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Abstract--This paper presents the distribution locational mar-

ginal pricing (DLMP) method through quadratic programming 

(QP) designed to alleviate the congestion that might occur in a 

distribution network with high penetration of flexible demands. 

In the DLMP method, the distribution system operator (DSO) 

calculates dynamic tariffs and publishes them to the aggregators, 

who make the optimal energy plans for the flexible demands. The 

DLMP through QP instead of linear programing as studied in 

previous literatures solves the multiple solution issue of the ag-

gregator optimization which may cause the decentralized conges-

tion management by DLMP to fail. It is proven in this paper, 

using convex optimization theory, the aggregator’s optimization 

problem through QP is strictly convex and has a unique solution. 

The Karush–Kuhn–Tucker (KKT) conditions and the unique 

solution of the aggregator optimization ensure that the central-

ized DSO optimization and the decentralized aggregator optimi-

zation converge. Case studies using a distribution network with 

high penetration of electric vehicles (EVs) and heat pumps (HPs) 

validate the equivalence of the two optimization setups, and the 

efficacy of the proposed DLMP through QP for congestion man-

agement. 

 
Index Terms-- Congestion management, distribution location-

al marginal pricing (DLMP), distribution system operator (DSO), 

electric vehicle (EV), heat pump (HP). 

I.  NOMENCLATURE 

,
i im m

i t
B R

  matrix of the price sensitivity coefficient  

a
C  heat capacity of the inside air 

sC  heat capacity of the house structure (walls, etc.) 
L dn n

D R
  power transfer distribution factor (PTDF) 

d in m

i
E R

  customer to load bus mapping matrix  

K  outside temperature  
a

K  house inside temperature 
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K  structure temperature 
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,
ima
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K R lower temperature limit 
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B
N  set of aggregators 

T
N  set of planning periods 

L
N  set of lines 

d
N  set of demand bus 

e
Q  thermal energy produced by HP 

1
t

S  solar irradiation to the inside air  
2
t

S  solar irradiation to the structure 

t
c  baseline price 

,
im

i t
d R  discharging power of EVs due to driving 

min im

i
e R  lower limit of the state of charge (SOC) level  

max im

i
e R  upper limit of the SOC level 

,0
im

i
e R  initial SOC level  

Ln

t
f R  line loading limit available for flexible demands 

1k  heat transfer coefficient (HTC) between the in-

side and the outside of the household 

2k  HTC between the inside and the house structure 

3k  HTC between the house structure and the outside 

i
m  the number of customers of aggregator i  

*n  cardinality of *N , i.e. * *n N  

t
p  charging power of an EV 

,
im

i t
p R  charging power of EVs of one aggregator 

min
,

im

i t
p R  lower charging power limit of EVs  

max
,

im

i t
p R  upper charging power limit of EVs  

ˆ
t

p  power consumption of an HP 

,ˆ im

i t
p R  power consumption of HPs of one aggregator 

minˆ im

i
p R  lower power limit of HPs  

maxˆ im

i
p R  upper power limit of HPs  

t
y  predicted price  

t
  price sensitivity coefficient  

Ln

t
R   Lagrange multiplier (LM) of line loading limit 

constraint  

,
im

i t
R

   LM of SOC upper limit constraint  

,
im

i t
R

   LM of SOC lower limit constraint  
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,ˆ im

i t
R

   LM of upper temperature limit constraint  

,ˆ im

i t
R

   LM of lower temperature limit constraint  

,
im

i t
R

   LM of EV charging power upper limit constraint  

,
im

i t
R

   LM of EV charging power lower limit constraint  

,
ˆ im

i t
R

   LM of HP power upper limit constraint  

,
ˆ im

i t
R

   LM of HP power lower limit constraint  

II.  INTRODUCTION 

ENMARK, as one of the countries that strive for CO2 
emission reduction and energy supply security, has 

adopted energy strategies that aim at achieving independence 
from fossil fuels by 2050 [1]. In order to realize such an ambi-
tious energy plan, renewable energy sources (RES) such as 
wind power (WP), solar power (SP), and distributed energy 
resources (DER), such as electric vehicles (EVs) and heat 
pumps (HPs), will be extensively used and will play an im-
portant role in the future power systems. Impacts of these new 
components on the power systems have been widely studied 
[2]–[4]. In particular, congestion problems that might occur in 
distribution networks due to the high penetration of DER have 
already drawn attention from distribution system operators 
(DSOs), manufacturers and researchers. A DSO, who has the 
main responsibility for resolving the congestion in distribution 
networks, can choose to reinforce the network through long 
term planning or employ market methods [5]–[7] so as to in-
centivize the DERs to respect the system capacity limits. 
Compared to direct control methods for congestion manage-
ment [8], [9], market-based methods can maximize social wel-
fare, cause least discomfort to customers and encourage more 
participation in the energy planning. 

