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)is paper proposes a chaotic stochastic fractal search algorithm (CSFSA) method to solve the reconfiguration problem for
minimizing the power loss and improving the voltage profile in distribution systems. )e proposed method is a metaheuristic
method developed for overcoming the weaknesses of the conventional SFSA with two processes of diffuse and update. In the first
process, new points will be created from the initial points by the Gaussian walk. For the second one, SFSA will update better
positions for the particles obtained in the diffusion process. In addition, this study has also integrated the chaos theory to improve
the SFSA diffusion process as well as increase the rate of convergence and the ability to find the optimal solution.)e effectiveness
of the proposed CSFSA has been verified on the 33-bus, 84-bus, 119-bus, and 136-bus distribution systems. )e obtained results
from the test cases by CSFSA have been verified to those from other natural methods in the literature. )e result comparison has
indicated that the proposed method is more effective than many other methods for the test systems in terms of power loss
reduction and voltage profile improvement. )erefore, the proposed CSFSA can be a very promising potential method for solving
the reconfiguration problem in distribution systems.

1. Introduction

Distribution networks play an important role in providing
electricity to loads; however, the power loss in the system is
high, and the voltage regulation is poor. )ere are many ways
to decrease the power loss and improve the voltage profile in
distribution networks such as compensating reactive power,
increasing operating voltage, balancing loads, and increasing
wire section. )ese methods are possible to deploy in terms of
technical aspect but need much investment cost. Network
reconfiguration is known as an effective method to reduce the
power loss and improve the voltage profile significantly in
power systems while requiring not much investment cost. )e
distribution network reconfiguration is performed by opening/
closing switches to form a new network structure for reducing
power loss while satisfying operation constraints.

Researchers have made tremendous efforts to find the
optimal solution for the distribution network reconfigura-
tion (DNR) problem with many approaches from heuristic
methods to metaheuristic methods. Merlin and Back [1] first
proposed an approach for this problem, in which the discrete
branch and bound method was used to find the electrical
structure leading to the least power loss. In [2, 3], the branch
exchange method was used to solve the problem with the
aim of minimizing power loss and balancing the load de-
mand. Zhou et al. [4] proposed heuristic rules and fuzzy
logic to solve the reconfiguration problem for the service
restoration and load balancing. Some other heuristic
methods [5–7] were also used to solve the reconfiguration
problem with different objective functions. )e advantages
of heuristic methods are simple application, few parameters,
and fast computation. However, this kind of method is easy
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to fall in local minima and is not really effective for solving
large-scale problems. )erefore, more effective methods
should be developed to efficiently deal with large-scale
problems.

)e methods inspired from nature have recently de-
veloped with the name of metaheuristics. )ese methods
have been widely applied to different optimization problems
in many fields. With the advantages of providing good
solutions and being applicable to large-scale networks, the
metaheuristic methods have been successfully applied to
solve the DNR problems in power systems. Olamaei et al. [8]
applied an algorithm based on the Artificial Bee Colony
(ABC) algorithm to deal with the reconfiguration problem
with the purpose of decreasing power loss. Genetic Algo-
rithm (GA) was proposed to solve the problem for en-
hancing voltage stability as in [9]. In [10, 11], Harmony
Search Algorithm (HSA) and Simulated Annealing (SA)
algorithm were, respectively, successfully applied to
reconfigure the large-scale distribution systems. )e Binary
Particle Swarm Optimization (BPSO) algorithm was applied
to solve the DNR problem for decreasing power loss and
balancing load as shown in [12]. )e PSO algorithm,
Adaptive Cuckoo Search (ACS) algorithm, and GA were
used to reconfigure the distribution networks considering
impacts of the distributed generators (DGs) with different
scenarios as considered in [13–15]. Besides, some other
methods [16–18] have successfully solved the problem with a
multiobjective function for power loss minimization, voltage
quality improvement, load balancing, and switching miti-
gation. )e big bang algorithm combined with big crunch
algorithm was applied to solve the reconfiguration and
optimal capacitor position problem [19]. In [20], a modified
Culture Algorithm (CA) was employed for the reconfigu-
ration problem of distribution network considering power
loss. In general, the metaheuristic methods are very ap-
propriate for dealing with the complex and large-scale
problems for obtaining near optimum solution. However,
the metaheuristic methods have many control parameters to
be tuned for each problem which may lead to local optima if
they are not properly determined. Moreover, the compu-
tational time of some metaheuristic methods is very high
when dealing with large-scale optimization problems due to
suffering a large number of variables and need several it-
erations for searching the optimal solution. )erefore, it is
very important to find an effective method for dealing with
large-scale and complex optimization problems.

