölder smooth in a neighborhood of the level set contour {y : p(y) = t(α)}, but less smooth

everywhere else. Then the same proofs of Theorems 3.2 and 3.3 can be used to obtain a

slower rate of convergence. After establishing this first consistency result, one can apply the

argument again, with the analysis confined in the smooth neighborhood, to obtain the

desired rate of convergence. However, in the interest of space and clarity, we will prove our

results only under the more restrictive smoothness assumptions that we have stated.

Algorithm 1: Tuning With Sample Splitting

Input: sample Y = (Y1, …, Yn), prediction set estimator  level α, and candidate set H

1. Split the sample randomly into two equal sized subsamples, Y1 and Y2.

2.
Construct prediction sets  each at level 1 − α, using subsample Y1.

3. Let  = arg minh μ( ).

4. 4. Return , which is constructed using bandwidth  and subsample Y2.

4. CHOOSING THE BANDWIDTH

As illustrated in Figure 1, the efficiency of  depends on the choice of hn. The size of

estimated prediction sets can be very large if the bandwidth is either too large or too small.

Therefore, in practice it is desirable to choose a good bandwidth in an automatic and data

driven manner. In kernel density estimation, the choice of bandwidth has been one of the

most important topics and many approaches have been studied; see Loader (1999),

Mammen, Miranda, Nielsen & Sperlich (2011), Samworth & Wand (2010) and references

therein. Here we consider choosing the bandwidth by minimizing the volume of the

conformal prediction set.

Let H = {h1, … , hm} be a grid of candidate bandwidths. We compute the prediction set for

each h ∈ H and choose the one with the smallest volume. To preserve finite sample validity,

we use sample splitting as described in Algorithm 1. We state the following result and omit

its proof.

Proposition 4.1. If  satisfies finite sample validity for all h, then , the output of the

sample splitting tuning algorithm, also satisfies finite sample validity.
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There are two justifications for choosing a bandwidth to make  small. The first is

pragmatic: in making predictions it seems desirable to have a small prediction set. The

second reason is that minimizing μ(C) can potentially lead to good risk properties in terms of

the loss μ(CΔC(α)) as we now show. Recall that R(C) = μ(CΔC(α)) and define ε(C) = μ(C) −

μ(C(α)). To avoid technical complications, we will assume in this section that the sample

space is compact and focus on the simple case γ = 1 in condition A2.

Lemma 4.2. Let  be an estimator of C(α). Then  Furthermore, if  is finite

sample valid and A2 holds with γ = 1, then  for some

constant c1.

The bandwidth selection algorithm makes  small. The lemma gives at least us some

assurance that making  small will help to make  small. The proof of Lemma 4.2

is given in Appendix D. (A similar result can be found in Scott & Nowak (2006).) However,

it is an open question whether  achieves the minimax rate.

5. NUMERICAL EXAMPLES

We first consider simulations on Gaussian mixtures and double-exponential mixtures in two

and three dimensions. We apply the bandwidth selector presented in Section 4 to both 

and . The bandwidth used for  is the same as that for . Therefore, in the results it is

possible to see if  is bigger than , or if  is bigger than  because of different

bandwidths and data splitting.

5.1 2D Gaussian mixture

We first consider a two-component Gaussian mixture in ℝ2. The first component has mean

( ) and variance diag(4, 1/4), and the second component has mean (0,

) and variance diag(1/4, 4) (see Figure 2). This choice of component centers is to

make a moderate overlap between the data clouds from the two components. It makes the

prediction set problem more challenging.

Table 1 shows the coverage and Lebesgue measure of the prediction set at level 0.9 (α = 0.1)

over 100 repetitions. The coverage is excellent and the size of the set is close to optimal.

Both the conformal set  and the outer sandwiching set  give correct coverage

regardless of the sample size. It is worth noting that the inner sandwiching set 

(corresponding to the method in Hyndman (1996); Park et al. (2010)) does not give the

desired coverage, which suggests that decreasing the cut-off value in  is not merely an

artifact of proof, but a necessary tuning. The observed excess loss also reflects a rate of

convergence that supports our theoretical results on the symmetric difference loss. We

compare our method with the approach introduced by Zhao & Saligrama (2009) (ĈZS),

where the prediction set is constructed by ranking the distances from each data point to its
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kth nearest neighbor. It has been reported that the choice of k is not crucial and we use k = 6.

