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Distribution-free, Risk-controlling Prediction Sets
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While improving prediction accuracy has been the focus of machine learning in recent years, this alone does
not suffice for reliable decision-making. Deploying learning systems in consequential settings also requires
calibrating and communicating the uncertainty of predictions. To convey instance-wise uncertainty for pre-
diction tasks, we show how to generate set-valued predictions from a black-box predictor that controls the
expected loss on future test points at a user-specified level. Our approach provides explicit finite-sample
guarantees for any dataset by using a holdout set to calibrate the size of the prediction sets. This frame-
work enables simple, distribution-free, rigorous error control for many tasks, and we demonstrate it in five
large-scale machine learning problems: (1) classification problems where some mistakes are more costly than
others; (2) multi-label classification, where each observation has multiple associated labels; (3) classification
problems where the labels have a hierarchical structure; (4) image segmentation, where we wish to predict a
set of pixels containing an object of interest; and (5) protein structure prediction. Last, we discuss extensions
to uncertainty quantification for ranking, metric learning, and distributionally robust learning.
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1 INTRODUCTION

Black-box predictive algorithms have begun to be deployed in many real-world decision-making
settings. Problematically, however, these algorithms are rarely accompanied by reliable uncertainty
quantification. Algorithm developers often depend on the standard training/validation/test para-
digm to make assertions of accuracy, stopping short of any further attempt to indicate that an
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algorithm’s predictions should be treated with skepticism. Thus, prediction failures will often be
silent ones, which is particularly alarming in high-consequence settings.
While one reasonable response to this problem involves retreating from black-box prediction,

such a retreat raises many unresolved problems, and it is clear that black-box prediction will be
with us for some time to come. A second response is to modify black-box prediction procedures so
they provide reliable uncertainty quantification, thereby supporting a variety of post-prediction
activities, including risk-sensitive decision-making, audits, and protocols for model improvement.
We introduce a method for modifying a black-box predictor to return a set of plausible re-

sponses that limits the frequency of costly errors to a level chosen by the user. Returning a set
of responses is a useful way to represent uncertainty, since such sets can be readily constructed
from any existing predictor and, moreover, they are often interpretable. We call our proposed tech-
nique risk-controlling prediction sets (RCPS). The idea is to produce prediction sets that provide
distribution-free, finite-sample control of a general loss.
As an example, consider classifying MRI images as in Figure 1. Each image can be classified into

one of several diagnostic categories. We encode the consequence (loss) of making a mistake on an
image as 100 for the most severe mistake (class stroke) and as 0.1 for the least severe mistake
(class normal). Our procedure returns a set of labels, such as those denoted by the red, blue, and
green brackets in Figure 1. This output set represents the plausible range of patient diagnoses,
accounting for their respective severities. Our procedure returns sets that are guaranteed to keep
average loss (risk) on future data below a user-specified level, under a set of assumptions that we
make explicit. To do this, the size of the output set is chosen based on the accuracy of the classifier
and the desired risk level—a lower accuracy classifier or a more strict risk level will require larger
sets to guarantee risk control. Because of the explicit guarantee on our output, a doctor could safely
exclude diagnoses outside the set and test for those within.
Formally, for a test point with features X ∈ X, a response Y ∈ Y , we consider set-valued

predictors T (X ) : X → Y ′ where Y ′ is some space of sets; we take Y ′ = 2Y in the MRI above
example and for most of this work. We then have a loss function on set-valued predictions L :
Y×Y ′ → R that encodes our notion of consequence, and seek a predictor T , that controls the risk
R (T ) = E

[
L(Y ,T (X ))]. For example, in our MRI setting, if the first argument is a label y � T (X ),

and the second argument is T (X ), then the loss function outputs the cost of not predicting y. Our
goal in this work is to create set-valued predictors from training data that have risk that is below
some desired level α , with high probability. Specifically, we seek the following:

Definition 1 (Risk-controlling Prediction Sets). Let T be a random function taking values in the
space of functions X → Y ′ (e.g., a functional estimator trained on data). We say that T is a
(α ,δ )-risk-controlling prediction set if, with probability at least 1 − δ , we have R (T ) ≤ α .

The error level (α ,δ ) is chosen in advance by the user. The reader should think of 10% as a
representative value of δ ; the choice of α will vary with the choice of loss function.

Related Work

Prediction sets have a long history in statistics, going back at least to tolerance regions in the
1940s [52, 58, 60, 61]. Tolerance regions are sets that contain a desired fraction of the population
distribution with high probability. For example, one may ask for a region that contains 90% of
future test points with probability 99% (over the training data). See Reference [29] for an overview
of tolerance regions. Recently, tolerance regions have been instantiated to form prediction sets
for deep learning models [40, 41]. In parallel, conformal prediction [55, 56] has been recognized
as an attractive way of producing predictive sets with finite-sample guarantees. A particularly
convenient form of conformal prediction, known as split conformal prediction [31, 39], uses data
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Fig. 1. A stylized example of risk-controlling prediction sets. Here, “P” gives the estimated probability for
each class, the loss per class is labeled as “L,” and the loss times the probability is the estimated risk, labeled
as “R.” The red, blue, and green brackets represent possible sets of labels that our procedure may output.

splitting to generate prediction sets in a computationally efficient way; see also References [4, 54]
for generalizations that re-use data for improved statistical efficiency. Conformal prediction is a
generic approach, and much recent work has focused on designing specific conformal procedures
to have good performance according to metrics such as small set sizes [48], approximate coverage
in all regions of feature space [1, 3, 12, 20, 28, 46, 47], and errors balanced across classes [21, 24,
30, 48]. Further extensions of conformal prediction address topics such as distribution estimation
[57], causal inference [32], and handling or testing distribution shift [11, 27, 51]. As an alternative
to conformal prediction and tolerance regions, there is also a set of techniques that approach the
tradeoff between small sets and high coverage by defining a utility function balancing these two
considerations and finding the set-valued predictor that maximizes this utility (e.g., References
[14, 19, 38]). The present work concerns the construction of tolerance regions with a user-specified
coverage guarantee, and we do not pursue this latter formulation here.
In the current work, we expand the notion of tolerance regions to apply to a wider class of losses

for set-valued predictors. Our development is inspired by the nested set interpretation of conformal
prediction articulated in Reference [22], and our proposed algorithm is somewhat similar to split
conformal prediction. Unlike conformal prediction, however, we pursue the high-probability error
guarantees of tolerance regions and thus rely on entirely different proof techniques—see Reference
[53] for a discussion of their relationship. As one concrete instance of this framework, we introduce
a family of set-valued predictors that generalizes those of Reference [48] to produce small set-
valued predictions in a wide range of settings.

Our Contribution

The central contribution of this work is a procedure to calibrate prediction sets to have finite-
sample control of any loss satisfying a certain monotonicity requirement. The calibration proce-
dure applies to any set-valued predictor, but we also show how to take any standard (non-set-
valued) predictor and turn it into a set-valued predictor that works well with our calibration pro-
cedure. Our algorithm includes the construction of tolerance regions as special case, but applies to
many other problems; this work explicitly considers classificationwith different penalties for differ-
ent misclassification events, multi-label classification, classification with hierarchically structured
classes, image segmentation, prediction problems where the response is a 3D structure, ranking,
and metric learning.

2 UPPER CONFIDENCE BOUND CALIBRATION

This section introduces our proposed method to calibrate any set-valued predictor so it is guaran-
teed to have risk below a user-specified level, i.e., so it satisfies Definition 1.
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Fig. 2. Sample-splitting setup. The training data is used to fit a predictive model f̂ . The remaining data is

used to calibrate a set-valued predictor (based on f̂ ) to control risk, as described in this work.

2.1 Setting and Notation

Let (Xi ,Yi )i=1, ...,m be an independent and identically distributed (i.i.d.) set of variables, where the
features vectors Xi take values in X and the response Yi take values in Y . To begin, split our data
into a training set and a calibration set. Formally, let {Itrain,Ical} form a partition of {1, . . . ,m}, and
let n = |Ical |. Without loss of generality, we take Ical = {1, . . . ,n}. We allow the researcher to fit
a predictive model on the training set Itrain using an arbitrary procedure, calling the result f̂ , a
function fromX to some spaceZ. The remainder of this article shows how to subsequently create
set-valued predictors from f̂ that control a certain statistical error notion, regardless of the quality
of the initial model fit or the distribution of the data. For this task, we will only use the calibration
points (X1,Y1), . . . , (Xn ,Yn ). See Figure 2 for a visualization of our setting.
Next, let T : X → Y ′ be a set-valued function (a tolerance region) that maps a feature vector to

a set-valued prediction. This function would typically be constructed from the predictive model,
f̂ , which was fit on the training data—see the example in Figure 1. We will describe one possible
construction in detail in Section 4. We further suppose we have a collection of such set-valued
predictors indexed by a one-dimensional parameter λ taking values in a closed set Λ ⊂ R ∪ {±∞}
that are nested, meaning that larger values of λ lead to larger sets:

λ1 < λ2 =⇒ Tλ1 (x ) ⊂ Tλ2 (x ). (1)

To capture a notion of error, let L(y,S) : Y × Y ′ → R≥0 be a loss function on prediction sets.
For example, we could take L(y,S) = 1{y∈S} , which is the loss function corresponding to classical
tolerance regions. We require that the loss function respects the following nesting property:

S ⊂ S′ =⇒ L(y,S) ≥ L(y,S′). (2)

That is, larger sets lead to smaller loss. We then define the risk of a set-valued predictor T to be

R (T ) = E
[
L(Y ,T (X ))

]
.

Since we will primarily be considering the risk of the tolerance functions from the family {Tλ }λ∈Λ,
we will use the notational shorthand R (λ) to mean R (Tλ ). We further assume that there exists an
element λmax ∈ Λ such that R (λmax) = 0.