By extending the locational marginal price (LMP) concept 
[10] from transmission networks to distribution networks, 
[11]–[15] have developed the distribution LMP (DLMP) con-
cept and applied it to handle the congestion issues in distribu-
tion networks with distributed generators (DGs). Through the 
DLMP concept, the local DGs will be properly subsidized if 
they produce more power and reduce the energy requirement 
at the local bus from remote areas during congestion periods. 

Reference [7] employs a dynamic tariff (DT) concept, 
which is derived from the DLMP, to solve the congestion due 
to flexible demands in distribution networks. The flexible de-
mands may create congestion if the price is not properly set; 
on the other hand, they can help congestion management if 
they are controlled through proper price signals. In [7], con-
gestion management is implemented in a decentralized manner 
so that the aggregators independently determine the energy 
plans for flexible demands without considering network con-
straints. The network constraint information is contained in the 
DT. However, the method proposed in [7] did not consider the 
inter-temporal characteristics of flexible demands.  

In [16], taking into account the inter-temporal characteris-
tics, an integrated DLMP method for determining DT was 
proposed. The method proposed in [16] works in most cases. 
However, the aggregator optimization may have multiple solu-

tions due to the linear programming (LP) formulation. The 
multiple solution issue of the aggregator optimization in the 
DLMP concept was discussed in [17]. Such multiple solutions 
may cause the centralized DSO optimization and the decen-
tralized aggregator optimization to diverge, and the decentral-
ized congestion management to fail.  

In order to address the multiple solution issue of the decen-
tralized aggregator optimization, this paper introduces a new 
quadratic programming (QP) based formulation. The contribu-
tions of this paper are: (a) Prove the existence of a unique so-
lution to the optimization problem at both the centralized DSO 
side and the decentralized aggregator side, and the equivalence 
of these two optimizations through convex QP; (b) Demon-
strate that the DLMP concept is valid with the cost function 
having quadratic terms reflecting price sensitivity of the 
DERs; (c) Demonstrate that the DLMP concept can solve con-
gestion caused by diverse flexible demand characteristics such 
as, EVs and HPs. 

The paper is organized as follows. Spot price prediction 
based on price sensitivity and optimal energy planning of EVs 
and HPs are presented in Section III. The non-convergence 
issue of the LP formulation and its resolution through QP for-
mulation is described and analyzed in Section IV. In Section 
V, case studies are presented and discussed, followed by con-
clusions. 

III.  OPTIMAL ENERGY PLANNING FOR EV AND HP 

EVs and HPs meet their energy needs for driving and heat-
ing by procuring energy in the day-ahead electricity market. 
Such purchases can be done through an aggregator represent-
ing the EV and HP users by submitting bids on their behalf in 
the day-ahead electricity market. As such, the individual users 
shift the burden of market participation to aggregators, and the 
aggregators get enough capacity to participate in different 
markets. The day-ahead spot price prediction, and the optimal 
EV charging and HP planning based on the spot price predic-
tion are explained in this section. 

A.  Spot Price Prediction 

Before submitting their bids, the aggregators need to de-
termine an optimal energy plan based on the predicted spot 
prices. The electricity prices are plan-dependent, which poses 
some difficulty in determining an optimal energy plan because 
the price is a discontinuous function of the energy plan. A 
price sensitivity based spot price prediction method was pro-
posed in [18], [19] to deal with such difficulty. Specifically, 
the predicted price consists of a baseline price plus a linear 
component proportional to the demand so that the predicted 
spot price at time t (hour) is given by, 

 
t t t t

y c p   (1) 

The price sensitivity coefficient   is determined by evalu-

ating the merit order of the power plants in the electricity mar-
ket [18]. The production of renewable energy resources, such 
as WP and SP, is deducted from the conventional demand 
first. Then the net demands and the flexible demands are met 
by conventional power plants according to the order of their 
marginal cost. The function of marginal cost versus demand 
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can be fit by an exponential function and  is the first order 

coefficient of the Taylor expansion of the fit function. The 
concept of the price sensitivity is illustrated in Fig. 1. The co-
efficient   estimated in the above method is scaled up by the 

total number of available flexible demand (EVs and HPs) in 
order to be used for individual flexible demand. 