(We remark further on the choice of k at the end of this section.) This method is similar to

ours but does not have finite sample validity. We observe that the finite sample coverage

ĈZS is less than the nominal level.

Figure 2 shows a typical realization of the estimators. In both panels, the dots are data points

when n = 200. The left panel shows the conformal prediction set with sample splitting (blue

solid curve), together with the inner and outer sandwiching sets (red dashed and green dotted

curves, respectively). Also plotted is the ideal set C(α) (grey dash-dotted curve). It is clear

that all three estimated sets capture the main part of the ideal set, and they are mutually

close. On the right panel we plot a realization of the depth based approach from Li & Liu

(2008). This approach does not require any tuning parameter. However, it takes O(nd+1)

time to evaluate 1(y ∈ Ĉ) for any single y. In practice it is recommended to compute the

empirical depth only for all the data points and use the convex hull of all data points with

high depth as the estimated prediction set. Such a convex hull construction misses the “L”

shape of the ideal set. Moreover, in our implementation the running time of the kernel

density method is much shorter even when n = 200.

Figure 3 shows the effect of bandwidth on the excess loss ε(Ĉ) = μ(Ĉ) − μ(Ĉ)(α)) based on a

typical implementation with n = 200, where the y axis is the Lebesgue measure of the

estimated sets. We observe that for the conformal prediction set Ĉ(α), the excess loss is

stable for a wide range of bandwidths, especially that moderate undersmoothing does not

harm the performance very much. An intuitive explanation is that the data near the contour

are dense enough to allow for moderate undersmoothing. Similar phenomenon should be

expected whenever α is not too small. Moreover, the selected bandwidth from the outer

sandwiching set  is close to that obtained from the conformal set. This observation may

be of practical interest since it is usually much faster to compute .

Remark: The ĈZS method requires a choice of k. We tried k = 2, 3, … , 20. The coverage

increases with k but does not reach the nominal 0.9 level even when k = 20. The Lebesgue

measure also increases with k and after k = 20, it becomes larger than the conformal region.

5.2 Further simulations

We now investigate the performance of our method using distributions with heavier tails and

in higher dimensions. These simulations confirm that our method always give finite sample

coverage, even when the density estimation is very challenging.

Double exponential distribution—In this setting, the distribution also has two balanced

components. The first component has independent double exponential coordinates: Y (1) ~ 2

DoubleExp(1)+2.2 log n, Y(2) ~ 0.5 DoubleExp(1), where DoubleExp(1) has density exp(−|

y|)/2. The second component has the two coordinates switched. The centering at 2.2 log n is

chosen so that there is moderate overlap between data clouds from two components. The

results are summarized in Table 2.
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Three-dimensional data—Now we increase the dimension of data. The Gaussian

mixture is the same as in the 2-dimensional setup, with the third coordinate being an

independent Gaussian with mean zero and variance 1/4. The results are summarized in Table

3.

Remark: In the above two simulation settings, the conformal prediction sets are much

larger than the ideal (oracle) set unless the sample size is very large (n = 1000). This is

because of the difficulty of multivariate nonparametric density estimation. In fact, the kernel

density estimator may no longer lead to a good conformity score in this case. However, the

theory of conformal prediction is still valid as reflected by the coverage. Thus, one may use

other conformity scores such as the k-nearest-neighbor radius, for which a non-conformal

version has been reported in Zhao & Saligrama (2009). Other possible choices include

Gaussian mixture density estimators and semi-parametric models. These extensions will be

pursued in future work.

5.3 Application to Breast Cancer Data

In this subsection we apply our method to the Wisconsin Breast Cancer Dataset (available at

the UCI machine learning repository). The data contains nine features of 699 patients among

which 241 are malignant and 458 are benign. Although this data set is commonly used to

test classification algorithms, it has been used to test prediction region methods in the

literature (see Park et al. (2010) for example). In this example we use prediction sets to tell

malignant cases from benign ones. Formally, we assume that the benign cases are sampled

from a common distribution, and we construct a 95% prediction set corresponding to the

high density region of the underlying distribution. Although the prediction sets are

constructed using only the benign cases, the efficiency of the estimated prediction/tolerance

set can be measured not only in terms of its Lebesgue measure, but also in terms of the

number of false negatives (i.e., the number of malignant cases covered by the prediction

set). Ideally the prediction set shall contain most of benign cases but few malignant cases

and hence can be used as a classifier.