2.2 The Procedure

Recalling Definition 1, our goal is to find a set function whose risk is less than some user-specified
threshold α . To do this, we search across the collection of functions {Tλ }λ∈T and estimate their
risk on data not used for model training, Ical . We then show that by choosing the value of λ in a
certain way, we can guarantee that the procedure has risk less than α with high probability.
We assume that we have access to a pointwise upper confidence bound (UCB) for the risk

function for each λ:

P

(

R (λ) ≤ R̂+ (λ)
︸︷︷︸

UCB

)

≥ 1 − δ , (3)
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Fig. 3. Visualization of UCB calibration.

where R̂+ (λ) may depend on (X1,Y1), . . . , (Xn ,Yn ). We will present a generic strategy to obtain
such bounds by inverting a concentration inequality as well as concrete bounds for various settings
in Section 3. We choose λ̂ as the smallest value of λ such that the entire confidence region to the
right of λ falls below the target risk level α :

λ̂ � inf
{
λ ∈ Λ : R̂+ (λ′) < α , ∀λ′ ≥ λ

}
. (4)

See Figure 3 for a visualization.
This choice of λ results in a set-valued predictor that controls the risk with high probability:

Theorem 1 (Validity of UCB Calibration). Let (Xi ,Yi )i=1, ...,n be an i.i.d. sample, let L(·, ·)
be a loss satisfying the monotonicity condition in Equation (2), and let {Tλ }λ∈Λ be a collection of set

predictors satisfying the nesting property in Equation (1). Suppose Equation (3) holds pointwise for
each λ, and that R (λ) is continuous. Then, for λ̂ chosen as in Equation (4),

P
(

R (T
λ̂
) ≤ α

)

≥ 1 − δ .
That is, T

λ̂
is a (α ,δ )-RCPS.

All proofs are presented in Appendix A. Note that we are able to turn a pointwise convergence
result into a result on the validity of a data-driven choice of λ. This is due to the monotonicity
of the risk function; without the monotonicity, we would need a uniform convergence result on
the empirical risk to get a similar guarantee. Next, we will show how to get the required concen-
tration in Equation (3) for cases of interest, so we can carry out the UCB calibration algorithm.
Later, in Section 5, we will introduce several concrete loss functions and empirically evaluate the
performance of the UCB calibration algorithms in a variety of prediction tasks.

Remark 1. Upper confidence bound calibration holds in more generality than the concrete in-
stantiation above. The result holds for any monotone R (λ) with a pointwise upper confidence
bound R̂+ (λ). We present the general statement in Appendix A.

Remark 2. The above result also implies that UCB calibration gives an RCPS even if the data
used to fit the initial preditive model comes from a different distribution. The only requirement is
that the calibration data and the test data come from the same distribution.

Remark 3. We assumed that R (·) is continuous for simplicity, but this condition can be removed
with minor modifications. The upper confidence bound is not assumed to be continuous.

3 CONCENTRATION INEQUALITIES FOR THE UPPER CONFIDENCE BOUND

In this section, we develop upper confidence bounds as in Equation (3) under different conditions
on the loss function, which will allow us to use the UCB calibration procedure for a variety of
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prediction tasks. In addition, for settings for which no finite-sample bound is available, we give
an asymptotically valid upper confidence bound. Software implementing the upper confidence
bounds is available in this project’s public GitHub repository along with code to exactly reproduce
our experimental results.

3.1 Bounded Losses

We beginwith the case where our loss is bounded above and, without loss of generality, we take the
bound to be one. We will present several upper confidence bounds and compare them in numerical
experiments. The confidence bound of Waudby-Smith and Ramdas [59] is the clear winner, and
ultimately we recommend this bound for use in all cases with bounded loss.

3.1.1 Illustrative Case: the Simplified Hoeffding Bound. It is natural to construct an upper con-
fidence bound for R (λ) based on the empirical risk, the average loss of the set-valued predictor Tλ
on the calibration set:

R̂ (λ) �
1

n

n∑

i=1

L (Yi ,Tλ (Xi )) .

As a warm-up, recall the following simple version of Hoeffding’s inequality:

Proposition 1 (Hoeffding’s Ineqality, Simple Version [26]). Suppose the loss is bounded
above by one. Then,

P
(

R̂ (λ) − R (λ) ≤ −x
)

≤ exp{−2nx2}.

This implies an upper confidence bound

R̂+sHoef (λ) = R̂ (λ) +

√

1

2n
log
( 1

δ

)

. (5)

Applying Theorem 1 with

λ̂ = λ̂sHoef � inf
{
λ ∈ Λ : R̂+sHoef (λ

′) < α , ∀λ′ ≥ λ
}

= inf
⎧⎪⎨⎪⎩λ ∈ Λ : R̂ (λ) < α −

√

1

2n
log
( 1

δ

)⎫⎪⎬⎪⎭ , (6)

we can generate an RCPS, which we record formally below.

Theorem 2 (RCPS from Hoeffding’s Ineqality). In the setting of Theorem 1, assume addi-

tionally that the loss is bounded by one. Then, T
λ̂sHoef

is a (α ,δ )-RCPS.

In view of Equation (6), UCB calibration with this version of Hoeffding’s bound results in a
procedure that is simple to state—one selects the smallest set size such that the empirical risk on
the calibration set is below α−

√

log(1/δ )/2n. This result is only presented for illustration purposes,
however. Much tighter concentration results are available, so in practice, we recommend using the
better bounds described next.

3.1.2 Hoeffding–Bentkus Bound. In general, an upper confidence bound can be obtained if the

lower tail probability of R̂ (λ) can be controlled, in the following sense:

Proposition 2. Suppose д(t ;R) is a nondecreasing function in t ∈ R for every R:

P (R̂ (λ) ≤ t ) ≤ д(t ;R (λ)).

Then, R̂+ (λ) = sup{R : д(R̂(λ);R) ≥ δ } satisfies Equation (3).
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This result shows how a tail probability bound can be inverted to yield an upper confidence

bound. Put another way, д(R̂(λ);R) is a conservative p-value for testing the one-sided null hypoth-
esis H0 : R (λ) ≥ R. From this perspective, Proposition 2 is simply a restatement of the duality
between p-values and confidence intervals.
The previous discussion of the simple Hoeffding bound is a special case of this proposition, but

stronger results are possible. The rest of this section develops a sharper tail bound that builds on
two stronger concentration inequalities.
We begin with a tighter version of Hoeffding’s inequality.

Proposition 3 (Hoeffding’s Ineqality, Tighter Version [26]). Suppose the loss is bounded
above by one. Then, for any t < R (λ),

P
(

R̂ (λ) ≤ t
)

≤ exp{−nh1 (t ;R (λ))},

where h1 (t ;R) = t log(t/R) + (1 − t ) log((1 − t )/(1 − R)).

The weaker Hoeffding inequality is implied by Proposition 3 using the fact that h1 (t ;R) ≥
2(t − R)2. Another strong inequality is the Bentkus inequality, which implies that the Binomial
distribution is the worst case up to a small constant. The Bentkus inequality is nearly tight if the

loss function is binary, in which case nR̂ (λ) is binomial.

Proposition 4 (Bentkus Ineqality [5]). Suppose the loss is bounded above by one. Then,

P (R̂ (λ) ≤ t ) ≤ eP (Binom(n,R (λ)) ≤ ⌈nt⌉) ,

where Binom(n,p) denotes a binomial random variable with sample size n and success probability p.

Putting Propositions 3 and 4 together, we obtain a lower tail probability bound for R̂ (λ):

дHB (t ;R (λ)) � min (exp{−nh1 (t ;R (λ))}, eP (Binom(n,R (λ)) ≤ ⌈nt⌉)) .

By Proposition 2, we obtain a (1 − δ ) upper confidence bound for R (λ) as

R̂+HB (λ) = sup{R : дHB (R̂(λ);R) ≥ δ }. (7)

We obtain λ̂HB from R̂+HB (λ) as in Equation (4) and conclude the following:

Theorem 3 (RCPS from the Hoeffding–Bentkus Bound). In the setting of Theorem 1, assume

additionally that the loss is bounded by one. Then, T
λ̂HB

is a (α ,δ )-RCPS.

Remark 4. The Bentkus inequality is closely related to an exact confidence region for themean of
a binomial distribution. In the special where the loss takes values only in {0, 1}, this exact binomial
result gives the most precise upper confidence bound and should always be used; see Appendix B.

3.1.3 Waudby-Smith–Ramdas Bound. Although the Hoeffding–Bentkus bound is nearly tight
for binary loss functions, for non-binary loss functions, it can be very loose because it does
not adapt to the variance of L(Yi ,Tλ (Xi )). As an example, consider the extreme case where

Var(L(Yi ,Tλ (Xi ))) = 0, then R̂ (λ) = R (λ) almost surely, and hence R̂+ (λ) can be set as R̂ (λ). In
general, when Var(L(Yi ,Tλ (Xi ))) is small, the tail probability bound can be much tighter than that
given by the Hoeffding–Bentkus bound. We next present a bound that is adaptive to the variance
and improves upon the previous result in most settings.
The most well-known concentration result incorporating the variance is Bernstein’s inequal-

ity [7]. To accommodate the case where the variance is unknown and must be estimated,
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Reference [37] proposed an empirical Bernstein inequality that replaces the variance by the em-
pirical variance estimate. This implies the following upper confidence bound for R (λ):

R̂+eBern (λ) = R̂ (λ)+σ̂ (λ)

√

2 log(2/δ )

n
+

7 log(2/δ )

3(n − 1) , where σ̂ 2 (λ) =
1

n − 1

n∑

i=1

(L(Yi ,Tλ (Xi ))−R̂(λ))2.

(8)
However, the constants in the empirical Bernstein inequality are not tight, and improvements are
possible.
As an alternative bound that adapts to the unknown variance, Reference [59] recently proposed

the hedged capital confidence interval for the mean of bounded random variables, drastically im-
proving upon the empirical Bernstein inequality. Unlike all aforementioned bounds, it is not based

on inverting a tail probability bound for R̂ (λ), but instead builds on tools from online inference
and martingale analysis. For our purposes, we consider an one-sided variant of their result, which
we refer to as theWaudby-Smith–Ramdas (WSR) bound.