 

 
Fig. 1. Concept of the price sensitivity  
 

B.  Optimal EV Charging 

The optimal EV charging aims to meet the energy needs of 
EVs with minimum energy cost. Taking into account the price 
sensitivity, the cost function of the EV charging becomes a 
quadratic function. The total charging cost of an EV is, 

 2( )
T T T

t t t t t t t t t

t N t N t N

y p c p p p c p
  

        (2) 

In our framework we assume that the charging plan of the 
EVs managed by aggregator i at period t can be expressed as 

,
im

i t
p R . 

As such, the optimal EV charging plan can be found by 
solving the optimization problem below. 

 
, , , , ,

,

1
min   ( ( 1) )

2i t

B T

T T

p i t i t i t t i t

i N t N

p B p c p
 

  (3) 

subject to, 
min max

, _ , _ ,0 , ,
_

( ) , t N , , ( , )
i i t i t i i t B i t i t

t t

e p d e e i N
 



          (4) 

 min max
, , , , ,, , , ( , )

i t i t i t B T i t i t
p p p i N t N

         (5) 

Constraint (4) ensures that the SOC levels of the batteries 
are within the specified range. Equations (3)-(5) form a QP 
problem. 

C.  Optimal HP Planning 

The optimal HP planning is to schedule the energy con-
sumption of HPs so as to maintain the house temperature with-
in a specified range at the minimum energy cost. The heat 
transfer process of the air source HP can be represented by an 
electric circuit [20] which is illustrated in Fig. 2. Thus, the 
following thermal balance equations can be derived [20]. 

 
1

1 2

1

( ) ( )

( ) t

e a a s

t t t t t t

a a

a t t T

Q S k K K k K K

C K K N

     

  
 (6) 
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1
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a s s

t t t t t

s s

s t t T

S k K K k K K

C K K N

    

  
 (7) 

 

 
Fig. 2. Heat transferring process of the house 

 
Equations (6) and (7) can be solved iteratively. As a result, 

the house inside air temperature a

t
K  will be a linear combina-

tion of all the previous and the current thermal energy ( e

t
Q ) 

plus an initial state. Because e

t
Q  has a linear relation (by the 

coefficient of performance (COP)) to the active power ˆ
t

p con-

sumed by the HP, the house inside air temperature can be ex-
pressed as, 

 , _ _
_

ˆ    ta

t t t t t T

t t

K a p u N


     (8) 

Finally, the optimization problem of the HP energy plan 
can be formulated as, 

 
,ˆ , , , ,

,

1
ˆ ˆ ˆmin   ( 1)

2i t

B T

T T

p i t i t i t t i t

i N t N

p B p c p
 

  (9) 

subject to, 

 

,min ,max
, , , _ , _ , ,

_

, ,

ˆ   , N , t ,

ˆ ˆ( , )

a a

i t i t t i t i t i t B T

t t

i t i t

K A p u K i N


 

     

 


(10) 

 min max
, , , , ,

ˆ ˆˆ ˆ ˆ , , , ( , )
i t i t i t B T i t i t

p p p i N t N
         (11) 

where , , _
i im m

i t t
A R

 is a diagonal matrix, ,
im

i t
u R .  

IV.  DLMP AND DT THROUGH QP 

A.  Decentralized Congestion Management through DLMP 

and DT 

According to [7], [16], the procedure of using the DLMP 
and DT concepts to solve the congestion problem in a decen-
tralized manner can be summarized as follows. Firstly, the 
DSO obtains the flexible demand data, such as energy re-
quirements and supply availability, from the aggregators or by 
its own prediction. The DSO also needs the distribution net-
work information and the predicted spot prices at the relevant 
transmission busses. Secondly, the DLMPs are calculated 
through the optimal plan respecting the network constraints, 
and the DTs (DLMPs minus the predicted spot prices) are 
published to all the aggregators. Thirdly, after receiving the 
DTs, the aggregators make their own optimal plans inde-
pendently with both the predicted spot prices and the DTs. At 
last, the aggregators submit their energy plan/bids to the spot 
market. 
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B.  Multiple Solution Issue of the Aggregator Optimization 

