
 

Article

Reference

Distribution of cadmium in leaves of Thlaspi caerulescens

COSIO, Claudia, et al.

COSIO, Claudia, et al. Distribution of cadmium in leaves of Thlaspi caerulescens. Journal of
experimental botany, 2005, vol. 56, no. 412, p. 765-775

DOI : 10.1093/jxb/eri062

Available at:
http://archive-ouverte.unige.ch/unige:17915

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:17915


RESEARCH PAPER

Distribution of cadmium in leaves of Thlaspi caerulescens

Claudia Cosio1,*, Laura DeSantis1, Beat Frey2, Saliou Diallo1 and Catherine Keller1

1 Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC-ISTE, Laboratory of Soil Science,

1015 Lausanne, Switzerland
2 Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland

Received 8 July 2004; Accepted 22 October 2004

Abstract

Knowledge of the intracellular distribution of Cd in

leaves is necessary in order to understand the mech-

anisms of hyperaccumulation in Thlaspi caerulescens.

Ganges and Prayon, two ecotypes accumulating Cd

to different levels, were grown in nutrient medium

containing varying concentrations (0, 5, 10, 50, and

100 lM) of Cd. Several different approaches were com-

bined in this study to (i) validate the results obtained

by a specific method and (ii) establish the link between

observations and measurements performed at different

scales. In both ecotypes, Cd, localized by autoradiog-

raphy, was found mainly at the edges of the leaves,

but also in points of higher concentration spread over

the whole limb surface. This localization was clearly

correlated with the necrotic spots observed on Prayon

leaves. Scanning electron microscopy coupled with

energy dispersive X-ray microanalysis (cryo-SEM-

EDXMA) and tissue fractionation (apoplasm, cell walls,

mesophyll protoplasts, and lower epidermis) showed

that Cd had similar patterns of distribution in leaf cells

of both ecotypes. Cadmium was found both inside the

cells and in the cell walls, mainly in the large epidermal

cells but also in small epidermal cells. All the methods

used agreed well and the results indicated that metal

storage in the plants studied involves more than one

compartment and that Cd is stored principally in the

less metabolically active parts of leaf cells.

Key words: Autoradiography, cadmium (Cd), cell walls, com-

partmentation, energy dispersive X-ray microanalysis, hyper-

accumulation, metal storage, Thlaspi caerulescens.

Introduction

In view of the risk posed by Cd as an environmental

pollutant (Sanità di Toppi and Gabbrielli, 1999; Kabata-

Pendias and Pendias, 2001), there has been interest in de-

veloping the use of hyperaccumulator plants to extract Cd

from contaminated soils (Brown et al., 1995b; Hammer and

Keller, 2003). However, a lack of understanding of the

mechanisms involved in heavy metal tolerance and hyper-

accumulation prevents the optimization of the technique. It

is therefore a research priority to gain basic information on

sink capacities and transport mechanisms of Cd into the

cells of hyperaccumulator species.

Thlaspi caerulescens, a hyperaccumulator of Zn, Cd, and

Ni (depending on the population tested) has been recognized

as an interesting model for studying hyperaccumulation

(Assuncxão et al., 2003). However, to date no data are

available for Cd localization in leaves of T. caerulescens.

The major efforts have been focused on the assessment of

root uptake and Cd localization because this is the primary

step leading to hyperaccumulation. For example, kinetic

studies of Cd uptake in T. caerulescens were performed on

roots only (Lombi et al., 2001; Zhao et al., 2002) andCdwas

found in both the apoplast and the vacuole (Vázquez et al.,

1992; Boominathan and Doran, 2003). Knowledge of Cd

intracellular localization in leaves, where concentrations are

higher, is necessary to improve current understanding

of Thlaspi caerulescens hyperaccumulation mechanisms.

Earlier studies have shown that the phytochemistry in-

volved in metal transport and storage seems to vary consid-

erably with plant species (Brooks et al., 1998). In tobacco

(Nicotiana rustica), Cd was localized predominantly in the

vacuoles of leaf cells (Vögeli-Lange and Wagner, 1990).

The cell walls were further identified as another site of Cd

storage in Zea mays shoots (Khan et al., 1984; Lozano-

Rodriguez et al., 1997). In Brassica napus leaves, Cd was
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found both in vacuoles and in cell walls (Carrier et al.,

2003). In Brassica juncea and Silene vulgaris, the leaf

epidermis was a major site of Cd accumulation (Salt et al.,

1995b; Chardonnens et al., 1998), whereas in Arabidopsis

halleri and B. napus the largest concentration of Cd was

found in the mesophyll (Küpper et al., 2000; Carrier et al.,

2003).

However, due to low Cd concentrations found in plants

and methodological difficulties, in a number of studies the

cellular distribution of Cd has been analysed only in cell

fractions separated by biochemical or physical methods

(Vázquez et al., 1992; Chardonnens et al., 1998; Carrier

et al., 2003) with the attendant possibility of artefacts and/

or Cd losses during preparation as mentioned by Frey et al.