Stochastic Fractal Search Algorithm (SFSA) is a powerful
metaheuristic method including updating and diffusion pro-
cesses recently developed by Salimi [21] based on the fractal
theory. )e SFSA is developed by improving the fractal search
algorithm by adding the updating process and manipulating
the Gaussian walk in the diffusion process. )e diffusion
process increases the probability of finding the global maxi-
mum, dodging the local solution. In the update process, the
best points are kept, and the rest are discarded to increase the
efficiency for the finding process. )e SFSA has been suc-
cessfully implemented to solve the complex problem of
reconfiguration with distributed generations [22]. Moreover,

the integration of chaos theory into SFSA helps to improve the
rate of convergence as well as the accuracy of solutions. )e
chaos theory is a mathematics researching field which is ap-
plied to enhance the random search process.Many studies have
integrated chaos theory into different algorithms to improve
the effectiveness of metaheuristic algorithms in solving opti-
mization problems such as the PSO algorithm [23], SA [24],
Cuckoo Search Algorithm (CSA) [25], Fruit-fly Optimization
(FFO) algorithm [26], ABC algorithm [27], and Differential
Evolution (DE) [28]. In general, these methods with the in-
tegration of chaos theory have offered a higher solution quality
than original methods. )erefore, the integration of the chaos
theory into metaheuristic methods provides a promising im-
provement to enhance their search ability so that the solution
quality can be improved.

In this paper, a Chaotic Stochastic Fractal Search Algo-
rithm (CSFSA) is implemented for solving the reconfiguration
problem in distribution networks to minimize the power loss
and improve the voltage quality. In this research, a chaotic map
(Gauss/mouse function) is integrated into the conventional
SFSA to improve its performance. In fact, the integration of
chaotic maps into the SFSA has been recently performed by
many researchers. However, the key contribution of this re-
search is the successful adaption of a chaotic map of Gauss/
mouse function into the SFSA to solve a complicated problem
of reconfiguration with the objectives of power loss reduction
and voltage profile improvement in distribution systems. To
verify the effectiveness of the proposed method, four distri-
bution networks have been used for testing including the 33-
bus, 84-bus, 119-bus, and 136-bus systems. )e obtained re-
sults from the proposed CSFSA have been compared with
those from other methods reported in the literature such as
HSA [10], Firework Algorithm (FWA) [29], Runner-root
Algorithm (RRA) [30], CSA [31], Hybrid Big Bang-Big Crunch
Algorithm (HBB-BCA) [32], Fuzzy Shuffled Frog-Leaping
Algorithm (Fuzzy-SFLA) [33], Multiobjective Invasive Weed
Optimization (MOIWO) [34], Improved Adaptive Imperialist
Competitive Algorithm (IAICA) [35], Improved Mixed-inte-
ger hybrid Differential Evolution (IMI-DE) [36], Plant Growth
Simulation Algorithm (PGSA) [37], GA [38, 39], hybrid Ar-
tificial Immune Systems-Ant ColonyOptimization (AIS-ACO)
[40], Heuristic method [41], improved Tabu search (ITS) [42],
modified Tabu search (MTS) [43], hybrid Ant Colony Opti-
mization-Harmony Search Algorithms (ACO-HAS) [44],
adaptive GA (AGA) [45], Uniform Voltage Distribution-based
constructive reconfiguration algorithm (UVDA) [46], Mixed-
Integer Convex Programming (MICP) [47], Non-revisiting
Genetic Algorithm (NRGA) [48], Feasibility-preserving Evo-
lutionary Optimization (FPEO) [49], a hybridization of Grey
Wolf Optimizer (GWO) and PSO method (GWO-PSO) [50],
and Adaptive Shuffled Frogs Leaping Algorithm (ASFLA) [51]
which are available in the literature.

)e remaining organization of the paper is represented
in the order as follows. )e problem formulation is pre-
sented in Section 2. )e implementation of the CSFSA for
the problem is followed in Section 3. )e numerical results
from test systems are provided in Section 4. Finally, the
conclusion is given.
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2. Problem Formulation

2.1. Objective Functions. )e objective function of the DNR
problem is to minimize total power loss and improve voltage
deviation subject to the system constraints. Mathematically,
the objective function and constraints of the DNR problem
can be formulated as follows [29]:

MinF � Ploss + ΔVD, (1)

where Ploss is the total real power loss of the system and ΔVD

is the voltage deviation at load buses.
According to [29], the two objectives are simultaneously

considered by combining into one objective as in (1).
)erefore, the research in this paper also uses this meth-
odology for dealing with the paper.

2.1.1. Total Real Power Loss. )e total real power loss of the
network topology is described as follows:

Ploss � ∑
Nbr

i�1

Ri ×
P2
i + Q

2
i

V2
i

, (2)

where Nbr is the number of branches; Ri is the resistance of
the ith branch; Pi and Qi are the real power and reactive
power of the ith branch, respectively; and Vi is the voltage
magnitude at bus i.

2.1.2. Voltage Deviation at Load Buses. )e voltage devia-
tion of the network topology is determined as

ΔVD � Vref − Vmin, (3)

where VRef is a prespecified voltage magnitude at load bus i
which is usually set to 1.0 p.u. Vmin is the minimum bus
voltage of the network topology.