with LP Formulation 

The multiple solution issue of the aggregator optimization 
in a LP formulation was highlighted by the discussant in [17] 
based on the observation of the case study results in [16]. Ac-
cording to that observation, there are an infinite number of 
optimal solutions in the aggregator optimization problem due 
to the equal DLMPs at some load points. The multiple solution 
issue in the aggregator LP optimization is further illustrated 
bellow. 

Assume that there is one EV (or HP) in the distribution 
network and it is available for energy planning in two periods. 
It is also assumed that the energy requirement cannot be ful-
filled by consuming power in only one period due to the net-
work constraints. For such a case, the DSO optimization is, 

 1 1 2 2min
p

 c p c p  (12) 

subject to, 
 1 1 1( )Dp f ,    (13) 

 2 2 2( )Dp f ,    (14) 

 1 1 2 2 ( )a p a p b,      (15) 

 1 2 1 2, 0, ( , )p p       (16) 

Constraints (13) and (14) are network constraints for the 
two periods, constraint (15) is the energy requirement (derived 
from (4) and (10), parameter b is the summation of all con-
stants of (4) and (10); the upper limit is ignored for simplici-
ty), and constraint (16) is to set the lower limit of the 
consumed power ( 1 2,p p ) (the upper limit is ignored for sim-

plicity). Coefficients 1a  and 2a  are positive ( 1 2 1a a   when 

it is EV). 
According to the KKT conditions, the DLMPs are calculat-

ed as: (note that 1 2, 0    and 1 2, 0p p  , because the energy 

requirement cannot be fulfilled by any one of them) 

 1 1 1

2 2 2

T

T

c D a

c D a

   

   
 (17) 

where the terms 1
T

D  and 2
T

D  are the DTs and should be 

sent to the aggregator. 
The aggregator optimization (no network constraints) is, 
 1 1 1 2 2 2min ( ) ( )T T

p
  c D p c D p      (18) 

subject to (15) and (16). It can be seen that such a linear pro-
gram has an infinite number of optimal solutions due to the 
proportional coefficients. Hence, the aggregator optimization 
and the DSO optimization may diverge and the decentraliza-
tion scheme fails. For instance, the optimal energy plan of the 
aggregator optimization, where 1 0p  , is infeasible for the 

DSO optimization because the energy requirement cannot be 
fulfilled by any one of 1 2,p p , as stated in the assumption. 

When there are many flexible demands in the distribution 
network, the above analysis is still valid, as there is at least 
one flexible demand behaving like the one in the above exam-
ple. As such, the decentralized congestion management formu-
lated through LP fails due to degeneracy. 

C.  QP Formulation and the Proof of Convergence 

    1)  DSO Optimization through QP: 

The DSO optimization in the second step of the procedures 
in Section IV-A is, 

 
, ,ˆ, , , , ,

,

, , , ,

1
min   ( 1)

2

1
ˆ ˆ ˆ                     ( 1)

2
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p p i t i t i t t i t

i N t N
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i t i t i t t i t

p B p c p

p B p c p

 

 




 (19) 

subject to, 
 , ,ˆ( ) , ,  ( )

B

i i t i t t T t

i N

DE p p f t N


      (20) 

together with (4), (5), (10) and (11).  
The conventional household demands are assumed to be in-

flexible. Therefore, they are not included in the objective func-
tion (19), but reflected in the line loading limits

t
f , which are 

the total line capacities excluding the loadings induced by the 
conventional demands.  

