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ABSTRACT This paper proposes an alternative to solve the distribution network reconfiguration (DNR)
problem, aiming real power losses’ minimization. For being a problem that has complexity for its solution,
approximate techniques are adequate for solving it. Here, the proposition is a technique based on the firefly
metaheuristic, named selective firefly algorithm, where the positioning of these insects is compressed in a
selective range of values. The algorithm is applied to the DNR, and all its implementation and adequacy to the
problem studied are presented. To define the search space, the methodology presented initially considers a set
of candidate switches for opening based on the studied systems’ mesh analysis. To reduce these possibilities,
a refinement through a load flow analysis criterion (LFAC) is proposed. This LFAC considers the real power
losses on each branch for a configuration with all switches closed, then, selecting possible switches to
elimination from the set previously established. To demonstrate the behavior and the viability of the LFAC,
it was initially applied on a 5 buses’ and 7 branches’ system. Also, to avoid getting stuck on results that may
be considered not good, a disturbance resetting the population is set to occur every time a counter reaches
a pre-defined number of times that the best solution does not change. Results found for simulations with
33, 70, and 84 buses are presented and comparisons with selective particle swarm optimization (SPSO) and
selective bat algorithm (SBAT) are made.

INDEX TERMS Selective firefly algorithm, metaheuristics, distribution network reconfiguration, reducing
search space.

NOMENCLATURE

Ft : system total real power losses on t

configuration;
ckm : k− m switch state (closed = 1 or open = 0);
gkm : k− m branch conductance;
Vk : k bus voltage;
Vm : m bus voltage;
θkm : angular difference between k− m

buses;
N t : branch numbers on t configuration;
A : bus incidence matrix;
Vmin
k andVmax

k : k bus lower and upper voltage limits;
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Pk : k bus real power injection;
Pkm : k− m branch real power flow;
Qk : k bus reactive power injection;
Qkm : k− m branch reactive power flow;
θk : k bus phase angle;
θm : m bus phase angle;
Qsh
k : k bus reactive power due to shunt element;

�k : set of buses neighbors to k bus;
I0 : light intensity of a firefly at the source

(r = 0);
β0 V attractiveness of a firefly at the source

(r = 0);
γ : absorption coefficient;
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x : is the kth component of the spatial coordinate xi
and xj of the ith and jth firefly;

d : last spatial coordinate (dimension) of the ith and
jth firefly;

nos : number of switches to be opened;
ns : number of total switches of the system;
nb : number of total buses of the system;
nm : indicate the analyzed mesh, where nm varies

from 1 to nos;
Vnm : indicate the vector of the analyzed n mesh;
Cmnm : indicate the last switch to be opened on the

analyzed nm mesh;
p : percentage of switches that can be excluded

without prejudice to the system;
necp : number of switches to be excluded on the studied

case with the lowest possible reduction;
ntcp : total number of switches of the studied case with

the lowest possible reduction;
nce : maximum number of switches to be excluded;

V
′

n : vector established on the second stage, eliminat-
ing the switches ranked by its losses;

ci : switch i, from the higher losses ranking estab-
lished for the system;

nce : position of the last switch to be excluded of
the higher losses ranking established through the
LFAC;

X i : matrix of the fireflies positioning at iteration i of
the firefly algorithm;

σ i : matrix of the sigmoid approximation of fireflies
positioning at iteration i of the firefly algorithm;

Losses : final losses vector of each firefly at iteration i of
the firefly algorithm.

I. INTRODUCTION

Electrical power systems are composed of three parts: gener-
ation units, transmission systems and electrical energy dis-
tribution systems (EEDS). The EEDS typically operate on
radial topology, with medium voltage three pole disconnect
switches installed on network strategical points, aiming to
facilitate its maneuver on operations and maintenance ser-
vice, insulating loads on casual contingencies. Opening and
closing these disconnect switches end up modifying the net-
work topology and, depending on its configuration, the ohmic
losses resulting from Joule effect can decrease or increase [1].
Due to the Joule effect, not all the electric energy dis-

tributed on the network is used by the consumers. Conse-
quently, the supplier companies do not receive for all the
electricity delivered to the clients. Considering this energeti-
cal waste a continuous phenomenon, the DNR aiming losses
minimization is one of the most important problems that
must be solved by the energy distribution service companies.
The state changing (open or closed) technique of the discon-
nect switches, known as reconfiguration, is one of the most
economic optimization techniques to reduce the ohmic losses.
These techniques are:

1) Add or replace phase-shifting and step-up transformers,
to elevate the network voltage profile, compensating voltage
drops on its more critical sections. This optimization tech-
nique is one of the most expensive, because of transformers
excessive costs. Furthermore, labor costs are indispensable
for installing these devices.
2) Replace all electrical cables, increasing its transversal

section. This causes a decrease in its electrical resistance,
and consequently, reduces the Joule effect. Depending on
the network extension, it becomes a financially unfeasible
solution.
3) Insert a capacitor bank to correct the power factor of

consumer loads. As the transformers, capacitors also have a
high cost on electrical network optimization.
4) Insert distributed generation (DG), improving the bal-

ance between active and reactive power on the electric net-
work. Besides the excessive costs of these generators, their
allocation demands a complex study of all system con-
straints, otherwise, DG could decrease the electrical network
performance.
5) Modify the disconnect switches state, through its open-

ing and closing, searching for a better-quality combination
regarding the optimization of the electrical network state.
It is important to state that this reconfiguration technique
does not demand installation or replacement of devices on
the electrical network.
Without a doubt, the DNR shows itself as the most attrac-
tive option when is aimed the optimization of the network
and at the same time, save natural resources, equipment and
labor costs, providing technical and financial improvements.
Furthermore, the reconfiguration also promotes electrical
voltage profile improvements, fitting the supply to levels
established by regulatory agencies. With DNR is also pos-
sible to improve consumer load balance between EEDS feed-
ers, avoiding overloads. Another advantage is the possibility
of combination with other optimization techniques, as DG
allocation [2]–[4].
Although economic, the DNR technique demands a solid

study of the resulting system topology, because there are a
great number of possible solutions that are unfeasible. Among
the impracticable cases are: meshed topologies, disconnected
buses (islanding) or not fulfilling the limits imposed by the
regulatory agencies.
The DNR problem has been studied through years, the first

papers dating from the 70’s [5] and 80’s [6]–[8], where the
authors use classic techniques and heuristics. In the 90’s some
papers still presented studies based on the previously cited
authors proposed methods, as on [9]–[11]. For being the
first methods developed, these were implemented generally
in small systems. It is important to point out that some classic
techniques demand a lot of time on its execution limiting
their usage for the DNR problem in larger systems. However,
still in the 90’s, the first papers using metaheuristics and
evolutionary algorithms starts to be published, as presented
on [12]–[16]. In the 2000’s these techniques became more
often studied, as verified on [17]–[20]. Still in the 2000’s,
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a specific type of metaheuristic became common on solving
the DNR problem, being named bio-inspired metaheuristics,
as presented on [21]–[24], also being used in the last decade
as seen on [1], [25]–[33]. Due to the fact that these meta-
heuristic techniques help achieve good results, especially for
larger systems, but does not guarantee the best one, and to the
fact that they have other limitations such as needing a correct
parameter adjustment [27], finding new ways to improve the
search space exploration [34], etc., the majority of the papers
cited shows pros and cons. One of the major concerns that
are not addressed on some recent papers [25], [30], [32] is
the convergence rate. Also, the number of iterations needed
to achieve the best result is an obstacle [32]. Some of these
papers does not assess real systems [25], [29]. Then, despite
this being a subject widely studied, the presented limitations,
the fact that DNR is one of the most efficient and economical
solutions to minimize the real power losses, and the fact that
new artificial intelligence techniques are being developed and
used in the most diverse electric power system areas such
as optimal PMU placement [35], planning and economical
dispatch [36], [37], shows that a vast field for novel studies
searching best solutions still exists.
Whatever is the method chosen to reconfigure the EEDS,

the premise is that in a network with n switches, the amount
of configuration possibilities is given by 2n. Due to this
exponential characteristic of the problem, depending on the
n value, it becomes difficult to test all existing switching
possibilities to verify which one would minimize the Joule
effect in larger systems. To overcome this, an option is reduce
the search space, which can improve the computational time
and effort spent on locating these solutions [38].

Here is proposed an algorithm based on the firefly meta-
heuristic (selective firefly) to solve the DNR problem with
a technique to reduce the search space through a proposed
criterion. This reduction is done in two steps: the first aim
to form sets of buses corresponding to the network meshes
(mesh analysis), and the second seeks to apply the LFAC in
the network in order to identify the most propitious branches
to be opened and thus, discard the least favorable to open-
ness. With the application of the LFAC, the search space
decreases even more, favoring the obtainment of optimal
network configuration.