2.2. Contraints

(i) Power flow balance: these power flow constraints are
to balance the real and reactive power outputs of
generators and loads given by

PGi − PDi � Pi � Vi
∣∣∣∣ ∣∣∣∣∑

Nb

j�1

Vj

∣∣∣∣∣
∣∣∣∣∣ Gij cos δi − δj( ) + Bij sin δi − δj( )[ ]; i � 1, . . . , Nb,

QGi − QDi � Qi � Vi
∣∣∣∣ ∣∣∣∣∑

Nb

j�1

Vj

∣∣∣∣∣
∣∣∣∣∣ Gij sin δi − δj( ) − Bij cos δi − δj( )[ ]; i � 1, . . . , Nb,

(4)

where Nb is the number of buses, Pi and Qi are real
and reactive power injection at bus i, respectively,
PGi and QGi are real and reactive power generation at
bus i, respectively, PDi and QDi are real and reactive
load demand at bus i, respectively, |Vi| and |Vj| are
voltage magnitudes at bus i and j, respectively, Gij

and Bij are the real and imaginary parts of element Yij

in the admittance matrix Ybus, respectively, and δi

and δj are the voltage angle at buses i and j,
respectively.

(ii) Bus voltage limits: the load bus voltages are limited
by their minimum and maximum values as

Vi,min ≤Vi ≤Vi,max; i � 1, 2, . . . , Nb. (5)

(iii) Line current limits: the line currents are bounded by
their lower and upper values as

0≤ Ii ≤ Ii,max; i � 1, 2, . . . , Nbr. (6)

(iv) Radial network structure must be maintained, and
all loads must be served after reconfiguration.

3. Implementation of CSFSA for the Problem

3.1. Checking Radial Constraints. A distribution network is
installed with three typical types including radial, loop, and
mesh. It is originally constructed in loops; however, the dis-
tribution network is operated as a radial network in order to
save energy for the protection device and reduce the fault level.
Moreover, utilizing a metaheuristic algorithm with a random
initialization creates many network configurations which do
not satisfy the radial constraints. )erefore, it is important and
mandatory to determine the radial network configuration in
the reconfiguration problem for distribution networks so as to
reduce the searching space and the computational time.

To maintain radial configuration, the number of tie-
switches in the reconfiguration process must be fixed and
equal to the number of fundamental loops. )e number of
tie-switches is determined by the following equation [31]:

Nts � Nbr − Nb −Ns( ), (7)

where Ns is the number of sources.
)e steps of the algorithm for radially checking system in

the distribution network reconfiguration are as follows:
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Step 1: create an incidence matrix A(b, n) with b which
is the branch index and n the node index. Matrix A is
created as [14]

Aij �

1, if branch i connects frombus j,

−1, if branch i connects toward to bus j,

0, if branch i has no connectionwith bus j.




(8)

Step 2: eliminate the first column of matrix A (corre-
sponding to the source bus of the network).

Step 3: eliminate rows consisting of tie-switches cor-
responding to the considerable network configuration.

Step 4 (check conditions): matrix A is a square matrix,
and det(A)� 1 or −1.

Step 5: If both conditions specified above are qualified,
the configuration is the radial and vice versa.

3.2. Stochastic Fractal Search Algorithm. SFSA is a new
powerful metaheuristic algorithm inspired by the natural
phenomenon of growth by simulating the fractal properties
for solving the optimization problem developed by Salimi in
2015 [21]. )e search process of the SFSA for obtaining an
optimal solution has two main processes including diffusion
process and update process described as follows.

3.2.1. Diffusion Process. Each point in this process diffuses
around its current position to exploit the search space to
increase the probability of finding a better solution and avoid
local minima. )e new points in this process are generated
using the Gaussian walk described by the following
equations:

Xi,new �
Gaussian μXbest

, σ( ) + ε ×Xbest − ε′ ×Xi( ) if rand<W,
Gaussian μX, σ( ), otherwise,




(9)
where W is an additional parameter for choosing Gaussian
walks to tackle the problem; ε and ε′ are the uniformly
distributed random numbers belonging to [0, 1]; Xi,new is the
newly adjusted location of point Xi; Xbest and Xi are the
location of the best point and the ith point in the group,
respectively; and μXbest

, μX, and σ are Gaussian means, where
μXbest

� |Xbest|, μX � |Xi|, and the mathematical equation of
standard deviation σ is given as follows:

σ �
log(Iter)

Iter
× Xi −Xbest( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣, (10)

in which Iter indicates the iteration number.
)e ratio log (Iter)/Iter is implemented to reduce the size

of the Gaussian jumps over each iteration. )is encourages a
more localized search ability and reaches closer to the op-
timal solution of the algorithm.

3.2.2. Updating Process. )is process including two statis-
tical procedures is employed to efficiently explore the search

space. In the first statistical procedure, all the points are
ranked according to their fitness values, and then a prob-
ability value (Pa) is calculated for each point using the
following equation:

Pai �
rank Xi( )
Np

, (11)

where Np is the total number of points in the group and
rank(Xi) is the rank of point Xi in the group.