In our implementation, the data dimension is reduced to two using standard principal

components analysis. Such a dimension reduction simplifies visualization and has also been

used in Park et al. (2010). If no dimension reduction is used, the data concentrates near a

low dimensional subset of the space, and other conformity scores, such as the k nearest

neighbors radius, can be used instead of kernel density estimation. To test the out of sample

performance of our method, we randomly choose 100 out of 458 benign cases as testing

data. The prediction region is constructed using only the remaining 358 benign cases with

coverage level 0.95 and kernel density bandwidth 0.8. We repeat this experiment 100 times.

A typical implementation is plotted in Figure 4. In Table 4 we report the mean coverage on

the testing data as well as the malignant data. The resulting conformal prediction sets give

the desired coverage for the benign cases and low false coverage for the malignant cases.

Note that in this case the inner density level set  is equivalent to the method proposed in

Park et al. (2010), which in general does not have finite sample validity. In our experiment,

the average out-of-sample coverage is slightly below the nominal level (by about one

standard deviation). In this example, we see that the conformal methods (Ĉ(α) and ) give
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similar empirical performance as the conventional non-conformal method ( ), with

additional finite sample guarantee.

APPENDIX A. DEFINITIONS

A.1 Hölder smooth functions

The Hölder class is a popular smoothness condition in nonparametric inferences (Tsybakov

2009, Section 1.2). Here we use the version given in (Rigollet & Vert 2009).

Let s = (s1, …, sd) be a d-tuple of non-negative integers and |s| = s1 + … + sd. For any x ∈

ℝd, let  and Ds be the differential operator:

Given β > 0, for any functions f that are [β] times differentiable, denote its Taylor expansion

of

degree [βJ at x0 by

Definition A.1 (Hölder class). For constants β > 0, L > 0, define the Hölder class Σ(β, L) to

be the set of lβJ-times differentiable functions on ℝd such that,

(A.1)

A.2 Valid kernels

A standard condition on the kernel is the notion of β-valid kernels.

Definition A.2 (β-valid kernel). For any β > 0, function K : ℝd → ℝ1 is a β-valid kernel if

(a) K is supported on [−1, 1]d; (b) ∫ K = 1; (c) ∫ |K|r < ∞, all r ≥ 1; (d) ∫ ysK(y)dy = 0 for all

1 ≤ |s| ≤ β.

The last condition is interpreted elementwise. In the literature, β-valid kernels are usually

used with Hölder class of functions to derive fast rates of convergence. The existence of

univariate β-valid kernels can be found in Section 1.2 of Tsybakov (2009). A multivariate β-

valid kernel can be obtained by taking direct product of univariate β-valid kernels.
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APPENDIX B. PROOF OF LEMMA 3.2

Proof Lemma 3.1. Let , where Pn is the empirical distribution defined

by the sample Y = (Y1, …, Yn), and δy is the point mass distribution at y. Define functions

The functions G, Gn and  defined above are the cumulative distribution function (CDF) of

p(Y ) and its empirical versions with sample Y and aug(Y, y), respectively, where aug(Y, y)

= (Y1, … , Yn, y). By (5) and Algorithm 1, the conformal prediction set can be written as

The proof is based on a direct characterization of  and . First, for each y ∈  and i ≤

in,α, we have

As a result,  and hence y ∈ Ĉ(α). Similarly, for each y ∈ 

and i ≥ in,α we have

Therefore,  and hence y ∈ Ĉ(α).

APPENDIX C. PROOF OF THEOREM 3.3

The bias in the estimated cut-off level  can be bounded in terms of two quantities:

Here Vn can be viewed as the maximum of the empirical process Pn − P over a nested class

of sets, and Rn is the L∞ loss of the density estimator. As a result, Vn can be bounded using

the standard empirical process and VC dimension argument, and Rn can be bounded using
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the smoothness of p and kernel K with a suitable choice of bandwidth. Formally, we provide

upper bounds for these two quantities through the following lemma.