Proposition 5 (Waudby-Smith–Ramdas Bound [59]). Let Li (λ) = L(Yi ,Tλ (Xi )) and

μ̂i (λ) =
1/2 +

∑i
j=1 Lj (λ)

1 + i
, σ̂ 2

i (λ) =
1/4 +

∑i
j=1 (Lj (λ) − μ̂ j (λ))2

1 + i
, νi (λ) = min

⎧⎪⎨⎪⎩1,
√

2 log(1/δ )

nσ̂ 2
i−1 (λ)

⎫⎪⎬⎪⎭ .
Further, let

Ki (R; λ) =
i∏

j=1

{
1 − νj (λ) (Lj (λ) − R)

}
, R̂+WSR (λ) = inf

{

R ≥ 0 : max
i=1, ...,n

Ki (R; λ) >
1

δ

}

.

Then, R̂+WSR (λ) is a (1 − δ ) upper confidence bound for R (λ).
Since the result is a small modification of the one stated in Reference [59], for completeness,

we present a proof in Appendix A. As before, we then set λ̂WSR as in Equation (4) to obtain the
following corollary:

Theorem 4 (RCPS from the Waudby-Smith–Ramdas Bound). In the setting of Theorem 1, as-

sume additionally that the loss is bounded by 1. Then, T
λ̂WSR is a (α ,δ )-RCPS.

3.1.4 Numerical Experiments for Bounded Losses. We now evaluate the aforementioned bounds
on random samples from a variety of distributions on [0, 1]. As an additional point of comparison,
we also consider a bound based on the central limit theorem (CLT) that does not have finite-
sample guarantees, formally defined later in Section 3.3. In particular, given a distribution F for

the loss L(Y ,Tλ (X )), we sample L1, . . . ,Ln
i.i.d.∼ F and compute the (1−δ ) upper confidence bound

of the mean for n ∈ {⌊10r ⌋ : r = 2, 2.5, 3, 3.5, 4} and δ ∈ {0.1, 0.01, 0.001}. We present the results
for δ = 0.1 here and report on other choices of δs in Appendix D. Based on one million replicates
of each setting, we report the coverage and the median gap between the UCB and true mean; the
former measures the validity and the latter measures the power.
We consider the Bernoulli distribution, F = Ber(μ ), and the Beta distribution, F = Beta(a,b)with

b = a(1/μ−1). Note that both distributions havemean μ. Since a user would generally be interested
in setting α in [0.001, 0.1] in practice, we set μ ∈ {0.1, 0.01, 0.001}. To account for different levels
of variability, we set a ∈ {0.1, 1, 10} for the Beta distribution, with a larger a yielding a tighter
concentration around the mean. We summarize the results in Figure 4(a). First, we observe that
the CLT does not always have correct coverage, especially when the true mean is small, unless
the sample size is large. Accordingly, we recommend the bounds with finite-sample guarantees
in this case. Next, as shown in Figure 4(b), the WSR bound outperforms the others for all Beta
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Fig. 4. Numerical evaluations of concentration results for bounded losses. We show the simple Hoeffding
bound (5), HB bound (7), empirical Bernstein bound (8), CLT bound (10), and WSR bound (Proposition 5)
with sample size n. Each row corresponds to a type of distribution and each column corresponds to a value
of the mean. The CLT bound is excluded in (b), because it does not achieve the target coverage in most of
the cases.

distributions and has a similar performance to the HB bound for Bernoulli distributions. It is not
surprising that the HB bound performs well for binary variables, since the Bentkus inequality is
nearly tight here. Based on these observations, we recommend theWSR bound for any non-binary
bounded loss. When the loss is binary, one should use the exact result based on quantiles of the
binomial distribution; see Appendix B.

3.2 Unbounded Losses

We now consider the more challenging case of unbounded losses. As a motivating example, con-
sider the Euclidean distance of a point to its closest point in the prediction set as a loss:

L (y,S) = inf { | |y − y ′ | |2 : y ′ ∈ S)}.

Based on the well-known results of Reference [2], we can show that it is impossible to derive a
nontrivial upper confidence bound for the mean of nonnegative random variables in finite samples
without any other restrictions—see Proposition A.1 in Appendix A. As a result, wemust restrict our
attention to distributions that satisfy some regularity conditions. One reasonable approach is to
consider distributions satisfying a bound on the coefficient of variation, and we turn our attention
to such distributions next.

3.2.1 The Pinelis–Utev Inequality. For nonnegative random variables with bounded coeffecient
of variation, the Pinelis–Utev inequality gives a tail bound as follows:

Proposition 6 (Pinelis and Utev [42], Theorem 7). Let cv (λ) = σ (λ)/R (λ) denote the coeffi-

cient of variation. Then, for any t ∈ (0,R (λ)],

P (R̂ (λ) ≤ t ) ≤ exp

{

− n

c2v (λ) + 1

[
1 +

t

R (λ)
log

(

t

eR (λ)

)]}
.
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Table 1. Distributions Considered for the Unbounded Case

Gamma Squared-t Log-normal

light-tailed a = 1 v = 100 (μ,σ ) = (−0.125, 0.5)
heavy-tailed a = 0.05 v = 4 (μ,σ ) = (−2, 2)

By Proposition 2, this implies an upper confidence bound of R (λ):

R̂+PU (λ) = sup
⎧⎪⎨⎪⎩R : exp

⎧⎪⎨⎪⎩−
n

c2v (λ) + 1

⎡⎢⎢⎢⎢⎣1 +
R̂ (λ)

R
log ��

R̂ (λ)

eR
��
⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭ ≥ δ

⎫⎪⎬⎪⎭ . (9)

This result shows that a nontrivial upper confidence bound can be derived if cv (λ) is known.When
cv (λ) is unknown, we can treat it as a sensitivity parameter or estimate it based on the sample
moments. Using this inequality and plugging in an upper bound cv for cv (λ), we define λ̂PU with
the UCB calibration procedure (i.e., as in Equation (4)) to get the following guarantee:

Theorem 5 (RCPS from Pinelis–Utev Ineqality). In the setting of Theorem 1, suppose in

addition that for each λ ∈ Λ, cv (λ) ≤ cv for some constant cv . Then, Tλ̂PU is a (α ,δ )-RCPS.

3.2.2 Numerical Comparisons of Upper Confidence Bounds. Next, we numerically study the un-
bounded case with two competing bounds—the PU bound with cv estimated by the ratio between
the standard error and the average, and a bound based on the CLT described explicitly later in
Section 3.3 (which does not have finite-sample coverage guarantees). We consider three types of
distributions—the Gamma distribution Γ(a, 1), the square-t distribution t2 (v ) (the distribution of
the square of a t-distributed variable with degree of freedom v), and the log-normal distribution
LN(μ,σ ) (the distribution of exp(Z ) where Z ∼ N (μ,σ )). For each distribution, we consider a
light-tailed and a heavy-tailed setting, and normalize the distributions to have mean μ = 1. The
parameter settings are summarized in Table 1.
Conducting our experiments as in the bounded case, we present the coverage and median gap

with δ = 0.1 in Figure 5. From Figure 5(a), we see that the CLT bound nearly achieves the desired
coverage for light-tailed distributions but drastically undercovers for heavy-tailed distributions. By
contrast, the PU bound has valid coverage in these settings. From Figure 5(b), we see that the CLT
bound is much tighter in all cases, though the gap between two bounds shrink as the sample size
grows. Therefore, we recommend the CLT bound when the losses are believed to be light-tailed
and the sample size is moderately large, and the PU bound otherwise.

3.3 Asymptotic Results

When no finite-sample result is available, we can still use the UCB calibration procedure to get
prediction sets with asymptotic validity. Suppose the loss L(Y ,Tλ (X )) has a finite second moment
for each λ. Then, since the losses for each λ are i.i.d., we can apply the CLT to get

lim
n→∞

P ��
√
n(R̂(λ) − R (λ))

σ̂ (λ)
≤ −t�� ≤ Φ (−t ) ,

where Φ denotes the standard normal cumulative distribution function (CDF). This yields an as-
ymptotic upper confidence bound for R (λ):

R̂+CLT (λ) = R̂ (λ) +
Φ−1 (1 − δ )σ̂ (λ)

√
n

. (10)

Let λ̂CLT = inf {λ ∈ Λ : R̂+CLT (λ
′) < α , ∀λ′ ≥ λ}. Then, T

λ̂CLT
is an asymptotic RCPS, as stated next.
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Fig. 5. Numerical evaluations of the PU bound. We compare the bound from Equation (9)with the estimated
coefficient of variation and the CLT bound (10), with sample size n from each distribution in Table 1. Each
row corresponds to a type of distribution and each column corresponds to a value of the mean.

Theorem 6 (Asymptotically Valid RCPS). In the setting of Theorem 1, assume additionally that

L(Y ,Tλ (X )) has a finite second moment for each λ. Then,

lim sup
n→∞

P (R (T
λ̂CLT

) > α ) ≤ δ .

As a technical remark, note this result requires only a pointwise CLT for each λ ∈ Λ, analogously
to the finite-sample version presented in Theorem 1. Since this asymptotic guarantee holds for
many realistic choices of loss function and data-generating distribution, this approximate version
of UCB calibration greatly extends the reach of our proposed method.