The great contribution of this paper is the combination of
the selective firefly algorithm with a heuristic based on a
power flow analysis criterion, promoting a synergy of the two
techniques in the search for a solution to the DNR problem.
The LFAC is presented as a new and alternative method to
enhance the reduction in the search space. Also a strategy
to disperse the population in search of better solutions is
used. Simulations results endorse the proposal of this paper,
showing its advantages, such as the easiness to implement the
technique, the time results (number of iterations and compu-
tational time) considering the platform here used for imple-
mentation and the improvement of convergence specially in
larger systems using the LFAC, and disadvantages, such as
the need to set the selective firefly algorithm parameters

empirically and the limitations of the LFAC considering
unknown systems.

The paper structure was organized in a logic way, being:
section II presents themathematical modeling of the problem;
section III describes the selective firefly algorithm and its
parameters; section IV presents the LFAC in a detailed way;
section V demonstrates the algorithm here developed for
the problem solution; section VI shows the obtained results
through the methodology for 33, 70 and 84 bus systems and
a comparison with other algorithms; and finally, section VII
describes the paper conclusions.

II. RECONFIGURATION PROBLEM

MATHEMATICAL MODELLING

Being this an optimization problem, DNR is subject to the
imposed constraints to determine the best configuration for
the system based on the losses reduction (objective function).
The following relation represents the given problem:

Minimize→Ft =

N t
∑

k=1

ckmgkm(V
2
k+V2

m−2VkVmcosθkm)

(1)

Subject to :

det(A) = 1 or− 1 (2)

Vmin
k ≤ Vk ≤ Vmax

k (3)

Pk =

∑

m∈�k

Pkm(Vk,Vm,θk,θm) (4)

Qk =

∑

m∈�k

Qkm(Vk,Vm,θk,θm) (5)

For being a problem with integer and continuous variables,
and due to its non-linear basic formulation, it is charac-
terized as a case of Mixed Integer Non-Linear Program-
ming (MINLP), thus, a non-trivial problem, needing the
use of computational techniques to solve it [39]. Due to
the presented characteristics, the paper here presented pro-
poses the solution of the referred problem through the firefly
bio-inspired metaheuristic.

III. SELECTIVE FIREFLY ALGORITHM

The firefly metaheuristic technique was initially formulated
by Yang, a researcher from Cambridge University [40], and
it is based on the firefly social and environmental interaction.
Through its behavior observation, Yang studied these charac-
teristics in a way to mathematic represent them.
According to [40], the algorithm is based on three basic

points:
• there is no distinction between insect gender;
• attractiveness is proportional to brightness;
• brightness is affected by the landscape of the objective
function.

From a mathematical point of view there are two extremely
important parameters: light intensity I and attractiveness β

where both varies with the distance r. The first can be given
through (6) below, and being the attractiveness proportional
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to the light intensity, it can be represented through (7).

I (r) = I0·e
−γ r2 (6)

β (r) = β0 · e−γ r2 (7)

The distance r presented on (6) and (7) is given by the equa-
tion expressed in (8), which represents the distance between
two fireflies i and j, that is, the spatial distance between two
points.

ri,j =

∥

∥xi − xj
∥

∥ =

√

√

√

√

d
∑

k=1

(

xi,k − xj,k
)2

(8)

These parameters definition allow themathematical represen-
tation of the movement and positioning of these fireflies on a
posterior instant given by (9) below, and composed of three
terms, each one presenting a specific characteristic which
delimits these insects positioning.

xt+1
i = xti + β0 · e

−γ r2ij ·
(

xtj − xti

)

+ αV i (9)

The first term represents the firefly positioning at an t instant,
xti , the second term, represents the distance between two fire-
flies due to its attractiveness, and, the third term, represents
the positioning randomness of these fireflies through a vector.