The DTs, defined as T

t
D  , will be published by the DSO 

before the day-ahead market clears. Parameters 
t

c and
t

  used 

by the DSO are shared with the aggregators since the aggrega-
tors need them in their optimization problems. 
    2)  Aggregator Optimization through QP: 

Aggregator i  first forms the DLMP for each of his custom-

ers, i.e. 1 T T

t i
c E D  .Then, the optimal energy plan of aggre-

gator i can be formulated as, 
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
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, , , , ,
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i t i t i t T i t i t

p p p t N
       (25) 

    3)  Proof of the Convergence of the DSO Optimization and 

the Aggregator Optimization through QP: 

The KKT conditions of the DSO optimization are, 
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t T
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together with the constraints (4), (5), (10), (11) and (20). 
Similarly, the KKT conditions of the aggregator i  optimi-

zation are, 
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together with (22)-(25)  and (38). 
It can be seen that the objective function (19) of the DSO 

problem is a quadratic function with all quadratic terms being 
positive and no cross terms. Therefore, the Hessian matrix can 
be found by observation. Particularly, it is a diagonal matrix 
with the elements being the coefficients of the quadratic terms 
in (19), which are all positive. A diagonal matrix with all ele-
ments being positive is a positive definite matrix; therefore, 
the Hessian matrix of (19) is positive definite. 

Since the objective function (19) is a quadratic function 
with positive definite Hessian matrix and all the constraints, 
i.e. (4), (5), (10), (11) and (20) are affine functions, the DSO 
optimization problem is a strictly convex QP problem, which 
has a unique minimizer [21] assuming the problem is feasible. 
Moreover, the KKT conditions of the DSO optimization prob-
lem are necessary and sufficient [21]. 

Similarly, it can be inferred from (21)-(25) that each aggre-
gator optimization problem is also a strictly convex QP prob-
lem. Therefore, each of them has a unique minimizer and the 
KKT conditions are necessary and sufficient. 

Now, suppose 
* * * * * * * * * * *

, , , , , , , , , ,
ˆ ˆˆ ˆ ˆ( , , , , , , , , , , )

i t i t t i t i t i t i t i t i t i t i t
p p

                 

is a solution of the KKT conditions of the DSO problem ((4), 
(5), (10), (11), (20) and (26)-(38)), implying that * *

, ,ˆ( , )
i t i t

p p  

is a solution of the problem. By comparing the KKT condi-
tions, it can be seen that, with respect to aggregator i ,  

* * * * * * * * * *
, , , , , , , , , ,

ˆ ˆˆ ˆ ˆ( , , , , , , , , , )
i t i t i t i t i t i t i t i t i t i t

p p
                

is also satisfying (22)-(25) and (38)-(48), i.e. the KKT condi-
tions of the aggregator problem. This means * *

, ,ˆ( , )
i t i t

p p is also 

a solution of the aggregator problem. Because any solution of 
the DSO problem must satisfy the KKT conditions of it, it can 
be concluded that any solution of the DSO problem is also a 
solution to the aggregator problem.  

On the other hand, a solution that satisfies the KKT condi-
tions of the aggregator problems does not necessarily satisfy 
the KKT conditions of the DSO problem, because the switch-
ing condition (28) of the DSO problem is not respected by the 
aggregator problems. However, due to the uniqueness of the 
solution to the DSO problem and the aggregator problems, any 
solution of the aggregator problems must also be a solution of 
the DSO problem. This can be proven by contradiction.  

Suppose ** **
, ,ˆ( , )

i t i t
p p is a solution of the aggregator prob-

lems but not to the DSO problem. Suppose * *
, ,ˆ( , )

i t i t
p p is a 

solution to the DSO problem. Then, according to the previous 
conclusion, * *

, ,ˆ( , )
i t i t

p p is also a solution to the aggregator 

problems. Due to the uniqueness of the aggregator problems, 
there is * * ** **

, , , ,ˆ ˆ( , ) ( , )
i t i t i t i t

p p p p  and it contradicts the as-

sumption that ** **
, ,ˆ( , )

i t i t
p p  is not a solution to the DSO prob-

lem. Therefore, it can be concluded that any solution to the 
aggregator problems is also a solution to the DSO problem. 
Based on the above conclusions, the DSO problem and the 
aggregator problems are equivalent. 

V.  CASE STUDIES 

Case studies were conducted using the Danish driving pat-
tern and the Bus 4 distribution system of the Roy Billinton 
Test System (RBTS) [22]. The details of the case studies are 
presented in this section.  