Equation (11) indicates that a better point has a higher
probability. )is equation is to improve the chance for the
worst points to obtain a better solution in the next gener-
ation. For each point Xi in the group, if Pai< ε, the jth
component of Xi is updated by equation (12). Otherwise, the
position of the point remains unchanged.

Xi
′ (j) � Xr(j) − ε × Xt(j) −Xi(j)( ), (12)

where ε is a random number in the range [0, 1]; Xi
′ is the

newly adjusted location of Xi; and Xr and Xt are the points
randomly selected in the group.

In the second statistical procedure, all points obtained by
the first procedure are again ranked by equation (11). For all
points Xi

′, if Pai′< ε′, the position of Xi
′ is updated by

equation (13). Otherwise, the updating process for Xi
′ will

not occur.

Xi
″ � Xi
′ − ε′ × Xt

′ −Xbest( ), if ε′ ≤ 0.5,
X″ � Xi

′ + ε′ × Xt
′ −Xr
′( ), if ε′ > 0.5.


 (13)

)e new point Xi
″ replaces the position of Xi

′ if its fitness
function value is better than Xi

′.

3.3. Chaotic Map Integrated in SFSA. Chaotic maps are
known as one of the efficient methods to enhance the
convergence rate and local optima avoidance in a meta-
heuristic algorithm. In this article, the SFSA is improved by
changing factor in diffusion and update process of the
original SFSA by variable α of chaotic maps. )e variable α
utilized to integrate into SFSA is Gauss/mouse function in
chaotic maps and it is determined as follows [26]:

αi �

1, if xi � 0,

1

mod xi, 1( ), otherwise.




(14)

3.4. Implementation of CSFSA for DNR. )e steps for ap-
plying the CSFSA to solve the distribution network
reconfiguration problem are given as follows:

Step 1: determine elements of SFSA

Step 2: initialize a chaotic map

Step 3: initialize initial individuals

By using CSFSA, each radial configuration of the
system is described as a point (individual). A pop-
ulation of N points is given as follows:
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X � X1, X2, . . . , XN−1, XN[ ]. (15)

Every variable X from equation (15) is represented as
follows:

Xts � SW1, SW2, . . . , SWNts[ ],
SWmin

i ≤ SWi ≤ SWmax
i , with i � 1, 2, . . . , Nts.

(16)
Each individual in assembly is randomly initialized by
the following equation

Xi � X
min
i + rand∗ Xmax

i −Xmin
i( ). (17)

Step 4: calculate power flow for initial initialization
variables to find the best point (Xbest) and check radial
constraint.

Step 5: conduct the diffusion process as in Section 3.2.1.

Step 6: the points created from diffusion process are
checked for the radial structure by the algorithm from
Section 3.1, and calculate the power flow to determine
the objective function. )e points having the best
objective function are utilized, and the set of Np points
is improved with new points choosing from points in
the diffusion process.

Step 7: conduct the updating process as mentioned in
Section 3.2.2.

Step 8: with each point updated, check for the radial
constraint and calculate the power flow to determine
the objective function.

Step 9: export results including Xbest, minimum power
loss, and voltage deviation.

Step 10: stop criteria for the algorithm.

)e new system configuration is created from the dif-
fusion and updating processes until the number of iterations
reaches the maximum iteration number (Itermax).

4. Numerical Results

)e proposed method has been tested on the 33-bus, 84-bus,
119-bus, and 136-bus test systems. )e CSFSA is coded in
Matlab platform and run on a 2.5GHz processor with 4.0GB
of RAM PC. In this paper, the power flow analysis is sim-
ulated by using Matpower [52].

4.1. Selection of Parameters. )e establishment of initial
parameters has an impact on the proposed method of
finding the optimal solution for the considered problem.
)erefore, the determination of optimal parameters plays an
important role in solving the DNR problem. )e value of
parameters is usually chosen by changing only one pa-
rameter while the rest are fixed. Initially, parameters are set
at low value and gradually increased to collect different
results.)e selected parameters are explained as follows.)e
maximum number of iterations Itermax depends on test
systems, and it is set from 50 to 3000 in this paper.)e size of

population or number of points N has the selected values
from 30 to 70. By experiments, the parameters of CSFSA are
chosen as shown in Table 1.