To put this positioning on a range of discrete values,
an approximation through a sigmoid function is normally
used based on the presented by [41] for the particle swarm
optimization (PSO) algorithm, where the authors make use of
the function in a way that is possible to compress the position
values in 0 or 1 through (10) and (11) presented below:

σ
(

xt+1
i

)

=
1

1 + e−(xtC1

i )
(10)

xt+1
i

{

1 if rand < σ
(

xt+1
i

)

0 otherwise
(11)

Still, it is needed a new approximation to insert the firefly
positioning in a range of selective values. The selective firefly
algorithm here proposed was based on the presented by [42]
for the PSO algorithm due to its resemblance with the firefly
algorithm. The studies presented by [43] and [44] shows that
this technique is suitable to the firefly metaheuristic. This is
needed due to the nature of the problem here presented, where
a higher range of integer values is needed.
Equation (12) presents the sigmoid function used to per-

form the approximation on a given dn dimension. Relation
(13) establishes the choice of the positioning based on the
value determined on (12).

σ
(

xt+1
i

)

= dn ·
1

1 + e−(xtC1

i )
(12)

xt+1
i















Sd1 if σ
(

xt+1
i

)

< 1

. . .

sdn if σ
(

xt+1
i

)

< dn

(13)

There are some variations of the sigmoid function presented
on (10), where the term e−(xt+1

i ), is substituted by e−(2xt+1

i ),

or by e−(
xt+1

i
2

), thus, modifying the contour of the sigmoid as
seen on Figure 1.

FIGURE 1. Sigmoid variations contours.

For the presented paper, two of these where used, one for
the 33 and 70 buses cases, with the (12) term e−(xt+1

i ) being
replaced by e−(2xt+1

i ) and another, with the term e−(xt+1

i )

being replaced by e−(
xt+1

i
2

) for the 84 buses case. These
selections demonstrated better solutions for the studied cases,
mostly due to the problem characteristic, where in cases with

more possible configurations (84 buses), the term e−(
xt+1

i
2

)

allows amajor set of solutions when the approximation is per-
formed. On the other hand, in cases with a minor number of
possible configurations (33 and 70 buses), the term e−(2xt+1

i )

allows that the approximation don’t get deviated to a point
with a result that may be considered bad.

The definitions presented allow the application of the
selective firefly algorithm to the DNR problem.

IV. SEARCH SPACE DETERMINATION

Through the technique presented in the previous section, it is
possible the development of the algorithm applied on the
DNR.

Some considerations though, must be taken in for the algo-
rithm to present a performance which respects the imposed
conditions to the problem solution from a technical point of
view. Defining the search space is one of the most important
steps so that the solutions found satisfy these conditions.
The technique here proposed can be split basically into two
fundamental stages to be presented on this section.

A. FIRST STAGE

Initially, on a first stage, a search space is defined through a
mesh analysis. The number of switches that must be opened
to obtain radial configurations as solutions for the problem,
can be determined by (14) below:

nos = ns − nb + 1 (14)
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The number of switches defined by (14) are equal to the
number of meshes presented on herein studied systems, rep-
resenting the problem dimension, and are fundamental to
implement the technique here proposed.
Through an analysis performed on the network in its

meshed configuration, a set of vectors that represent each
one of the system meshes is determined, where its formation
depends on the value given by (14) and mesh dimension
(number of switches composing it). Equation (15) basically
represents the composition of each one of the formed vectors.

Vnm = [C1nm,C2nm. . .Cmnm] (15)

Through the previously presented analysis, the set of candi-
date switches to be opened on this first stage is determined.
The analysis of the possibilities established through the

methodology shows that the search space is reduced in com-
parison with the number of possible configurations consider-
ing all system switches.
Still, in some systems, the search space can present a

considerable set of possibilities even after its initial reduction.
To overcome this, a decrease of this search space is proposed
through the LFAC, which takes in consideration the losses on
a meshed system.

B. SECOND STAGE

When a system is operated as a meshed grid, real power
losses are minimum, and the opening of a switch that presents
a higher current value (and consequently of active losses)
is responsible for deviating the current flow to branches
with higher losses, thus, having a negative impact on the
system power flow and real power losses [45]. Therefore,
the second stage proposes the determination of real power
losses through an AC power flow (Newton-Raphson method)
considering the studied systems on its meshed configurations
and the posterior decreasing ranking of switches (represented
by branches) based on the losses determined on each one of it.
The previous analysis allows to conclude that, branches

(switches) that have a higher value of losses considering the
system meshed, normally do not become part of the best
solution, thus, staying on the same state initially considered,
allowing its exclusion of the vectors established on the first
stage of the technique and consequently diminishing the
search space.
The exclusion limit is given by the best solution found

through the first stage, being identified the switch that
belongs to the solution vector which has the higher value of
active losses on the ranking formed by the meshed system.
To determine a coherent and unique amount for all systems,
the case that presents the lower possible percentage of search
space reduction is taken as basis.

p =
necp

ntcp
(16)

Through this, it is possible to determine the maximum num-
ber of switches candidates for exclusion without a negative

impact on the system. This number is determined for each
case through (17).

nce ∼= ns·p (17)

Having established the ranking of switches and the amount
to be excluded, the new mesh vectors are determined
through (18).