3.4 How Large Should the Calibration Set Be?

The numerical results presented previously give rough guidance as to the required size of the
calibration set. While UCB calibration is always guaranteed to control the risk by Theorem 1, if
the calibration set is too small, then the sets may be larger than necessary. Since our procedure

finds the last point where the UCB R̂+ (λ) is above the desired level α , it will produce sets that are

nearly as small as possible when R̂+ (λ) is close to the true risk R (λ). As a rule of thumb, we say that

we have a sufficient number of calibration points when R̂+ (λ) is within 10% of R (λ). The sample
size required will vary with the problem setting, but use this heuristic to analyze our simulation
results to get a few representative values.
Figure 4(b) reports on the bounded loss case. The left column shows that when we seek to

control the risk at the relatively loose α = 0.1 level, around 1, 000 calibration points suffice; the
middle panel shows that when we seek to control the risk at level α = 0.01, a few thousand
calibration points suffice; and the right column shows that for the strict risk level α = 0.001,
about 10,000 calibration points suffice. The required number of samples will increase slightly if we
ask for a higher confidence level (i.e., smaller δ ), but the dependence on δ is minimal, since the
bounds will roughly scale as log(1/δ )—this scaling can be seen explicitly in the simple Hoeffding
bound (5). Examining the unbounded loss examples presented in Figure 5(b), we see that about
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ALGORITHM 1: Greedy Sets

Input: λ, risk density estimate ρ̂x , step size dζ
1: procedure GreedySets(λ, ρ̂x )
2: T ← ∅
3: ζ ← a large number (e.g., B in the bounded case)
4: while ζ > −λ do

5: ζ ← ζ − dζ
6: T ← T ∪

{
y ′ ∈ T c : ρ̂x (y ′,T ) > ζ

}
7: return T

Output: The nested set with parameter λ at x : Tλ (x )

1,000 calibration points suffice for the student-t and log-normal examples, but that about 10,000
calibration points are needed for the Gamma example. In summary, 1,000 to 10,000 calibration
points are sufficient to generate prediction sets that are not too conservative, i.e., sets that have
risk that are not far below the desired level α .

4 GENERATING THE SET-VALUED PREDICTORS

In this section, we describe one possible construction of the nested prediction sets Tλ (x ) from a
given predictor f̂ . Any collection of the sets can be used to control the risk by Theorem 1, but some
may produce larger sets than others. Here, we present one choice and show that it is approximately
optimal for an important class of losses.
In the following subsections, we denote the infinitesimal risk of a continuous response y with

respect to a set S ⊆ Y as its conditional risk density,

ρx (y,S) = L(y,S)pY |X=x (y).

We will present the results for the case where y is continuous, but the same algorithm and theo-
retical result hold in the discrete case if we instead take ρx (y,S) = L(y,S)P (Y = y |X = x ).

4.1 A Greedy Procedure

We now describe a construction of the tolerance functions Tλ based on the estimated conditional
risk density. We assume that our predictor is p̂x (y), an estimate of pY |X=x (y), and we let ρ̂x (y,S) =
L(y,S)p̂x (y). Algorithm 1 indexes a family of sets Tλ nested in λ ≤ 0 by iteratively including the
riskiest portions ofY , then re-computing the risk densities of the remaining elements. The general
greedy procedure is computationally convenient; moreover, it is approximately optimal for a large
class of useful loss functions, as we will prove soon.

Remark 5. Algorithm 1 is greedy because it only considers the next dζ portion of risk to choose
which element to add to the current set. One can imagine versions of this algorithm that look
ahead several steps. Such schemes may be tractable in some cases, but are generally much more
computationally expensive.

4.2 Optimality Properties of the Greedy Procedure

Next, we outline a setting where our greedy algorithm is optimal. Suppose our loss function has
the simple form L(y,S) = Ly1{y�S} , for constants Ly . This assumption on L describes the case
where every y has a different, fixed loss if it is not present in the prediction set, such as in our MRI
classification example in the introduction. In this case, the sets returned by Algorithm 1 have the

Journal of the ACM, Vol. 68, No. 6, Article 43. Publication date: September 2021.



Distribution-free, Risk-controlling Prediction Sets 43:13

Fig. 6. Optimal prediction sets. In the special case where ρ̂x (y,S) does not depend on S, Tλ (x ) from Algo-
rithm 1 is made up of the y ∈ Y whose conditional risk density exceeds a threshold ζ .

form

Tλ (x ) = {y ′ : ρ̂x (y ′, ∅) ≥ ζ (λ)}.

That is, we return the set of response variables with risk density above some threshold; see Figure 6
for a visualization.
Now, imagine that we know the exact conditional probability density, pY |X=x (y), and therefore

the exact ρx (y,S). The prediction sets produced by Algorithm 1 then have the smallest average
size among all procedure that control the risk, as stated next.

Theorem 7 (Optimality of the Greedy Sets). In the setting above, let T ′ : X → Y ′ be any
set-valued predictor such that R (T ′) ≤ R (Tλ ), where Tλ is given by Algorithm 1. Then,

E[|Tλ (X ) |] ≤ E[|T ′(X ) |].

Here, | · | denotes the set size: Lebesgue measure for continuous variables and counting measure
for discrete variables. This result is a generalization of a result of Reference [48] to our risk-control
setting. While we do not exactly know the risk density in practice and must instead use a plug-in
estimate, this result gives us confidence that our set construction is a sensible one. The choice of
the parameterization of the nested sets is the analogue to the choice of the score function in the
more specialized setting of conformal prediction [22], and it is known in that case that there are
many choices that each have their own advantages and disadvantages. See References [46, 48] for
further discussion of this point in that context.

4.3 Optimality in a More General Setting

Next, we characterize the set-valued predictor that leads to the smallest sets for a wider class of
losses. Suppose our loss takes the form

L(y;S) =
∫

z∈Sc
ℓ(y, z)dμ (z),

for some nonnegative ℓ and a finite measure μ. The function ℓ measures the cost of not including
z in the prediction set when true response is y. For instance, ℓ(y, z) = Ly I(y = z) and μ is the
counting measure in the case considered above. Then, the optimal Tλ is given by

Tλ (x ) = {z : E[ℓ(Y ; z) | X = x] ≥ −λ}, (11)

for λ ∈ Λ ⊂ (−∞, 0], as stated next.
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Theorem 8 (Optimality of Set Predictors, Generalized Form). In the setting above, let T ′ :
X → Y ′ be any set-valued predictor such that R (T ′) ≤ R (Tλ ), where Tλ is given by Equation (11).
Then,

E[|Tλ (X ) |] ≤ E[|T ′(X ) |].
For the case considered in Section 4.2, E[ℓ(Y ; z) | X = x] = Lzp (z | x ), so we see Theorem 8

includes Theorem 7 as a special case. As before, in practice, we must estimate the distribution of Y
givenX from data, so wewould not typically be able to implement this predictor exactly. Moreover,
even if we perfectly knew the distribution of Yi given X = x , the sets in Equation (11) may not be
easy to compute. Nonetheless, it is encouraging that we can understand the optimal set predictor
for this important set of losses.

5 EXAMPLES

Next, we apply our proposed method to five prediction problems. For each task, we introduce a rel-
evant loss function and set-valued predictor, and then evaluate the performance of UCB calibration.
The reader can reproduce our experiments using our public GitHub repository.

5.1 Classification with a Class-varying Loss

Suppose each observation has a single correct label y, and each label incurs a different, fixed loss
if it is not correctly predicted:

L(y,S) = Ly I{y�S} .

This was the setting of our oracle result in Section 4.2, and the medical diagnostic setting from
the introduction also has this form. We would like to predict a set of labels that controls this loss.
Towards that end, we define the family of nested sets

Tλ (x ) = {y : π̂x (y) > −λ},
where π̂x : Y → [0, 1] represents a classifier, usually designed to estimate P (Y |X ). This family of
nested sets simply returns the set of classes whose estimated conditional probability exceeds the
value −λ, as in Figure 6. (The negative on λ comes from the definition of nesting, which asks sets
to grow as λ grows.)
Here, we conduct an experiment on Imagenet—the gold-standard computer vision classification

dataset—composed of 1,000 classes of natural images [15]. For this experiment, we assign the loss

Ly of class y ∈ {1, . . . , 1, 000} as L(y) i .i .d .∼ Unif (0, 1). We use a pretrained ResNet-152 from the

torchvision repository as the base model π̂x [23, 35]. We then choose λ̂ as in Theorem 4. Fig-
ure 7 summarizes the performance of our prediction sets over 100 random splits of Imagenet-Val
with 30,000 points used for calibration and the remaining 20,000 used for evaluation. The RCPS
procedure controls the risk at the correct level and the sets have reasonable sizes.

5.2 Multi-label Classification

Next, we consider the multi-label classification setting where each observation may have multiple
corresponding correct labels; i.e., the response y is a subset of {1, . . . ,K }. Here, we seek to return
prediction sets that control the loss

L(y,S) = 1 − |y ∩ S||y | (12)

at level α . That is, we want to capture at least a 1 − α proportion of the correct labels for each
observation, on average. In this case, our nested sets

Tλ (x ) = {z ∈ {1, . . . ,K } : π̂x (z) > −λ}
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Fig. 7. Prediction set results on Imagenet. The risk and set sizes for an RCPS are plotted as histograms over
100 different random splits of Imagenet, with parameters α = 0.1 and δ = 0.1. For details, see Section 5.1.
The set sizes for all three methods overlap.

depend on a classifier π̂x that does not assume classes are exclusive, so their conditional proba-
bilities generally do not sum to 1. Note that, in this example, we choose the output space Y ′ to
be Y = 2{1, ...,K } (rather than 2Y , as was done our previous example), since here Y is already a
suitable space of sets.
To evaluate our method, we use the Microsoft Common Objects in Context (MS COCO)

dataset, a large-scale, eighty-category dataset of natural images in realistic and often complicated
contexts [33]. We use TResNet as the base model, since it has the state-of-the-art classification
performance on MS COCO at the time of writing [44]. The standard procedure for multi-label
estimation in computer vision involves training a convolutional neural network to output the
vector of class probabilities, and then thresholding the probabilities in an ad hoc manner returns
a set-valued prediction. Our method follows this general approach, but rigorously chooses the
threshold so the risk is controlled at a user-specified level α , which we take to be 10%. To set the
threshold, we choose λ̂ as in Theorem 4 using 4,000 calibration points, and thenwe evaluate the risk
on an additional test set of 1,000 points. In Figure 8, we report on our our method’s performance
on 10 randomly selected images fromMS COCO, and in Figure 9, we quantitatively summarize the
performance of our prediction sets. Our method controls the risk and gives sets with reasonable
sizes.
In this setting, it is also possible to consider a conformal prediction baseline. To frame this

problem in a way such that conformal prediction can be used, we follow Reference [12] and say
that a test point is covered correctly if y ⊂ T (x ) and miscovered otherwise. That is, a point is
covered only if the prediction set contains all true labels. The conformal baseline then uses the
same set of set-valued predictors as above, but chooses the threshold as in Reference [12] so there
is probability 1−α that all of the labels per image are correctly predicted. In Figure 8, we find that
the conformal baseline returns larger prediction sets. The reason is that the notion of coverage used
by conformal prediction is more strict, requiring that all classes are covered. By contrast, the RCPS
method can incorporate less brittle loss functions, such as the false negative rate in Equation (12).