In this table, Dmax is the maximum diffusion number,
and Swalk is the Gaussian walk ratio determined by the rule as
follows:

+Swalk� 1: SFSA uses the first Gaussian walk

+Swalk� 0: SFSA uses the second Gaussian walk

+Swalk� 0.75: SFSA uses the first Gaussian walk, with
the probability of 75% which comes from the uniform,
and SFS uses the second Gaussian walk distribution
with the probability of 25%

4.2. 33-Bus System. )e proposed algorithm is applied to
solve the reconfiguration problem for a small-scale 33-bus
distribution network.)is system consists of 37 branches, 32
sectionalizing switches, and 5 tie-switches. )e initial tie-
switches are 33, 34, 35, 36, and 37. )e system is operated at
12.66 kV and has a total load demand of 3.73 + j2.3 (MVA)
with the lowest voltage 0.91081 p.u at bus 18 [2]. )e single-
line diagram of the system is demonstrated in Figure 1. )e
obtained results of the CSFSA are compared with those from
other methods including FWA [29], RRA [30], HBB-BCA
[32], Fuzzy-SFLA [33], MOIWO [34], IAICA [35], and CSA
[31], FPEO [49], GWO-PSO [50], and ASFLA [51] as shown
in Table 2.

As demonstrated in Table 2, after the DNR is performed,
the proposed algorithm can find an optimal network
structure with the tie-switches which are 7-9-14-32-37
corresponding to 138.91 kW of power loss. )erefore, the
proposed method has decreased by 31.8% of power loss
compared with the initial case. Moreover, the results ob-
tained by the CSFSA are the same as those from the CSA
method in Table 2. Obviously, the power loss and voltage
deviation from the proposed method are 138.91 kW and
0.0576 p.u, which are 0.64 kW and 0.0046 p.u. lower than
those from other methods such as RRA, HBB-BC, and
MOIWO. According to the table, the CSFSA also gives better
results compared to other methods in terms of power loss
and voltage deviation. )e comparison has shown that the
CSFSA method can obtain a very high-quality solution for
the distribution network reconfiguration problem. In terms
of the computational time, CSFSA takes 49.59 s to solve the
DNR problem, which is longer than FWA, GWO-PSO, and
HBB-BCA and faster than RRA. It is noted that the com-
putational time may not be directly compared among the
methods due to different computer processors and pro-
gramming languages used. )erefore, the key factor for the
comparative result is mainly the objective function value
rather than the computational time.

)e convergence characteristics of the proposed method
for the power loss and voltage deviation objectives of the 33-
bus system are given in Figures 2 and 3, respectively. After 19
iterations, the proposed method has converged to the op-
timal solution, proving that by integrating the chaos theory
has increased the effectiveness of the proposed method with
a fast convergence process. From Figures 2 and 3, at the 10th
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Table 1: )e parameters of CSFSA for test systems.

System N Itermax Dmax Swalk

33-bus 30 50 5 1
84-bus 50 200 5 0.75
119-bus 50 1500 5 0.5
136-bus 70 2000 5 0.5

1

26 27 28 30 31

2 5 7 8 10 11 12 13 14 16

32

173 64 9

33

15 18

29

19 2120 22

23 24 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

19 20 21

18 33

35

34

36

37

22

23 24

26 27 28 29 30 31 32

25

Figure 1: Single-line diagram of the 33-bus system.

Table 2: Result comparison of CSFSA with other methods for the 33-bus system.

Method Tie-switches Power loss (kW) ΔVD Vmin (p.u.) CPU time (s)

Initial 33-34-35-36-37 203.68 0.0891 0.91081
FWA [29] 7-9-14-28-32 139.98 0.0587 0.9413 6.4
RRA [30] 7-9-14-32-37 139.55 0.0622 0.9378 74.69
HBB-BCA [32] 7-9-14-32-37 139.55 0.0622 0.9378 3.05
Fuzzy-SFLA [33] 7-9-14-28-32 139.98 0.0588 0.9412 —
MOIWO [34] 7-9-14-32-37 139.55 0.0622 0.9378 —
IAICA [35] 7-9-14-32-37 139.51 0.0622 0.9378 —
CSA [31] 7-9-14-32-37 138.91 0.0576 0.94235 —
FPEO [49] 7-9-14-28-32 140.3350 — — —
GWO-PSO [50] 7-9-14-32-37 139.55 — — 30.61
ASFLA [51] 7-9-14-28-32 139.98 — 0.9413 —
CSFSA 7-9-14-32-37 138.91 0.0576 0.94235 49.59
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Figure 2: )e convergence characteristic of power loss for the 33-bus system.
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iteration power loss decreased from 159.71 kW to 147.97 kW
and the voltage deviation at this iteration also decreased
from 0.0916 p.u to 0.0617 p.u. Besides, the magnitude of the
voltage at all buses is significantly improved, and the lowest
voltage value increased from 0.91081 p.u. to 0.94235 p.u. as
indicated in Figure 4.

4.3. 84-Bus Test System. An 84-bus distribution network is
the second case to investigate the efficiency of the CSFSA for
the DNR problem. )is is the practical network of the
Taiwan Power Company with 83 sectionalizing switches and
13 tie-switches with the voltage operated at 11.4 kV. )e
system is designed with overhead lines and underground
cables including 12 feeders. )e total load demand of the
system is 28.35MW and 20.70 MVar [36]. )e single-line
diagram of the system is presented in Figure 5. At the initial
case, the tie-switches are 84-85-86-87-88-89-90-91-92-93-
94-95-96, and the lowest voltage is 0.9285 p.u at bus 9.