V ′

n = Vn −

nce
∑

i=1

ci (18)

Tests performed for this paper allows the selection of up to
30% of the total switches to be excluded based on the higher
losses ranking and the exclusion of the switches contained on
the established range of the vectors formed on the first stage
of the technique here presented. Although in some unknown
systems the best solution could be excluded, the percentage
of reduction here imposed shows that the rule proposed can
be used without prejudice to theses system when using a
previously known case as basis for defining this number.

C. 5 BUSES AND 7 BRANCHES ILLUSTRATIVE EXAMPLE

To exemplify, a basic 5 buses and 7 branches system pre-
sented initially on [46] is used, and its meshes are represented
on Figure 2 below:

FIGURE 2. 5 buses and 7 branches system mesh composition.

The set of vectors and switches determined by Figure 2
mesh analysis and through the application of (14) and (15)
presented on the first stage of the technique here proposed
are the following:

V1 = [1 2 3]
V2 = [3 4 5]
V3 = [5 6 7]

On the second stage, the ranking of the switches based on
active losses is defined as showed in Table 1.

On the case presented, considering the 30% limit estab-
lished, switches 1 and 2 are excluded due to presenting the
higher value of active losses, thus, altering the initial compo-
sition of the vectors to the following:

V1 = [3]
V2 = [3 4 5]
V3 = [5 6 7]

The number of possible configurations considering all
switches as candidates (27), the possibilities presented
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TABLE 1. Switches ranking based on branches real power losses (meshed
system-LFAC).

applying only the first stage of the technique and finally,
the second stage of the methodology are the following for the
5 buses and 7 branches system: 128, 27 and 9. It is noticed
the considerable decrease of the number of solution candidate
switches, consequently diminishing the search space. It is
possible than to apply the firefly technique together with the
proposition of this section.

V. SELECTIVE FIREFLY ALGORITHM APPLIED TO DNR

The algorithm here proposed was named Firefly-DNR and
developed on Matlab environment. It was used together with
an AC Power Flow (Newton-Raphson method) to determine
real power losses, contained on a specific pack of an algo-
rithm designed for electrical power system analysis named
MATPOWER and developed by [47]. Figure 3 shows a
flowchart that represents the methodology here developed.
The fundamental flowchart steps can be divided as the

following:
Step 1: System data insertion by the user and random

determination of the firefly spatial positioning represented
through real values contained in a range determined by the
user.
Step 2: Search space and mesh vectors determination

applying the first and second stage of the technique presented
in section IV.
Step 3: Application of the firefly technique described in

section III for DNR,where new topologies for the studied sys-
tems are determined. Each firefly represents a system solu-
tion and its positioning represents the opened switches. Its
approximation is made based on the presented in section III,
that is, through its brightness, here represented by real power
losses, where the fireflies with higher losses value tend to
get closer to the ones with lower losses levels. The feasibility
validation of new topologies found by the fireflies applying
the constraints described in section II and the determination
of real power losses through a power flow performed by
MATPOWER aremade. Each time a new solution isn’t found,
the algorithm increment a counter. If the counter reaches a
limit defined by user, all the population is reset. This is made
to ‘‘disperse’’ the fireflies into the search space, avoiding the
solution to get stuck in some points. This step is executed
until the maximum number of iterations defined by the user
is reached.
Step 4: After performing all defined iterations, the best

topology found, its respective real power losses and the lower
voltage levels are presented.

FIGURE 3. Representative Firefly-DNR flowchart.

A. FIREFLY – DNR EXAMPLE (5 BUSES SYSTEM)

To show these steps, a DNR using Firefly-DNR on a 5 bus
and 7 branches example is briefly described.