A.  Grid Data 

The single line diagram of the Bus 4 distribution network is 
shown in Fig. 3. Line segments of the feeder one are labeled in 
Fig. 3, among which L2, L4, L6, L8, L9, L11, and L12 refer to 
the transformers connecting the corresponding load points 
(LP1 to LP7). The study is focused on this feeder because of 
its diversity: 5 residential load points with different peak con-
ventional demands and two commercial load points. The de-
tailed data of these load points are listed in Table I. The peak 
conventional demands of residential customers are assumed to 
occur at 18:00 when people come home and start cooking 
(shown in Fig. 5). 
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Fig. 3. Single line diagram of the distribution network 

 
TABLE I 

LOAD POINT DATA 
 

load 

points 

customer 

type 

peak conv. 

load per 

point (kW) 

number of 

customers 

per point 

LP1-LP4 residential 886.9 200 

LP5 residential 813.7 200 

LP6,LP7 commercial 671.4 10 

 

B.  EV and HP Data 

The key parameters of EVs and HPs are listed in Table II. 
The EV availability shown in Fig. 4 is from the driving pattern 
study in [23]. The household area is a random number be-
tween 100 and 200 (m2). 

 
TABLE II 

KEY PARAMETERS OF EVS AND HPS ([23], [25]) 
 

parameter value 

EV battery size 25 kWh 

Peak charging power 11 kW (3 phase) 

Energy consumption per km 150 Wh/km 

Minimum SOC 20% 

Maximum SOC 85% 

Average driving distance 40 km 

COP of HP 2.3 

Min Temp. of the House 20  

Max Temp. of the House 24  

 

C.  Case Study Results 

In the case study, it is assumed that there are two aggrega-
tors. The aggregator 'aag1' has contracts with 40 customers per 
load point while the other has contracts with the rest 160 cus-
tomers per load point. The line loading limits of all line seg-
ments are listed in Table III, which are higher than the peak 
conventional demands but lower than the peak demands in-
cluding EVs and HPs. 

The simulation was carried out using the General Algebraic 
Modeling System (GAMS) optimization software [24] alt-

hough many other tools can be used such as QUADPROG in 
MATLAB, Gurobi and AMPL. Firstly, the DSO optimization 
problem was carried out and the results are shown in Fig. 5 
(due to the space limitation, only the results of line L2-L4 
were plotted). Because the line loading limits are respected in 
the optimization, the line loadings of all line segments are 
lower than the limits. 

It can be seen from Fig. 5 that the line loadings reach (but 
not exceed) the limits at hour 16-18 (only line L2) and hour 
23-24. This means that the corresponding inequality con-
straints of the optimization problem are 'active' and the La-
grange multipliers of these constraints are positive. Therefore, 
according to the DLMP calculation method described in Sec-
tion IV-C, the DLMPs are higher than the base price (shown 
in Fig. 6 and Table IV). The prices of LP1 at hour 17-18 are 
very high and are chopped in Fig. 6 (they can be found in Ta-
ble IV) in order to have a better illustration of DLMPs of other 
hours. The high prices of LP1 at hour 17-18 can be explained 
by analyzing the nature of the congestion caused by HPs. HPs 
are less sensitive to the prices compared to EVs because of the 
significant thermal leakages of the households; therefore, 
higher DLMPs are required to solve the congestion caused by 
them.  

 

 
Fig. 4. EV availability 

 
TABLE III 

LINE LOADING LIMIT 
 

line L2 L3 L4 L8 L9 

limit 

(kW) 
1400 7000 1700 1600 1500 

 
TABLE IV 

DLMPS (DKK/KWH) DUE TO MULTIPLE CONGESTIONS ON L2, L3, L4, L8 

AND L9 ('-' MEANS EQUAL TO BASE PRICE) 
 

time 5 16 17 18 23 24 
base 

price 0.3012 0.3884 0.3513 0.3313 0.2941 0.2241 

LP1 ‐  0.5611 1.1006 2.4335 0.3012 0.3012 

LP2 ‐  - - - - 0.2940 

LP3 ‐  - - - - 0.2937 

LP4 ‐  - - - 0.3006 0.3006 

LP5 ‐  - - - 0.3008 0.3008 
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Fig. 5. Line loading of the DSO problem 
 

 
Fig. 6. System prices and DLMPs at LP1 

 
Secondly, the aggregator optimization was performed. Two 

aggregators carried out their own optimization problem inde-
pendently.  

In order to clearly show the effect of the DLMP, two case 
studies were conducted. In Case One, the DLMP was not ap-
plied; in Case Two, the DLMP was applied. 