)e collected results from the proposed method are
compared to those from IMI-DE [36], PGSA [37], GA, HBB-
BCA [32], AIS-ACO [40], and the heuristic method [41] as
shown in Table 3. As observed from the table, the power loss
obtained by the proposed method is 469.878 kW while the
initial case is 531.99 kW, leading to 11.68% of power loss
reduction. Moreover, the proposed CSFSA has also found
the optimal system structure with the tie-switches of 55-7-
86-72-13-89-90-83-92-39-34-42-62. As seen from the table,
the proposed method gives a power loss the same as from
GA, PGSA, and IMI-DE methods and better than that from
BB-BCA, AIS-ACO, and heuristic methods. )e proposed
CSFSA, PGSA, and GA methods can find the same system
structure with the tie-switches of 7-13-34-39-42-55-62-72-
83-86-89-90-92. )e optimal configuration proposed by the
BB-BCA method with the switches of 7-33-38-55-62-72-83-
86-88-89-90-92-95 causes a power loss of 471.62 kW, which
is 1.742 kWhigher than that from the proposed CSFSAwhile
the voltage deviations from the two methods are the same.
)e optimal result by the AIS-ACO method provides the
voltage deviation of 0.0521 p.u., which is 0.00529 p.u. higher

than that from the proposed method. )e proposed CSFSA
requires longer computational time than other methods
reported in Table 3. Table 3 also illustrates that the voltage
deviation from the proposed CSFSA is the best among all the
compared methods.

For this test system, the DNR problem consists of 13
unknown tie-switches; thus, the number of iterations is
increased to reach the best result. )e convergence char-
acteristics of the power loss and voltage deviation from the
proposed CSFSA for the 84-bus system are, respectively,
shown in Figures 6 and 7 where the voltage deviation is
0.04681 p.u. compared with 0.0715 p.u. from the initial case.
)erefore, the proposed CSFSA method has shown that the
power loss and voltage deviation index have the tendency to
converge to the optimal result. Figure 8 denotes the voltage
characteristics before and after reconfiguration. )e pro-
posed CSFSA has also improved the voltage at buses with the
lowest voltage increased from 0.9285 p.u. to 0.95931 p.u.
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Figure 4: )e voltage profile for the 33-bus system before and after
reconfiguration.
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Table 3: Result comparison of CSFSA with other methods for the 84-bus system.

Method Tie-switches Power loss (kW) ΔVD Vmin(p.u.) CPU time (s)

Initial 84-85-86-87-88-89-90-91-92-93-94-95-96 531.99 0.0715 0.9285
IMI-DE [36] 7-13-34-39-41-55-62-72 - 83-86-89-90-92 469.88 0.0469 0.9531 36.15
PGSA [37] 7-13-34-39-42-55-62-72-83-86-89-90-92 469.88 — — 113.25
GA [38] 7-13-34-39-42-55-62-72-83-86-89-90-92 469.878 — — 7.809
BB-BCA [32] 7-33-38-55-62-72-83-86-88-89-90-92-95 471.62 0.04682 0.95318 13.25
AIS-ACO [40] 7-13-34-39-42-55-62-72-86-89-90-91-92 471.14 0.0521 0.9479 —
Heuristic method [41] 7-34-39-42-55-63-72-82-86-88-89-90-92 470.89 — — —
CSFSA 55-7-86-72-13-89-90-83-92-39-34-42-62 469.878 0.04681 0.95319 748.95

B
11 12 13

14(86)

A
1 2 3 4 5 6 7

8

9

10

(1) (2) (3) (7)

(8)

(10)

55 54 53 52 51 50 49 48 47
G

(48)

(84)

(55)

64

(96)

63 62 61 60 59 58 57 56

(60) (58)
H

(85)

15 16 17 18 19 20 21

22

23 24

(15)
C

(84)

72 71 70 69 68 67 66 65
I

(72) (66)

(87)

(89)

76 75 74 73
J

(76) (74)D

15(25) 26 27 28 29

(29)

(90)

E

30(30) 31 32 33 34 35 36 37 38

39 40

41 42
(42)

(95)

(92)

(93)

F

43 44 45 46(43) (46)

(94)(86)

83 82 81 80 79 78 77
K

(83) (78)

(91)

(88)

Figure 5: Single-line diagram of the 84-bus test system.
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Figure 6: )e convergence characteristic of power loss for the 84-bus system.
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4.4. 119-Bus System. To evaluate the effectiveness of the
proposed CSFSA in solving large-scale systems, the 119-
bus system is considered in this study.)is system consists
of 132 branches and 118 sectionalizing switches with the
operating voltage of 11 kV. )e total load demand of the
system is 22.709MW and 17.041 MVAR. )e system bus
and branch data are given in [42]. )e single-line diagram
is demonstrated in Figure 9, and the minimum voltage of
the system is 0.8688 p.u. at bus 116. )e 119-bus system
has 15 tie-switches corresponding to 15 fundamental
loops, and the tie-switches are 118-119-120-121-122-123-
124-125-126-127-128-129-130-131-132 in the initial case.
)e results obtained by the proposed CSFSA including
power loss, voltage deviation, and minimum voltage for
the 119-bus system are compared to those from other
methods including ITS [42], MTS [43], HAS [10], ACO-
HAS [44], FWA [29], CSA [31], and FPEO [49] as given in
Table 4.