Initially all the data needed is set (parameter values, num-
ber of buses and branches, dimension of the problem, number
of iterations, etc.), the random positioning of each particle is
set on amatrix (real number between [0,1]) with each position
further representing a switch and each firefly a solution. For
the example, consider that a set of random numbers could be
defined as:

X0 =









































0, 2259 0, 2581 0, 0855
0, 1707 0, 4087 0, 2625
0, 2277 0, 5949 0, 8010
0, 4357 0, 2622 0, 0292
0, 3111 0, 6028 0.9289
0, 9234 0, 7112 0, 7303
0, 4302 0, 2217 0, 4886
0, 1848 0, 1174 0, 5785
0, 9049 0, 2967 0, 2373
0, 9797 0, 3188 0, 4588
0, 4389 0, 4242 0, 9631
0, 1111 0, 5089 0, 5468









































A random initial best position is set for the 5 bus and
7 branches, for example 2 - 4 - 6. After this, the search
space used for the example is defined using the technique
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FIGURE 4. 33 buses and 37 branches system.

TABLE 2. 33 buses system – vectors first and second stage.

described in section IV. For this case (5 buses), the vectors
are the same as the ones of section IV. Then, the particles
are approximated through its brightness (losses). For the first
iteration the particles stay in the same position, then,X0=X1,
because the load flow and losses calculation are further per-
formed, as shown on Figure 3. Once the particles change
its positioning, the sigmoid function is applied to perform
the approximation presented on section III. For the example,
the sigmoid at the first iteration is given by:

σ1 =

































1 2 2
1 3 2
1 3 3
1 2 2
1 3 3
1 3 3
1 2 3
1 2 3
1 2 2
1 2 3
1 3 3
1 3 3

































Each of σ1 matrix lines represents which switch is chosen
from the vectors established on the second stage described on
section IV, for example, the first line of σ1, [1 2 2] indicates
that the first line of X1 will be represented by [3 4 6], that
is, the elements of the first column of V1, of the second
column of V2 and the second column of V3 established

FIGURE 5. 33 buses and 37 branches system voltage profile.

FIGURE 6. 33 buses and 37 branches system buses voltage angles.

on section IV. Thus, X1 is represented by:

X1 =

































3 4 6
3 5 6
3 5 7
3 4 6
3 5 7
3 5 7
3 4 7
3 4 7
3 4 6
3 4 7
3 5 7
3 5 7

































The radiality constraint is verified for each one of the par-
ticles (lines of X1 matrix), and if not radial, the losses
associated with the referred positioning receive a high order
value. The load flow is performed to determine the losses of
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TABLE 3. 33 buses system loss comparison, configurations and percentage loss reduction through first and second stage search space.

each particle.

Losses =

































3.83
16.04
9.95
3.83
9.95
9.95
3.62
3.62
3.83
3.62
9.95
9.95

































MW

The next step is checking if the solutions found are within
the voltage range defined. Again, solutions that present volt-
ages outside the limits established receive high order losses.
Losses are then put in a crescent order, the best solution found
is stored, and iteration number is incremented. If the best
solution does not change within a pre-determined number of
iterations defined by user, all the particles are dispersed to
new random positions to avoid getting stuck in some points,
as described on the Step 3 of the technique. The algorithm
return to the stage where the particles are approximated, and
the process restart until the maximum number of iterations is
reached.
For the 5 buses case it is possible to see the particles

‘‘getting closer’’ through the analysis of their positioning at
the end of each iteration and its associated losses:

X2 =









































3 4 7
3 4 7
3 4 7
3 4 7
3 5 7
3 5 7
3 4 7
3 4 7
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TABLE 4. 70 Buses system – vectors first and second stage.

At the end of the 5th iteration all particles reached the best
position:
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The open switches for the 5 buses case are 3 - 4 - 7 and
associated losses are 3.62 MW, with minimum voltage of
1.0378 p.u at bus 2. These results are the same found on [46].

VI. SIMULATIONS AND RESULTS

To validate the presented technique, simulations were per-
formed in some systems (33, 70 and 84 buses), and its results
herein presented. The algorithm parameters were fixed at
α = 0.95, β = 1 and γ = 1 for all cases (α and γ empirically
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FIGURE 7. 70 buses and 74 branches system.

TABLE 5. 70 buses system loss comparison, configurations and percentage losses reduction through first and second stage search space.

defined and β default value for most applications [40]). The
voltage constraints were limited at 0.93 p.u. and 1.05 p.u., and
the population and the maximum iterations number defined
respectively on 4 and 8 times the dimension of the studied
problem nos. Also, comparisons were made under the same
conditions (population size, iterations and search space) for
two different algorithms: selective particle swarm optimiza-
tion (SPSO) based on [42] and selective bat algorithm (SBAT)
based on [48].