5.3 Hierarchical Classification

Next, we discuss the application of RCPS to prediction problems where there exists a hierarchy
on K labels. Here, we have a response variable y ∈ {1, . . . ,K } with the structure on the labels
encoded as a tree with nodes V and edges E with a designated root node, finite depth D, and K

leaves, one for each label. To represent uncertainty while respecting the hierarchical structure, we
seek to predict a node ŷ ∈ V that is as possible, provided that it is an ancestor of y. Note that with
our tree structure, each v ∈ V can be interpreted as a subset of {1, . . . ,K } by taking the set of all
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Fig. 8. Multi-label prediction set examples on MS COCO. Black classes are correctly identified (true posi-
tives), blue ones are spurious (false positives), and red ones are missed (false negatives).

Fig. 9. Multi-label prediction set results on MS COCO. The risk and set sizes are plotted as histograms over
1,000 different random splits ofMSCOCO, with parameters α = 0.1 and δ = 0.1. We also include a conformal
baseline. For details, see Section 5.2.

the leaf-node descendants of v , so this setting is a special case of the set-valued prediction studied
in this work.
We now turn to a loss function for this hierarchical label structure. Let d : V × V → Z be the

function that returns the length of the shortest path between two nodes, let A : V → 2V be the
function that returns the ancestors of its argument, and letP : V → 2V be the function that returns
the set of leaf nodes that are descendants of its argument. Further define a hierarchical distance

dH (v,u) = inf
a∈A (v )

{d (a,u)}.

For a set of nodes S ∈ 2V , we then define the set-valued loss

L(y,S) = inf
s ∈S
{dH (y, s )}/D.

This loss returns zero if y is a child of any element in S, and otherwise returns the minimum
distance between any element of S and any ancestor of y, scaled by the depth D.
Last, we develop set-valued predictors that respect the hierarchical structure. Define a model

f̂ : X → [0, 1]K that outputs an estimated probability for each class. For any x ∈ X, let ŷ (x ) =
argmaxk f̂ (x )k be the class with highest estimated probability.We also letд(v,x ) =

∑

k ∈P (v ) f̂ (x )k
be the sum of scores of leaves descended from v . Then, we choose our family of set-valued
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Fig. 10. Hierarchical predictions. We show randomly selected examples of hierarchical prediction sets on
Imagenet where the point prediction is incorrect but the prediction sets cover the true label. The black label
is the ground truth class, the blue label is our prediction, and the red label is the top-1 output of a ResNet-
18. Our prediction is an ancestor in the WordNet hierarchy of both the true class and the model’s top-1
prediction. See the rightmost panel for an example subtree from the WordNet hierarchy.

Fig. 11. The risk and height of RCPS for hierarchical classification. We show histograms of risk and height
(distance from the leaf node) over 100 different random splits of the Imagenet dataset, with parameters
α = 0.05 and δ = 0.1. For details, see Section 5.3.

predictors as:

Tλ (x ) =
⋂

{a∈A (ŷ (x )) : д (a,x )≥−λ }
P (a).

In words, we return the leaf nodes of the smallest subtree that includes ŷ (x ) that has estimated
probability mass of at least −λ. This subtree has a unique root v ∈ V , so can equivalently view
Tλ (x ) as returning the node v .
We return to the Imagenet dataset for our empirical evaluations. The Imagenet labels form a

subset of the WordNet hierarchy [18], and we parsed them to form the tree. Our results are akin to
those of Reference [16], although their work does not have distribution-free statistical guarantees
and instead takes an optimization approach to the problem. The maximum depth of the WordNet
hierarchy isD = 14. Similarly to Section 5.1, we used a pretrained ResNet-18 from the torchvision
repository as the base model for Algorithm 1, and chose λ̂ as in Theorem 4. Figure 10 shows
several examples of our hierarchical predictions on this dataset, and Figure 11 summarizes the
performance of the predictor. As before, we find that RCPS controls the risk at the desired level,
and the predictions are generally relatively precise (i.e., of low depth in the tree).
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Fig. 12. Polyp segmentations. We show examples of polyps along with prediction sets that capture 90% of
the true polyp pixels per polyp per image, generated with our method using the CLT bound. White pixels
are correctly identified polyp pixels (true positives), blue ones are spurious (false positives), and red ones are
missed (false negatives). The top two rows show examples with a single polyp per image, and the second two
rows show examples with two polyps per image.

5.4 Image Segmentation

In the binary segmentation setting, we are given a d1 ×d2 ×c-dimensional image x ∈ Rd1×d2×c and
seek to predict a set of object pixels y ⊆ G, where G = {(i, j ) : 1 ≤ i ≤ d1, 1 ≤ j ≤ d2}. Intuitively,
y is a set of pixels that differentiates objects of interest from the backdrop of the image.
Using the technique in Section 5.2, one may easily return prediction sets that capture at least

a 1 − α proportion of the object pixels from each image with high probability. However, if there
are multiple objects in the image, then we may want to ensure our algorithm does not miss an
entire, distinct object. Therefore, we target a different goal: returning prediction sets that capture
a 1 − α fraction of the object pixels from each object with high probability. Specifically, consider
h : Y → 2Y to be an 8-connectivity connected components function [25]. Then, h(y) is a set
of distinct regions of object pixels in the input image. For example, in the bottom right image
of Figure 12, h(y) would return two subsets of G, one for each connected component. With this
notation, we want to predict sets of pixels S ⊆ G that control the proportion of missed pixels per
object:

L(y,S) =
∑

y′∈h (y ) |y ′ \ S|/|y ′ |
|h(y) | .

With this loss, if there are regions of different sizes, then we would still incur a large loss for
missing an entire small region, so this loss better captures our goal in image segmentation.
Having defined our loss, we now turn to our set construction. Standard object segmentation

involves a model f̂ : Rd1×d2 → [0, 1]d1×d2 that outputs approximate scores (e.g., after a sigmoid
function) for each pixel in the image, then binarizes these scores with some threshold. To further
our goal of per-object validity, in this experiment, we additionally detect local peaks in the raw
scores via morphological operations and connected components analysis, then re-normalize the
connected regions by their maximum value. We will refer to this renormalization function as r :
[0, 1]d1×d2 → [0, 1]d1×d2 and describe it precisely in Appendix E.We choose our family of set-valued
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Fig. 13. Polyp segmentation results. The risk and normalized set size are plotted as histograms over different
random splits of the polyp dataset, with parameters α = 0.1 and δ = 0.1. For details, see Section 5.4.

predictors as

Tλ = {(i, j ) : r ( f̂ (x ))i, j ≥ −λ},

and then select λ̂ as in Theorem 4 or as in Theorem 6.
We evaluated our method with an experiment combining several open-source polyp segmen-

tation datasets: Kvasir [43], Hyper-Kvasir [8], CVC-ColonDB and CVC-ClinicDB [6], and ETIS-
Larib [50]. Together, these datasets include 1,781 examples of segmented polyps, and in each ex-
periment, we use 1,000 examples for calibration and the remainder as a test set.We used PraNet [17]
as our base segmentation model. In Figure 12, we report on our method’s performance on 20 ran-
domly selected images from the polyp datasets that contain at least two polyps, and in Figure 13,
we summarize the quantitative performance of our prediction sets. RCPS again control the risk at
the desired level, and the average prediction set size size is comparable to the average polyp size.

5.5 Protein Structure Prediction

We finish the section by demonstrating RCPS for protein structure prediction, inspired by the
recent success of AlphaFold. Proteins are biomolecules comprising one or more long chains of
amino acids; when amino acids form a chemical bond to form a protein, they eject a water molecule
and become amino acid residues. Each amino acid residue has a common amine-carboxyl backbone
and a different side chain with electrical and chemical properties that together determine the 3D
conformation of the whole protein, and thus its function. The so-called protein structure prediction
problem is to predict a protein’s three dimensional structure from a list of its residues. A critical step
in AlphaFold’s protein structure prediction pipeline involves predicting the distance between the
β-carbons (the second-closest carbon to the side-chain) of each residue. These distances are then
used to determine the protein’s 3D structure. We express uncertainty directly on the distances
between β-carbons.
Concretely, consider the alphabet Σ = {A,C,D,E, F ,G,H , I ,K ,L,M,N , P ,Q,R, S,T ,V ,W ,Y },

where each letter is the common abbreviation for an amino acid (for example, A denotes Ala-
nine). The feature space consists of all possible words over Σ, commonly denoted as X = Σ∗. The
label space Y is the set of all symmetric matrices with positive elements of any side length. In an
example (x ,y) ∈ X×Y , the entry yi, j defines the distance in 3D space of residues xi and x j ; hence,
y ∈ R |x |× |x | , and yi, j = yj,i . We seek to predict sets S that control the ℓ1 projective distance from
y to S:

L(y,S) = inf
s ∈S

⎧⎪⎪⎨⎪⎪⎩
1

|x |2
∑

i, j

|yi, j − si, j |
⎫⎪⎪⎬⎪⎪⎭ .
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Fig. 14. Protein distograms. We show AlphaFold’s predicted distances between residues of protein T0995
along with prediction sets at α = 2Å and δ = 0.1. The prediction set for the whole protein is the union
of distance intervals for each pair of residues, and the right two panels report the distance from the point
prediction to the lower and upper endpoints for each of these intervals.