After reconfiguration, the power loss provided by the
proposed CSFSA is 854.04 kW decreasing by 32.86% com-
pared with the initial case.)e proposed CSFSAmethod finds
the optimal structure for this system which is corresponding
to the position of tie-switches of 42-25-23-121-50-58-39-95-
71-74-97-129-130-109-34. )e proposed CSFSA also shows
its effectiveness in improving the voltage profile where the
lowest voltage increases from 0.8688 p.u. to 0.9298 p.u. As
observed from the table, the ITS and MTS method can find
the optimal structure with the same tie-switches of 24-27-35-
40-43-52-59-72-75-96-98-110-123-130-131 as the proposed
CSFSA. )e power losses obtained by the ITS and MTS
methods are 865.865 kW and 865.86 kW, which are 11.825
and 11.82 kW higher than those from the proposed CSFSA,
respectively. Similarly, the FA and CSA methods also give the
same tie-switches as the optimal structure obtained by the
proposed method, and the power loss obtained from these
methods is still higher than the proposed CSFSA. )e
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proposed method also gives the same voltage deviation index
with the ITS, HAS, and FA methods. )erefore, the proposed
CSFSA method is superior to other methods in terms of
power loss and voltage deviation.

In this case, the convergence characteristics of the
proposed CSFSA for the power loss and voltage deviation are
given in Figures 10 and 11, respectively, where more

iteration than the previous systems is needed to find the
optimal solution due to the larger scale system. Accordingly,
the proposed method converges after 359 iterations. )e
computational time of the proposed method is much longer
than HSA. )ere is no report on computational time from
other methods. Figure 12 describes the voltage at all buses of
the network before and after reconfiguration.

s0

0 1

s1

s2

s3 s4 s5 s6 s7 s8

s9

s10

s11

s12 s13 s14 s15 s16

s17 s18 s19 s20 s21 s22 s23 s24 s25

s119

2

3

4 5 6 7 8 9

10
11

12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

27
s26

s120

s124
s132 s118

s27

s28 s29 s30 s31 s32 s33 s34

s37

s38 s39 s40 s41 s42 s43 s44 s45

s46 s47 s48 s49 s50 s51 s52 s53

s121

28 29 30 31 32 33 34 35 47 48 49 50 51 52 53 54

38 39 40 41 42 43 44 45 46

s35 s36

36 37

s123

s54

s55 s56 s57 s58 s59 s60

s122

55

89 90 91 92 93 94 95

56 57 58 59 60 61 62s61

s125

s96 s97 s98

s95 96 97 98 99

s128

s62

s63 s64

s88

s89 s90 s91 s92 s93 s94

s66 s67 s68 s69 s70 s71 s72 s73 s74 s75

s76

s126

s6563 64 65 66 67 68 69 70 71 72 73 74 75 76

77

s127

s99

s77 s78 s79 s80 s81 s82 s83 s84

s85 s87 s87

78 79 80 81 82 83 84 85

86 87 88 s129
s130

s100 s101 s102 s103 s104 s105 s106 s107 s108 s109 s111 s112

s110

100 101 102 103 104 105 106 107 108 109 110 112 113

111

s113 s114 s115 s116 s117

114 115 116 117 118 s131

Figure 9: Single-line diagram of the 119-bus system.

Table 4: Result comparison of CSFSA with other methods for the 119-bus system.

Method Tie-switches Power loss (kW) ΔVD Vmin(p.u.) CPU time (s)

Initial 118-119-120-121-122-123-124-125-126-127-128-129-130-131-132 1298.09 0.1312 0.8688
ITS [42] 24-27-35-40-43-52-59-72-75-96-98-110-123-130-131 865.865 0.0677 0.9323 —
MTS [43] 24-27-35-40-43-52-59-72-75-96-98-110-123-130-131 865.86 0.0679 0.9321 —
HSA [10] 23-27-33-43-53-62-72-75-125-126-129-130-131-132-133 854.205 0.0677 0.9323 8.61
ACO-HSA [44] 23-27-33-40-43-49-52-62-72-74-77-83-110-126-131 865.322 — — —
FWA [29] 24-26-35-40-43-51-59-72-75-96-98-110-122-130-131 854.06 0.0677 0.9323 —
CSA [31] 24-26-35-40-43-51-59-72-75-96-98-110-122-130-131 855.0402 0.07025 0.9298 —
FPEO [49] 24-26-35-40-43-51-59-72-75-96-98-110-122-130-131 856.8000 — — —
CSFSA 42-25-23-121-50-58-39-95-71-74-97-129-130-109-34 854.04 0.0677 0.9323 4678.4
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Figure 10: Convergence characteristic of the power loss for the 119-bus system.
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4.5. 136-Bus Test System. )e effectiveness of the proposed
method is also verified on a 136-bus practical distribution
network with 135 selection switches and 21 tie-switches
operated at 13.8 kV. )e 136-bus system is one part of the
distribution network in the Midwest of Brazil [53]. )e
initial lowest bus voltage of the system is 0.9307 p.u. at bus
117. )e single-line diagram of the system is presented in
Figure 13. In the initial case, the tie-switches are 136-137-
138-139-140-141-142-143-144-145-146-147-148-149-150-
151-152-153-154-155-156. )e results obtained from the