A. 33 BUSES AND 37 BRANCHES DISTRIBUTION SYSTEM

The 33 buses studied system, presented in Figure 4, was
initially proposed by [8], and its initial open switches and
associated real power losses are respectively 33 - 34 - 35
- 36 - 37 and 202.68 kW. The minimum voltage on the
referred configuration is found at bus 18 with a value of
0.91309 p.u. The best solution found in the literature [29],
[49]–[51] through DNR points out to opening 7 - 9 - 14 - 32

- 37 switches, fitting with the herein presented, which also
points out to the same solution with associated real power
losses of 139.55 kW and minimum voltage of 0.93782 p.u at
bus 32.

Table 2 presents the vectors formed considering only the
first stage and the ones formed through the second stage
(LFAC), that is, the complete process, thus allowing to verify
the diminish of the search space of each stage.

Table 3, shows the results found (real power losses and
opened switches) for the referred system using the search
space considering only the first stage of the technique and
using the one defined through second stage. Also is showed
the percentage reduction of real power losses between the
results obtained using the proposed technique and the initial
ones for 10 runs.

For assessing the constraints imposed to the optimiza-
tion problem, Figure 5 shows that, not only the losses
were reduced, but the voltage profile considering the best
result was improved trough the reconfiguration process.
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TABLE 6. 84 buses system – vectors first and second stage.

Figure 6 shows the voltage angles for each one of the system
buses before and after the reconfiguration process.
It is noted that the use of a refinement of the technique

through the exclusion of switches with higher real power
losses levels (LFAC), brings an improvement to the algorithm
performance regarding its regularity point of view, being
possible not only to find the best result, but diminish the
discrepancy between this value and the results found on
other runs. The average computational time for computing all
iterations for the 10 runs was 8.121 s, and on its best execution
took 6 iterations and 1.338 s to reach this point.

B. 70 BUSES AND 74 BRANCHES DISTRIBUTION SYSTEM

The second system herein studied, presented in Figure 7,
was introduced by [13] and its initial topology considers the
switches 70 – 71 – 72 – 73 – 74 opened, associated losses
of 20.78 kW and minimum voltage of 0.97255 p.u at bus 66.
The results that are pointed out as the bests in the literature
indicate the opening of switches 15 – 59 – 62 – 70 – 71 [52]
and 15 – 58 – 62 – 70 – 71 [50] with losses of approximately
9.43 kW. For the Firefly-DNR the best results found points
out to opening switches 15 – 56 – 62 – 70 – 71, losses of 9.43
kW and minimum voltage of 0.98240 p.u at bus 62
Table 4 shows the vectors constructed considering the two

stages, demonstrating the search space reduction.
Table 5 shows the results encountered for 10 runs of the

Firefly-DNR considering the first stage only and the second
stage (LFAC), as well as the standard deviation between the
results found and the average result.
This system specifically presents a set of solutions that

have associated losses close to one another, as pointed out
by the solutions presented by [50], [52] and here presented,
which indicates different sets of switches with approximately

FIGURE 8. 70 buses and 74 branches system voltage profile.

FIGURE 9. 70 buses and 74 branches system buses voltage angles.

the same real power losses. Along with the real losses reduc-
tion, the voltage profile was increased and attended the con-
straints imposed by the problem. Figures 8 and 9 presents
the voltage profile and voltage angle magnitudes for the best
result in each bus of the studied system. The results showed
on Table 5 indicates again, the improvement of the results
found between the first and second stage. The average com-
putational time for computing all iterations for the 10 runs
was 14.679 s, and on its best execution took 5 iterations and
2.282 s to reach this point.

C. 84 BUSES AND 96 BRANCHES DISTRIBUTION SYSTEM

Finally, a practical 84 buses and 96 branches system located
in Taiwan as presented on [22] was tested. The initial open
switches and losses considering the system at this state are
respectively 84 - 85 - 86 - 87 - 88 - 89 - 90 - 91 - 92 - 93 – 94 -
95 - 96, losses of 531.99 kWandminimumvoltage of 0.92852
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TABLE 7. 84 buses system loss comparison, configurations and percentage losses reduction through first and second stage search space.