As expected, when the DLMP is not applied, congestions 
occur at 24:00 and 18:00 (shown in Fig. 7). At 24:00, because 
the system price is the lowest, every EV wants to charge its 
battery as long as it is available for charging. The simultane-
ous charging leads to the very high peak. Overloading of line 
L2 at 18:00, however, is not due to the low price. In fact, it is 
the peak conventional demand that has consumed most of the 
capacity of the line and the available capacity is not enough 
for the HP demands. 

When the DLMP is applied, the congestions are alleviated 
(shown in Fig. 8). Due to the posed DTs, the DLMP at load 
points LP1 at 24:00 is as attractive as the ones at 23:00 and 
5:00. Therefore, the EV charging demands are spread at those 
hours and the resulted peak is not higher than the limits. The 
previous congestion of line L2 at 18:00 also disappears due to 
the DLMP. The DLMP at LP1 at 18:00 is so high that the HPs 
choose to produce more heat before 18:00 and due to the dy-

namics of the thermal objects (house inside air, house struc-
ture), the temperature at 18:00 is maintained between the low-
er and upper limits. Hence, the HP demands are shifted to the 
previous hours when the conventional demands are lower 
enough to accommodate them. 
 

 
Fig. 7. Line loading without DLMP  
 

 
Fig. 8. Line loading with DLMP 

 
In order to illustrate the divergence issue that might occur 

with the LP formulation, a simulation was conducted where 
the price sensitive part was excluded. Without the price sensi-
tive part, the DSO optimization problem and the aggregator 
optimization problems are LPs. The DLMPs were calculated 
and shown in Table V. It can be seen that the DLMPs of LP1 
are the same at time 5, 23 and 24 hour. This will lead to infi-
nite solutions to the aggregator problems. As a result, the ag-
gregator may not act as the DSO expects. This is confirmed by 
the simulation results in Fig. 9 and Fig. 10. In Fig. 9, for the 
DSO optimization, there is no congestion, however, in Fig. 10, 
for the aggregator optimization, congestions occur at line L2; 
loading of line L3 at 5 hour is different. 
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Fig. 9. Line loading of the DSO problem excluding quadratic terms 

 
Fig. 10. Line loading of the aggregator problems excluding quadratic terms 

 
TABLE V 

DLMPS (DKK/KWH) WITH MULTIPLE CONGESTIONS AT L2, L3, L4, L8 AND 

L9 ('-': EQ. TO BASE PRICE), CALC. WITHOUT QUADRATIC TERMS 
 

time 5 16 17 18 23 24 
base 

price 0.3012 0.3884 0.3513 0.3313 0.2941 0.2241 

LP1 - 0.5605 1.0984 2.4267 0.3012 0.3012 

LP2 - - - - - 0.2941 

LP3 - - - - - 0.2941 

LP4 - - - - 0.3012 0.3012 

LP5 - - - - 0.3012 0.3012 
 

VI.  CONCLUSIONS AND FUTURE WORK 

Though the DLMP and DT concepts are efficient in allevi-
ating congestions in distribution networks with high penetra-
tion of flexible demands, the formulation of the decentralized 
aggregator optimization must be carefully handled. With a LP 
formulation of the aggregator optimization, there might be 
multiple solutions to the decentralized aggregator optimization 
due to degeneracy. The multiple solutions to the aggregator 
optimization may cause the centralized DSO optimization and 
the decentralized aggregator optimization to diverge, and the 
decentralized congestion management approach to fail.  

The multiple solution issue of the aggregator optimization 
is addressed in this paper by introducing price sensitivity 
which leads to strictly convex QP formulation for both the 
DSO optimization and the aggregator optimization. The 
equivalence of the centralized DSO optimization and the de-
centralized aggregator optimization with the QP formulation is 
proven which ensures that the aggregators act as the DSO ex-
pects. The case study results have demonstrated the equiva-
lence of the DSO optimization and the aggregator 
optimization with a strictly convex QP formulation, and the 
efficacy of the DLMP through QP for congestion manage-
ment. 

For future work, more practical features of the distribution 
network can be considered, such as high R/X ratio, losses, 
single phase loads and unbalance. It is interesting to study how 
these factors will affect the DLMP for congestion manage-
ment. In addition to the line loading constraints, voltage con-
straints shall also be studied in the future work. 
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