proposed CSFSA including the power loss, voltage deviation,
and minimum voltage are compared to those from other
methods in the literature such as AGA [45], UVDA [46], GA
[39], MICP [47], and NRGA [48] as summarized in Table 5.

After reconfiguration, the obtained power loss from the
proposed CSFSA is 278.9 kW, which decreases 41.76 kW
compared to that from the initial case. )e proposed method
finds the optimal network configuration with the tie-switches
of 7-137-138-139-58-141-98-62-144-145-84-147-148-90-150-
151-118-106-126-128-135. )e computational time of the
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Figure 13: Single-line diagram of the 136-bus test system.

Table 5: Result comparison of the proposed CSFSA with other methods for the 136-bus system.

Method Tie-switches
Power loss

(kW)
ΔVD

Vmin

(p.u.)
CPU time

(s)

Initial
136-137-138-139-140-141-142-143-144-145-146-147-148-149-150-151-

152-153-154-155-156
320.66 0.0693 0.9307

AGA [45]
51-53-90-96-106-118-136-137-138-139-141-144-145-146-147-148-150-

151-154-155-156
280.13 — — —

UVDA
[46]

7-35-51-90-96-106-118-126-135-137-138-141-142-144-145-146-147-148-
150-151-155

280.18 0.0411 0.9589 —

GA [39]
7-51-83-84-90-96-106-118-126-128-137-138-139-141-144-145-147-148,

150-151-156
280.22 0.0420 0.9580 —

MICP [47]
7-35-51-90-96-106-118-126-135-137-138-141-142-144-145-146-147-148-

150-151-155
280.19 — — 1800

NRGA
[48]

141-146-116-150-34-94-144-138-139-137-154-152-155-149-148-145-153-
143-147-151-128

280.19 0.0411 0.9589 —

CSFSA
7-137-138-139-58-141-98-62-144-145-84-147-148-90-150-151-118-106-

126-128-135
278.9 0.0384 0.9616 370.91
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proposed method for finding the solution is 370.91 s, which is
faster than MICP. As observed from Table 5, the voltage
amplitude is improved from 0.9307 p.u. to 0.9616 p.u. )e
comparative results provided in Table 5 have proven the
effectiveness of CSFSA over other methods in the literature.
For this system, the voltage deviation of the proposed CSFSA
is less than that fromUVDA, GA, and NRGA.)e power loss
by the GAmethod is 280.22 kW, which is 1.32 kWhigher than
that from the proposed CSFSA. )e proposed method can
obtain better both power loss and voltage deviation than other
methods. )erefore, the proposed CSFA is very effective for
dealing with the reconfiguration problem for very large-scale
systems.

Figure 14 describes the convergence characteristic of the
proposed CSFSA for the power loss and voltage deviation for
the 136-bus system, where the proposed CSFSA reaches the
best solution after 1,142 iterations. Moreover, the corre-
sponding convergence characteristic of voltage deviation
from the proposed method for the system is also given in

Figure 15. Figure 16 shows that the voltage profile at buses is
significantly improved compared with the case before
reconfiguration. To solve the distribution network reconfi-
guration for the real 136-bus system, the number of itera-
tions is higher than that needed for the previous systems for
obtaining the optimal result.

5. Conclusion

)is study has been successfully applied to the CSFSA method
for the DNR problem with the objective function of power loss
reduction and voltage profile improvement in distribution
systems. )e integration of chaos theory in the conventional
SFSA has improved the efficiency of diffusing and updating
processes so that the search ability of the method has been
significantly enhanced. )e radial structure of distribution
networks has been tested using the graph theory after the new
configuration was created. )e proposed CSFSA has been
tested on the 33-bus, 84-bus, and large-scale systems including
119-bus and 136-bus systems. )e obtained results from the
CSFSA have confirmed the effectiveness and robustness of the
proposed method to solve the reconfiguration problem in
distribution networks by providing the better power loss re-
duction and voltage profile improvement than many other
mature methods in the literature. )erefore, the proposed
CFSFA can be a favorable method for solving the complex and
large-scale reconfiguration problems in distribution systems.
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