FIGURE 10. 84 buses and 96 branches system voltage profile.

p.u at bus 10. The best result found is the same as the ones
from [20], [27], [34] pointing out to opening switches 7 - 13
- 34 - 39 - 42 - 55 - 62 - 72 - 83 - 86 - 89 - 90 - 92, losses
of 469.88 kW and minimum voltage of 0.95319 p.u at bus 72.

FIGURE 11. 84 buses and 96 branches system buses voltage angles.

Table 6 presents the vectors established. The results
found for losses and the percentage reduction determined
comparing these results with the initial state are shown
in Table 7. Again, not only the losses were reduced, but
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TABLE 8. Comparison for all systems results for Firefly-DNR, SPSO and SBAT.

the voltage profile were improved, as showed in Figure 10.
Figure 11 illustrate the voltage angles in each bus for the best
result found. Figure 12 shows the tested system.
Through the results analysis it is noticed that the use of the

refinement (LFAC) provided the improvement of the results
consistency showing a better convergence for the presented
technique. The average computational time for computing all
iterations for the 10 runs was 106.7 s, and on its best execution
took 23 iterations and 23.597 s to reach this point.

D. COMPARISON BETWEEN TECHNIQUES

To show the improvement achieved through the LFAC here
proposed and the performance of the Firefly-DNR, compar-
isons with simple implementations of two other algorithms
were made, namely SPSO and SBAT. The SPSO is based
on the collective behavior of groups of fishes and birds and
the SBAT is based on eco-location of micro bats. The two

techniques proposed use the selective characteristic here pre-
sented for the Firefly-DNR. Table 8 shows the comparison of
results for the three algorithms on the first (mesh analysis)
and second stage (LFAC) of the technique.

Analysis of Table 8 data allow to verify the results already
presented for the Firefly-DNR. In general, the technique
here proposed showed a better behavior for the majority of
systems, being the only one to find in 10 runs the best solution
through the two sets of search spaces defined (before and after
the LFAC) for all the studied systems. It also indicates the
improvement of results for all the techniques after the LFAC
was applied. It is worth to point out the good result found with
SBAT for the 70 bus system, showing a better convergence
rate for this specific system (60% before LFAC and 80%
after LFAC). For the SPSO, although it did not found the
best result for some systems, the best ones found were better
than the initial configuration presented for the systems tested.
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FIGURE 12. 84 buses and 96 branches system.

Through all the results achieved, the Firefly-DNR appears as
the most reliable considering the implementation developed
in this paper for the three techniques tested and all the systems
studied.
As stated, the Firefly-DNR achieved a good convergence

rate after the LFAC for all systems. Specifically for the 84 bus
system, was the only one to find the best solution before and
after the LFAC, suggesting it as the most applicable to real
systems, considering also its average losses for the two stages
(474.01 kW and 470.01 kW). The SBAT also appears as a
good alternative for use in real systems, considering its results
of 40% of convergence in the second stage, and average losses
for the two stages (484.13 kW and 473.90 kW) in the 84 buses
system. The SPSO appears to need more improvement to
achieve better results.
The average computational time for the 33, 70 and 84 buses

system for the SPSO was respectively 6.173s, 12.525s and

89.955s. For the SBAT considering the same systems was
respectively 6.025s, 12.592s and 83.246s.

VII. CONCLUSION

The use of the technique developed for this paper, ini-
tially allowed the presentation of an alternative metaheuristic
applied to DNR through a reduced search space, considering
on a first moment (first stage) the systems meshed and its
meshes containing the candidate switches for composing the
set subject to reconfiguration. On this first stage the technique
already presented results compatible with the specialized
literature.

However, due to the problem nature and some systems
sizes, the proposition of using a refinement to the technique
provided notable improvements from the performance and
results point of view, presenting a better consistency and
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smaller discrepancy between results improving the algorithm
convergence.
The comparison of the Firefly-DNR results with SBAT and

SPSO, points out to the choice of the firefly algorithm as
a good alternative for achieving good results considering its
easy implementation and understanding.
The results presented in this paper indicate that the gain

in combining the firefly and LFAC techniques may allow
its application on the DNR problem for distribution systems
with different characteristics of the presented here, such as
larger systems with more switches, load varying systems, dis-
tributed generation and other operational restrictions. Also,
the sensitivity between sigmoid functions presented in section
III for compressing the positioning used on the selective
firefly algorithm can be further explored in other applications.
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