Fig. 15. Protein structure prediction results. The risk in Å and interval size (pooling all entries of each dis-
togram) in Å are plotted as histograms, repeating for many random splits of the CASP-13 test-set.

Now, we turn to the set construction, which we specialize to the AlphaFold pipeline. Because the
AlphaFoldv2 codebase was not released at the time this article was written, we use AlphaFoldv1
here [49]. For a residue chain x ∈ X, consider a variadic function h(x ) ∈ [0, 1] |x |× |x |×K , where
K is a positive integer and

∑

k h(x )i, j,k = 1 for all fixed choices of i and j. The function h repre-
sents a probability distribution over distances d1, . . . ,dK for each distance between residues as a
histogram; the output of h is referred to as a distogram. Given a distogram, we construct the family
of set valued predictors

Tλ (x ) =
∏

0≤i, j≤ |x |

{
dk : h(x )i, j,k ≥ −λ

}

and choose λ̂ as in Equation (4), as usual.
We evaluated our set construction algorithm on the 71 test points from the CASP-13 challenge

on which DeepMind released the output of their model. In the AlphaFoldv1 pipeline, K = 64
and d1, . . . ,dk = 2Å, . . . , 20Å. Since the data prepossessing pipeline was not released, no ground
truth distance data is available. Instead, we generated semi-synthetic data points by sampling once
from the distogram corresponding to each protein. We choose parameters α = 2Å and δ = 0.1,
and, due to the small sample size (35 calibration and 36 test points), we only report results using
the CLT bound, because the exact concentration results are hopelessly conservative with only 35
calibration points.
Figure 14 shows an example of our prediction sets on protein T0995 (PDB identifier 3WUY) [62].

Figure 15 shows the quantitative performance of the CLT, which nearly controls the risk. The
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strong performance of the CLT in this small-sample regime is encouraging and suggests that our
methodology can be applied to problems even with small calibration sets.

6 OTHER RISK FUNCTIONS

Thus far, we have defined the risk to be the mean of the loss on a single test point. In this section,
we consider generalizations to a broader range of settings in which the risk function is a functional
other than the mean and/or the loss is a function of multiple test points. To this end, recall that
there are two mathematical ingredients to the UCB calibration framework. First, there is a family
of possible predictors such that the notion of error is monotone in the parameter indexing the
family, λ ∈ Λ. Second, for each element λ, we have a pointwise concentration result that gives
the upper confidence bound for the error at that λ. With these two ingredients, we carry out UCB
calibration by selecting λ̂ as in Equation (4), which has error-control guarantees as in Theorem 1.
We demonstrate the scope of this more general template with a few examples.

6.1 Uncertainty Quantification for Ranking

We consider the problem of uncertainty quantification for learning a ranking rule (see, e.g.,
Reference [13]). We assume we have an i.i.d. sequence of points, (X1,Y1), . . . , (Xm ,Ym ), where
Y ∈ {1, . . . ,k }. We wish to learn a ranking rule: r : X × X → R such that r (Xi ,X j ) tends to be
positive when Yi > Yj and tends to be negative otherwise. Given a ranking rule r̂ : X × X → R
that has been estimated based on the data (Xn+1,Yn+1), . . . , (Xm ,ym ), we consider calibrating this
ranking rule to control loss based on (X1,Y1), . . . , (Xn ,Yn ).
To quantify uncertainty in this setting, we use a set-valued ranking rule Tλ : X×X → 2R. Here,

higher uncertainty is encoded by returning a larger set. We assume that we have a family of such
predictors satsifying the following monotonicity property:

λ < λ′ =⇒ Tλ (x1,x2) ⊂ Tλ′ (x1,x2). (13)

For example, we could take Tλ (x1,x2) = (r̂ (x1,x2) − λ, r̂ (x1,x2) + λ) for λ ≥ 0. Our notion of
error control here is that we wish to correctly determine which response is larger, so we use the
following error metric:

L(y1,y2,S) = 1{sup S<0}1{y1>y2} + 1{inf S>0}1{y1<y2},

which says that we incur loss one if the predictionS contains no values of the correct sign and zero
otherwise. More generally, we could use any loss function with the following nesting property:

S ⊂ S′ =⇒ L(y1,y2,S) ≥ L(y1,y2,S′). (14)

We then define the risk as

R (Tλ ) = E[L(Y1,Y2,Tλ (X1,X2)], (15)

which can be estimated via its empirical version on the holdout data:

R̂ (Tλ ) =
∑

1≤i<j≤n
L(Yi ,Yj ,Tλ (Xi ,X j )). (16)

Suppose additionally that we have an upper confidence bound for R (Tλ ) for each λ, as in Equa-
tion (3). In this setting, we can arrive at such an upper bound using the concentration of U-statistics,
such as the following result:

Proposition 7 (Hoeffding–Bentkus–Maurer Ineqality for Bounded U-statistics of Or-
der Two). Consider the setting above with any loss function L bounded by one. Letm = ⌊n/2⌋. Then,

Journal of the ACM, Vol. 68, No. 6, Article 43. Publication date: September 2021.



43:22 S. Bates et al.

for any t ∈ (0,R (λ)),

P (R̂ (λ) ≤ t ) ≤ дU (t ;R (λ)) � min

(

exp {−mh1 (t ;R (λ))} , eP (Binom(m;R (λ)) ≤ ⌈mt⌉)

inf
ν>0

exp

{

−nν
2

(

R (ν )

1 + 2G (ν )
− t
)} ��,

where G (ν ) = (eν − ν − 1)/ν .

With this upper bound, we can implement UCB calibration by selecting λ̂ through Proposition 2.
This gives a finite-sample, distribution-free guarantee for error control of the uncertainty-aware
ranking function T

λ̂
:

Theorem 9 (RCPS for Ranking). Consider the setting above with any loss function bounded by

one. Then, with probability at least 1 − δ , we have R (T
λ̂
) ≤ α .

This uncertainty quantification is natural; as λ grows, the set Tλ (Xi ,X j ) will more frequently
include both positive and negative numbers, in which case the interpretation is that our ranking
rule Tλ abstains from ranking those two inputs. The UCB calibration tunes λ so we abstain from
as few pairs as possible, while guaranteeing that the probability of making a mistake on inputs for
which we do not abstain is below the user-specified level α .

6.2 Uncertainty Quantification for Metric Learning

We next consider the problem of supervised metric learning, where we have an i.i.d. sequence
of points (X1,Y1), . . . , (Xm ,Ym ), with Y = {1, . . . ,k }. We wish to train a metric d : X × X →
R such that it separates the classes well. That is, we wish for d (Xi ,X j ) to be small for points

such that Yi = Yj and large otherwise. We assume that we have fit a metric d̂ based on the data
(Xn+1,Yn+1), . . . , (Xm ,Ym ) and our goal is to calibrate this metric based on (X1,Y1), . . . , (Xn ,Yn ).
Our development will closely track the ranking example, again leveraging U-statistics of order
two.
To formulate a notion of uncertainty quantification for metric learning, we express uncertainty

by introducing a set-valued metric,Tλ : X × X → 2R, where greater uncertainty is represented
by returning a larger subset of R. We assume that we have a family of such set-valued metrics
that have the monotonicity property in Equation (13). For example, we could take Tλ (x1,x2) =
(d̂ (x1,x2) − λ, d̂ (x1,x2) + λ) for λ ≥ 0. To formalize our goal that the classes be well separated, we
take as our loss function the following:

L(y1,y2,S) = (inf (S) − 1)+1{y1=y2} + (sup(S) − 1)−1{y1�y2},

where S is a set-valued prediction of the distance between x1 and x2. This choice implies that we
take a distance of one to be the decision boundary between classes so points with distance less
than one should correspond to the same class. We incur an error if two points in the same class
are predicted to have distance above one. This particular parameterization is somewhat arbitrary,
and we could instead take any loss satisfying the nesting property in Equation (14). We then define
the risk as in Equation (15) and the empirical risk as in Equation (16). From here, we can adopt
the upper bound from Proposition 7 if we additionally restrict d̂ to return values in a bounded set.
We again implement UCB calibration by selecting λ̂ as in Equation (4), which yields the following
guarantee:

Theorem 10 (RCPS for Metric Learning). In the setting above, suppose the loss function is

bounded by 1. Then, with probability at least 1 − δ , we have R (T
λ̂
) ≤ α .
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6.3 Adversarially Robust Uncertainty Quantification

Finally, we briefly remark how our framework might be extended to handle uncertainty quantifi-
cation with adversarial robustness (see, e.g., References [10, 34]). In this setting, the goal is to fit a
model that performs well even for the worst-case perturbation of each input data point over some
limited set of perturbations, such as an ℓ∞ ball. This notion of robust loss can be translated into
our framework by defining the appropriate risk function. For example, we could consider the risk
function

R(rob) (T ) = E

⎡⎢⎢⎢⎢⎣ sup
x ′∈Bϵ (X )

L(Y ,T (x ′))
⎤⎥⎥⎥⎥⎦ ,

where Bϵ (X ) is an ℓ∞ ball of radius ϵ centered at X . For a family of set-valued functions {Tλ }λ∈Λ,
one can estimate the risk on a holdout set and then choose the value of λ with the UCB calibration
algorithm, resulting in a finite-sample guarantee on the risk. While carrying out this procedure
would require computational innovations, our results establish that it is statistically valid.

7 DISCUSSION

Risk-controlling prediction sets are a newway to represent uncertainty in predictive models. Since
they apply to any existing model without retraining, they are straightforward to use in many sit-
uations. Our approach is closely related to that of split conformal prediction, but is more flexible
in two ways. First, our approach can incorporate many loss functions, whereas conformal pre-
diction controls the coverage—i.e., binary risk. The multilabel classification setting of Section 5.2
is one example where RCPS enables the use of a more natural loss function: the false negative
rate. Second, risk-controlling prediction sets apply whenever one has access to a concentration
result, whereas conformal prediction relies on exchangeability, a particular combinatorial struc-
ture. Concentration is a more general tool and can apply to a wider range of problems, such as the
uncertainty quantification for ranking presented in Section 6.1. To summarize, in contrast to the
standard train/validation/test split paradigm that only estimates global uncertainty (in the form
of overall prediction accuracy), RCPS allow the user to automatically return valid instance-wise

uncertainty estimates for many prediction tasks.