Lemma C.1. Let Vn, Rn be defined as above, then under Assumptions A1 and A2, for any λ

> 0, there exist constants A1,λ and A2,λ depending on λ only, such that,

Proof. First, it is easy to check that the class of sets {Lf(t) : t > 0} are nested with VC

(Vapnik-Chervonenkis) dimension 2 and hence by classical empirical process theory (see,

for example, van der Vaart & Wellner (1996), Section 2.14) , there exists a constant C0 > 0

such that for all η > 0

(A.2)

Let η = , we have

(A.3)

The first result then follows by choosing . Next we bound Rn. Let p̄ = 

p̂n], and ∈n = (log n/n)β/(2β+d). By triangle inequality Rn ≤ || p̂n − p̄||∞ + ||p̄ − p||∞. Due to a

result of Giné & Guillou (2002) (see also (49) in Chapter 3 of Prakasa Rao (1983)), under

Assumption A1, there exist constants C1, C2 and B0 > 0 such that have for all B ≥ B0,

(A.4)

On the other hand, by Assumption A1, for some constant C3

(A.5)

In (A.3), (A.4) and (A.5) the constants Ci, i = 0, …, 3, depend on p and K only. Hence,

(A.6)

which concludes the second part by choosing . □

Proof of Theorem 3.2. Let αn = in,α/n = l(n + 1)αJ/n. We have |αn − α| ≤ 1/n. Recall that the

ideal level t(α) can be written as t(α) = G−1(α) where the function G is the cumulative
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distribution function of p(Y ), as defined in Subsection 3.2. By the γ-exponent condition the

inverse of G is well defined in a small neighborhood of α. When n is large enough, we can

define t(αn) as t(αn) = G−1(αn).

Again, by the γ-exponent condition,

. Therefore, for n large enough

(A.7)

Equation (A.7) allows us to switch to the problem of bounding . Recall that

. The key of the proof is to observe that

. Then it suffices to show that G−1 and G−1 are close

at αn. In fact, by definition of Rn we have for all . As

a result, we have

By definition of Vn,

By definition of G and Gn, the above inequality becomes

Let Wn = Rn + (2Vn/c1)1/γ . Suppose n is large enough such that

then on the event ,

where the last inequality uses the left side of the γ-exponent condition. Similarly, Gn(t(αn) +

Wn) > αn. Hence, for n large enough, if  then,
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(A.8)

To conclude the proof, first note that . Then we can find constant

 such that for all n large enough,

(A.9)

Let Aλ = A2,λ. Combining equations (A.7) and (A.8), on the event

(A.10)

we have, for n large enough,

where the second last inequality is from the definition of En,λ and the last inequality is from

the choice of . The proof is concluded by observing , a consequence

of Lemma C.1. □

Proof of Theorem 3.3. In the proof we write tn for  as a generic estimate

of t(α) that satisfies (11). Observe that

(A.11)

Note that

(A.12)

and Therefore

(A.13)

Suppose n is large enough such that
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(A.14)

Suppose n is large enough such that

where the constant A2,λ is defined as in Lemma C.1 and  is defined as in equation (A.9).

Then on the event En,λ as defined in equation (A.10), applying Theorem 3.2 and condition

(10) on the right hand side of (A.14) yields

(A.15)

where Bλ,  are positive constants depending only on p, K, α and γ. As a result, both 

and  satisfies the claim of Theorem 3.3. The claim also holds for Ĉα by the sandwich

Lemma. □

APPENDIX D. PROOFS OF LEMMA 4.3

Proof of Lemma 4.2. The first statement follows since

For the second statement, let I denote the indicator function for C and let I* denote the

indicator function for C*. Note that, for all y, (I(y) − I*(y))(λ − p(y)) ≥ 0. Let λ = λα and

define W∈ = {y : |p(y) − λ| > ∈}. From Assumption A2 with γ = 1 we have that μ(CΔC*) ≤