APPENDICES

A PROOFS

TheoremA.1 (Validity of UCB Calibration, Abstract Form). Let R : Λ→ R be a continuous
monotone nonincreasing function such that R (λ) ≤ α for some λ ∈ Λ. Suppose R̂+ (λ) is a random

variable for each λ ∈ Λ such that Equation (3) holds pointwise. Then, for λ̂ chosen as in Equation (4),

P (R (λ) ≤ α ) ≥ 1 − δ .
Proof of Theorem A.1. Consider the smallest λ that controls the risk:

λ∗ � inf {λ ∈ Λ : R (λ) ≤ α }.
Suppose R (λ̂) > α . By the definition of λ∗ and the monotonicity and continuity of R (·), this implies
λ̂ < λ∗. By the definition of λ̂, this further implies that R̂+ (λ∗) < α . But, since R (λ∗) = α (by conti-
nuity) and by the coverage property in Equation (3), this happens with probability at most δ . �

Proof of Theorem 1. This follows from Theorem A.1. �

Proof of Proposition 2. Let G denote the CDF of R̂ (λ). If R (λ) > R̂+ (λ), then by definition,
д(R̂(λ);R (λ)) < δ . As a result,

P (R (λ) > R̂+ (λ)) ≤ P (д(R̂(λ);R (λ)) < δ ) ≤ P (G (R̂(λ)) < δ ).
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Let G−1 (δ ) = sup{x : G (x ) ≤ δ }. Then,

P (G (R̂(λ)) < δ ) ≤ P (R̂ (λ) < G−1 (δ )) ≤ δ .

This implies that P (R (λ) > R̂+ (λ)) ≤ δ and completes the proof. �

Proof of Proposition 5. This proof is essentially a restatement of the proof of Theorem 4 in
Reference [59]. We present it here for completeness. Let Ki = Ki (R (λ); λ), F0 be the trivial sigma-
field and Fi be the sigma-field generated by (L1 (λ), . . . ,Li (λ)). Then, F0 ⊂ F1 ⊂ . . . ⊂ Fn is a
filtration. By definition, νi (λ) ∈ Fi−1 is a predictable sequence andKi ∈ Fi . Since E[Li (λ)] = R (λ),

E[Ki | Fi−1] = Ki−1E[1 − νi (λ) (Li (λ) − R (λ)) | Fi−1] = Ki−1.

In addition, since νi ∈ [0, 1] and (Li (λ)−R (λ)) ∈ [−1, 1], each component 1−νi (λ) (Li (λ)−R (λ)) ≥ 0.
Thus, {Ki : i = 1, . . . ,n} is a non-negative martingale with respect to the filtration {Fi : i =
1, . . . ,n}. By Ville’s inequality,

P

(

max
i=1, ...,n

Ki ≥
1

δ

)

≤ δ .

However, sinceνi ≥ 0,Ki (R; λ) is increasing inR almost surely for every i . By definition of R̂+WSR (λ),

if R̂+WSR (λ) < R (λ), then P (maxi=1, ...,n Ki ≥ 1/δ ). Therefore,

P
(

R̂+WSR (λ) < R (λ)
)

≤ P

(

max
i
Ki ≥

1

δ

)

≤ δ .

This proves that R̂+WSR (λ) is a valid upper confidence bound of R (λ). �

Proof of Theorem 6. Define λ∗ as in the proof of Theorem A.1. Suppose R (λ̂CLT) > α . By
the definition of λ∗ and the monotonicity and continuity of R (·), this implies λ̂CLT < λ∗. By the

definition of λ̂CLT, this further implies that R̂+ (λ∗) < α . But

lim sup
n

P (R̂+ (λ∗) < α ) = δ ,

by the CLT, which implies the desired result. �

Proof of Theorem 7. Suppose R (T ′) ≤ R (Tλ ). Write ρx (y) for ρx (y; ∅). Then,
∫

X

∫

T ′ (x )
ρx (y)dy dP (x ) ≥

∫

X

∫

Tλ (x )
ρx (y)dy dP (x ).

This further implies
∫

X

∫

T ′ (x )\Tλ (x )
ρx (y)dy dP (x ) ≥

∫

X

∫

Tλ (x )\T ′ (x )
ρx (y)dy dP (x ).

For y ∈ (T ′(x ) \ Tλ (x )), we have ρx (y) < ζ , whereas for y ∈ (Tλ (x ) \ T ′(x )), we have ρx (y) ≥ ζ .
Therefore,

∫

X

∫

T ′ (x )\Tλ (x )
1dy dP (x ) ≥

∫

X

∫

Tλ (x )\T ′ (x )
1dy dP (x ),

which implies the desired result. �
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Proof of Theorem 8. The proof is similar to that of Theorem 7. If R (T ′) ≤ R (Tλ ), then
E
[

E
[

L(Y ;T ′(X )) | X ] ] ≤ E [E [L(Y ;Tλ (X )) | X ]]

=⇒E
[
E

[∫
z∈T ′c (X )

ℓ(Y ; z)dμ (z) | X
] ]
≤ E

⎡⎢⎢⎢⎢⎣E
⎡⎢⎢⎢⎢⎣
∫

z∈T c
λ
(X )

ℓ(Y ; z)dμ (z) | X
⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

=⇒E
[
E

[∫
z∈T ′ (X )

ℓ(Y ; z)dμ (z) | X
] ]
≥ E

[
E

[∫
z∈Tλ (X )

ℓ(Y ; z)dμ (z) | X
] ]

=⇒E
[∫

z∈T ′ (X )

E [ℓ(Y ; z) | X ]dμ (z)
]
≥ E

[∫
z∈Tλ (X )

E [ℓ(Y ; z) | X ]dμ (z)
]

=⇒E
[∫

z∈T ′ (X )\Tλ (X )

E [ℓ(Y ; z) | X ]dμ (z)
]
≥ E

[∫
z∈Tλ (X )\T ′ (X )

E [ℓ(Y ; z) | X ]dμ (z)
]

=⇒E
[∫

z∈T ′ (X )\Tλ (X )

−λdμ (z)
]
≥ E

[∫
z∈Tλ (X )\T ′ (X )

−λdμ (z)
]

=⇒E [|T ′(X ) \ Tλ (X ) |] ≥ E[|Tλ (X ) \ T ′(X ) |]
=⇒E [|T ′(X ) |] ≥ E[|Tλ (X ) |]. �

Proof of Proposition 7. Let Zi = (Xi ,Yi ) and ϕ (Zi ,Z j ) = L(Yi ,Yj ,Tλ (Xi ,X j )). First, we apply
a representation of U-statistics due to Reference [26], which shows many tail inequalities for sums
of i.i.d. random variables hold for U-statistics of order two with an effective sample size ⌊n/2⌋.
Specificially, letm = ⌊n/2⌋ and π : {1, . . . ,n} �→ {1, . . . ,n} be a uniform random permutation. For
each π , define

R̂π (λ) =
1

m

m∑

j=1

ϕ
(

Zπ (2j−1),Zπ (2j )

)

.

Note that the summands in R̂π (λ) are independent given π . Then, it is not hard to see that

R̂ (λ) = Eπ [R̂π (λ)],

where Eπ denotes the expectation with respect to π while conditioning on Z1, . . . ,Zn . By Jensen’s
inequality, for any convex functionψ ,

E[ψ (R̂ (λ))] = E[ϕ (Eπ [R̂π (λ)])] ≤ E[Eπψ (R̂π (λ))] = Eπ [Eψ (R̂π (λ))].

Since R̂π (λ) has identical distributions for all π ,

E[ψ (R̂ (λ))] = E[ψ (R̂id (λ))], (17)

where id is the permutation that maps each element to itself.
For sums of i.i.d. random variables, the Hoeffding’s inequality (Proposition 3) is derived by

setting ψ (z) = exp{νz} [26], and the Bentkus inequality (Proposition 4) is derived by setting

ψ (z) = (z − ν )+. Therefore, the same tail probability bounds hold for R̂id (λ) and thus R̂ (λ) by
Equation (17). This proves the first two bounds.
To prove the third bound, we apply the technique of Reference [36] on self-bounding functions

of iid random variables. Write R̂ (λ) asU (Z1, . . . ,Zn ) and let

Ui = inf
zi

U (Z1, . . . ,Zi−1, zi ,Zi+1, . . . ,Zn ).

Note thatUi is independent of Zi . Since ϕ (·) ≥ 0, we have

0 ≤ U −Ui ≤
2

n(n − 1)
∑

i�j

ϕ (Zi ,Z j ).
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Since ϕ (Zi ,Z j ) ≤ 1,
n

2
(U −Ui ) ≤ 1,

and
n∑

i=1

(U −Ui ) ≤
2

n(n − 1)

n∑

i=1

∑

i�j

ϕ (Zi ,Z j ) = 2U .

If we letW = (n/2)U andWi = (n/2)Ui , then

W −Wi ≤ 1,
n∑

i=1

(W −Wi )
2 ≤ 2W .

In the proof of Theorem 13, Reference [36] shows that for any ν > 0,

logE[exp{ν (E[W ] −W )}] ≤ 2νG (ν )

1 + 2G (ν )
E[W ].

By Markov’s inequality, for any t ∈ (0,E[U ]),

P (U ≤ t ) = P

(

E[W ] −W ≥ E[W ] − n

2
t

)

≤ exp

{

min
ν>0

ν

(

−E[W ] +
n

2
t +

2G (ν )

1 + 2G (ν )
E[W ]

)}

= exp

{

min
ν>0

nν

2

(

t − 1

1 + 2G (ν )
E[U ]

)}

.

The proof is completed by replacing U by R̂ (λ) and E[U ] by R (λ). �

Proposition A.1 (Impossibility of Valid UCB for Unbounded Losses in Finite Samples).
Let F be the class of all distributions supported on [0,∞) with finite mean, and μ (F ) be the mean of

the distribution F . Let μ̂+ be any function of Z1, . . . ,Zn
i.i.d.∼ F such that P (μ̂+ ≥ μ (F )) ≥ 1 − δ for

any n and F ∈ F . Then, P (μ̂+ = ∞) ≥ 1 − δ .

Proof of Proposition A.1. It is clear that F satisfies the conditions (i), (ii), and (iii) in Refer-
ence [2]. For any such μ̂+, [0, μ̂+] is a (1 − δ ) confidence interval of μ (F ). By their Corollary 2, we
know that for any μ ∈ {μ (F ) : F ∈ F } and F ∈ F

PF (μ ∈ [0, μ̂+]) ≥ 1 − δ ⇐⇒ PF (μ ≤ μ̂+) ≥ 1 − δ .

The proof is completed by letting μ → ∞. �

Proof of Theorem 9. This follows from Theorem A.1. �

Proof of Theorem 10. This follows from Theorem A.1. �

B AN EXACT BOUND FOR BINARY LOSS

When the loss takes values in {0, 1}, for a fixed λ the loss at each point is a Bernoulli random
variable, and the risk is simply the mean of this random variable. In this case, we can give a tight
upper confidence bound by simple extracting the relevant quantile of a binomial distribution; see
Reference [9] for other exact or approximate upper confidence bounds. Explicitly, we have

P (R̂ (λ) ≤ t ) = P (Binom(n,R (λ)) ≤ ⌈nt⌉),
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which is the same expression as in the Bentkus bound, improved by a factor of e . From this, we

obtain a lower tail probability bound for R̂ (λ):

дbin (t ;R (λ)) � P (Binom(n,R (λ)) ≤ ⌈nt⌉) .
By Proposition 2, we obtain a (1 − δ ) upper confidence bound for R (λ) as

R̂+bin (λ) = sup
{

R : дbin (R̂ (λ);R) ≥ δ

}

.

We obtain λ̂bin by inverting the above bound computationally, yielding the following corollary:

Theorem B.1 (RCPS for Binary Variables). In the setting of Theorem 1, assume additionally

that the loss takes values in {0,1}. Then, T
λ̂bin

is a (α ,δ )-RCPS.

The binary loss case case results in a classical tolerance region, as discussed previously in Ref-
erences [53] and [40].

C CONFORMAL CALIBRATION

In the special casewhere the the loss functionL takes values only in {0, 1}, it is also possible to select
λ̂ to control the quantity E[R (T

λ̂
)] below a desired level α . When Y ′ = 2Y and L(Yi ,Tλ (Xi )) =

1{Yi�Tλ (Xi ) } , this is the well-known case of split conformal prediction; see Reference [22]. To the

best of our knowledge, the general case where Y ′ � 2Y has not been explicitly dealt with, so we
record this mild generalization here.
For i = 1, . . . ,n, we define the following score:

si := min{λ ∈ Λ : L(Yi ,Tλ (Xi )) = 0},
where we assume that the family of sets Tλ is such that the minimal element exists with probability
one. (This is always true in practice, where Λ is finite.) For a fixed risk level α ∈ (0, 1), we then
choose the threshold as follows:

λ̂ =
n + 1

n
(1 − α ) empirical quantile of {si : i = 1, . . . ,n}.

We then have the following risk-control guarantee:

Proposition C.1 (Validity of Conformal Calibration). In the setting above,

E[R (T
λ̂
)] ≤ α .

This result follows from the usual conformal prediction exchangeability proof; see, e.g., Refer-
ence [46].

D FURTHER COMPARISONS OF UPPER CONFIDENCE BOUNDS

We present additional plots comparing the upper confidence bounds with δ = 0.01 and δ = 0.001.
The counterparts of Figure 4 for bounded cases are presented in Figures 16 and 17, and the coun-
terparts of Figure 5 for unbounded cases are presented in Figures 18 and 19.
To further compare the HB bound and WSR bound for the binary loss case, in Figure 20, we

present the fraction of samples on which the HB bound or the WSR bound is the winner among
the four bounds, excluding the CLT bound due to the undercoverage. The HB bound is more likely
to be tighter than theWSR bound, especially when the mean μ or the level δ is small. Moreover, the
symmetry between two curves in each panel is due to the fact that the simple Hoeffding bound and
empirical Bernstein bound never win. These results show that the WSR bound is not uniformly
better than the HB bound, although it is still the best all-around choice for bounded losses.
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Fig. 16. Numerical evaluations of the simple Hoeffding bound (5), HB bound (7), empirical Bernstein
bound (8), CLT bound (10), and WSR bound (Proposition 5) on a million independent samples of size n

with δ = 0.01. Each row corresponds to a type of distribution, and each column corresponds to a value of
the mean. The CLT bound is excluded in (b) because it does not achieve the target coverage in most of the
cases.

Fig. 17. Numerical evaluations of the simple Hoeffding bound (5), HB bound (7), empirical Bernstein
bound (8), CLT bound (10), and WSR bound (Proposition 5) on a million independent samples of size n

with δ = 0.001. Each row corresponds to a type of distribution, and each column corresponds to a value of
the mean. The CLT bound is excluded in (b) because it does not achieve the target coverage in most of the
cases.
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Fig. 18. Numerical evaluations of the PU bound (9) with the estimated coefficient of variation and the CLT
bound (10), on a million independent samples of size n from each distribution in Table 1 with δ = 0.01. Each
row corresponds to a type of distribution, and each column corresponds to a value of the mean.

Fig. 19. Numerical evaluations of the PU bound (9) with the estimated coefficient of variation and the CLT
bound (10), on a million independent samples of size n from each distribution in Table 1 with δ = 0.001. Each
row corresponds to a type of distribution, and each column corresponds to a value of the mean.
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Fig. 20. Fraction of samples on which the HB bound or theWSR bound is the winner among the four bounds,
excluding the CLT bound, for Bernoulli distributions. Each row corresponds to a level and each column
corresponds to a value of mean.

E ADAPTIVE SCORE RENORMALIZATION FOR POLYP SEGMENTATION

This section describes in detail the construction of our predictor in the polyp segmentation exam-
ple in Section 5.4. To construct a good set predictor from the raw predictor, we draw on techniques
from the classical literature on image processing to detect and emphasize local peaks in the raw
scores. In particular, we construct a renormalization function r : [0, 1]m×n → [0, 1]m×n , which is
a composition of a set of morphological operations. We will now list a set of operations whose
composition will define r .
Define the discrete Gaussian blur operator as д : [0, 1]m×n × R++ × O+ → [0, 1]m×n , where O+

is the set of odd numbers. The second argument to д is the standard deviation σ of a Gaussian
kernel in pixels and k is the side length of the kernel in pixels. The Gaussian kernel is then the
matrix

K (σ ,k )i, j = C exp

{

− 1

2σ 2

����[i, j] − [⌈k/2⌉, ⌈k/2⌉]
����
2
}

,

where C is chosen such that
∑

i, j Ki, j = 1. The function д then becomes д(S,σ ,k ) = S ∗ K (σ ,k ),
where ∗ denotes the 2D convolution operator.
We borrow a technique from mathematical morphology called reconstruction by dilation and

use it to separate local score peaks from their background. We point the reader to Robinson and
Whelan [45] for an involved description of the algorithm we applied in our codebase. For the
purposes of this article, we write the reconstruction by dilation algorithm as dil : [0, 1]m×n →
[0, 1]m×n . The output of dil is an array containing only the local peaks from the input, with all
other areas set to zero.
Define the binarization function bint : [0, 1]m×n → {0, 1}m×n as bin(x )i, j = 1{xi, j>t } .
In the next step, we binarize the local peaks and then split them into disjoint regions through

the 2-connected-components function conn : {0, 1}m×n → 2{0,1}
m×n

. Viewing a binary matrixM as
a graph, we can express it as an adjacency matrix A ∈mn ×mn where
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A(M )i, j = 1

⎧⎪⎨⎪⎩
����
����
[
⌊i/n⌋, mod (i,n)

]
−
[
⌊j/n⌋, mod (j,n)

] ����
���� < 2

M ⌊i/n ⌋, mod (i,n) = 1

M ⌊j/n ⌋, mod (j,n) = 1
⎫⎪⎬⎪⎭.

In words, each entry of A corresponds to a pixel, and two pixels are connected by an edge if
and only if they are adjacent with entry 1 in the matrix M . We can use A to define a function
isconnected : {0, 1}m×n ×m ×n ×m ×n → {0, 1} that takes a binary matrixM and two coordinates
(i, j ) and (i ′, j ′) and returns 1 if the coordinates are connected by a path. Explicitly, isconnected =
1{∃k : Ak

ni+j,ni′+j′ = 1}. Since isconnected is reflexive, symmetric, and transitive, it defines an
equivalence relation ∼. We can formally define the set of all equivalence classes over indexes,

E (A) = {{(i, j ) ∈ m × n : (i, j ) ∼ (i ′, j ′)} : (i ′, j ′) ∈m × n}.
Using E, we can draw bounding boxes around each object as

bboxes (E) = {[inf {i : (i, j ) ∈ E for some j}, sup{i : (i, j ) ∈ E for some j}]
× [inf {j : (i, j ) ∈ E for some i}, sup{j : (i, j ) ∈ E for some i}] : E ∈ E}.

We can proceed to define a function renorm that takes in amatrix of scoresM and a set of bounding
boxes bboxes and returns a renormalized matrix of scores:

renorm(M,bboxes )i, j =
Mi, j

min
b ∈bboxes

max
(i′, j′)∈b
(i, j )∈b

Mi′, j′
.

We can finally define r as r (M ) = renorm(M,bboxes (E (A(bint (д(M,σ ,k )))))) for use in
Equation 5.4.
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