μ((CΔC*) ∩ WE) + c∈ for some c > 0. Hence,

Since P (C)) ≥ 1−α, if we take expected values of both sides we have that

. The conclusion follows by setting .
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Figure 1.
Top left: histogram of some data. Top middle, top right, and bottom left show three kernel

density estimators and the corresponding conformal prediction sets with bandwidth 0.1, 1,

and 10. Bottom middle: Lebesgue measure as a function of bandwidth. Bottom right:

estimator and prediction set obtained from the bandwidth with smallest prediction set.
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Figure 2.
Conformal prediction set (left) and the convex hull of the multivariate spacing depth based

tolerance set (right), with data from a two-component Gaussian mixture.
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Figure 3.
Lebesgue measure of prediction sets versus bandwidth.
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Figure 4.
Prediction sets for benign instances. Crosses: benign; diamonds: malignant. Blue dashed

curve: ; Black dotted curve: ; Red solid curve: Ĉ(α).
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Table 1

The simulation results for 2-d Gaussian mixture with α = 0.1 over 100 repetitions (mean and one standard

deviation). The Lebesgue measure of the ideal set ≈ 28.02.

Coverage Lebesgue Measure

n = 100 n = 200 n = 1000 n = 100 n = 200 n = 1000

Ĉ
(α) 0.886 ± 0.005 0.897 ± 0.002 0.900 ± 0.001 35.6 ± 0.7 34.3 ± 0.3 31.1 ± 0.2

L n
− 0.861 ± 0.004 0.882 ± 0.001 0.896 ± 0.001 29.8 ± 0.3 34.1 ± 0.2 32.2 ± 0.1

L n
+ 0.907 ± 0.003 0.900 ± 0.001 0.907 ± 0.001 36.2 ± 0.4 36.9 ± 0.2 34.1 ± 0.1

ĈZS 0.853 ± 0.004 0.867 ± 0.002 0.881 ± 0.001 28.1 ± 0.4 28.2 ± 0.2 28.0 ± 0.1
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Table 2

The simulation results for 2-d double exponential mixture with α = 0.1 over 100 repetitions (mean and one

standard deviation). The Lebesgue measure of the ideal set ≈ 55.

Coverage Lebesgue Measure

n = 100 n = 200 n = 1000 n = 100 n = 200 n = 1000

Ĉ
(α) 0.895 ± 0.005 0.916 ± 0.003 0.91 ± 0.002 77.7 ± 3 76.6 ± 1.6 62.3 ± 0.6

L n
− 0.864 ± 0.006 0.897 ± 0.003 0.90 ± 0.001 66.5 ± 2.3 71.7 ± 1.2 58.3 ± 0.3

L n
+ 0.893 ± 0.005 0.912 ± 0.003 0.92 ± 0.001 86.1 ± 7.4 78.2 ± 1.3 65.0 ± 0.4

ĈZS 0.871 ± 0.004 0.892 ± 0.003 0.897 ± 0.001 58.2 ± 1.5 60.2 ± 1.0 55.2 ± 0.4
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Table 3

The simulation results for 3-d Gaussian mixture with α = 0.1 over 100 repetitions (mean and one standard

deviation). The Lebesgue measure of the ideal set ≈ 62.

Coverage Lebesgue Measure

n = 100 n = 200 n = 1000 n = 100 n = 200 n = 1000

Ĉ
(α) 0.917 ± 0.004 0.902 ± 0.003 0.900 ± 0.002 109 ± 2.4 89 ± 1.5 74 ± 0.7

L n
− 0.875 ± 0.005 0.880 ± 0.003 0.889 ± 0.002 109 ± 2.1 98 ± 1.5 81 ± 0.7

L n
+ 0.892 ± 0.004 0.898 ± 0.003 0.916 ± 0.002 118 ± 2.2 109 ± 1.6 96 ± 0.9

ĈZS 0.869 ± 0.003 0.872 ± 0.002 0.879 ± 0.001 75 ± 1.3 69 ± 0.8 64 ± 0.4
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Table 4

Application to the breast cancer data with α = 0.05 over 100 repetitions. Reported are the mean and one

estimated standard deviation of the empirical coverage on the testing benign data and the malignant data.

method Ĉ
(α) L n

− L n
+

test sample coverage 0.9514 ± 0.0012 0.9488 ± 0.0012 0.9534 ± 0.0013

malignant data coverage 0.0141 ± 0.0002 0.0044 ± 0.0001 0.0420 ± 0.0004
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