(2000b). Moreover, physical methods such as atomic

absorption spectroscopy (AAS) after tissue disruption

(Brown et al., 1995a; Chardonnens et al., 1998), secondary

ion mass spectroscopy (SIMS) imaging (Lazof et al., 1996),

or short-term desorption with radiotracers (Lasat et al.,

1996; Blaudez et al., 2000) are appropriate to spot compart-

ments, but not to localizemetals precisely. Energy dispersive

X-ray microanalysis (EDXMA), electron spectroscopic

imaging (ESI) and electron energy loss spectroscopy

(EELS) have been used with some success to plot the

subcellular distribution of metals (Nassiri et al., 1997;

Bringezu et al., 1999; Küpper et al., 1999; Frey et al.,

2000a; Zhao et al., 2000), but lack of sensitivity and

interference with other cations (e.g. K) are limiting for Cd

detection.

To learn more about the general allocation of Cd in

leaves of T. caerulescens and to overcome the methodo-

logical difficulties described above, in the present study

different approaches were combined in order to (i) validate

the results obtained by a specific method and (ii) make the

link between observations and measurements performed at

different scales. Two different populations of T. caerules-

cens were compared: Ganges a Cd-hyperaccumulating

ecotype, and Prayon ecotype with a lower degree of

accumulation (Lombi et al., 2000; Zhao et al., 2003). The

concentrations tested were chosen according to the sensi-

tivity of the method employed. Macro-autoradiography was

conducted on plants grown in solution culture and treated

with increasing concentrations of Cd. Autoradiographs of

whole leaves were compared with visual symptoms, bio-

mass production, and metal concentrations in shoots at

various exposure times for the evaluation of the general

process of Cd allocation. The distribution of Cd at the

macroscopic level was completed by observation at the

cellular and subcellular levels in leaves by EDXMA

combined with cryo-scanning electron microscopy (SEM-

EDXMA) of leaf cuttings. Finally, biochemical and phys-

ical separation of leaves was performed to measure in detail

the involvement of different plant compartments (apo-

plasm, cell wall, mesophyll protoplasts, and epidermis) in

Cd storage.

Materials and methods

Plant material and culture

The plants studied were T. caerulescens ecotype Ganges (‘Les
Avinières’, St-Laurent-le Minier, southern France), a known Zn
and Cd hyperaccumulator (Robinson et al., 1998), and T. caerules-
cens ecotype Prayon (Belgium), known to hyperaccumulate Zn, but
to accumulate Cd to a lesser degree (Lombi et al., 2000; Zhao et al.,
2003).
Seeds were germinated in the dark on filter papers moistened with

deionized water. Two-week-old seedlings were transferred to 1.0
l pots (four plants per pot) filled with modified quarter-strength
Hoagland’s nutrient solution (Sigma, St Louis, USA) supplemented
with 20 lM Fe-N, N9-di (2-hydroxybenzyl) ethylenediamine-N, N9-
diacetic acid monohydrochloride hydrate (HBED; Strem chemical,
Newburyport, USA). Fe(III)-HBED was prepared as described by
Chaney et al. (1998) in such a way that all HBED was saturated with
Fe. Plants were allowed to grow for 2 weeks in solution culture before
treatment with Cd was commenced.
Germination and plant culture were performed in a climate

chamber (day/night period 16/8 h, day/night temperatures 20/16 8C,
and a light intensity of 500 lx). The nutrient solution was renewed
every week and aerated continuously.
The concentrations tested were chosen according to the sensitivity

of the method employed. When necessary, and depending on the
method chosen (see below) and the device used, labelled Cd (109Cd)
was used alone or in addition to the different Cd treatments.
Radiotracers are very convenient and sensitive for the determination
of low concentrations in aqueous extracts, but they cannot be
measured by b-counting in acidic samples or in intact leaves. When
Cd had to be measured in such samples, unlabelled Cd was used in
higher concentrations to allow detection by inductively coupled
plasma-atomic emission spectroscopy (ICP-AES).

Biomass production and accumulation of Cd in plants

The total concentration of Cd was measured in leaves of T.
caerulescens Ganges and Prayon treated for 8 weeks with non-
labelled Cd (0, 5, 10, 50, and 100 lM Cd). Four mature plants grown
in hydroponics were harvested. Shoots were quickly rinsed with
deionized water, separated from the roots, and dried at 80 8C for
1 week. Leaves were weighed and hot-digested in HNO3 65%
suprapur (Fluka, Buchs, Switzerland) and HClO4 70% pro analysis
(Fluka, Buchs, Switzerland). The concentration of Cd in digests was
measured by ICP-AES (Plasma 2000; Perkin Elmer, Wellesley,
USA).

Autoradiography of Cd in plants

For the macro-autoradiographs, both ecotypes of T. caerulescens
were tested with four different treatments (0, 5, 10, and 50 lM Cd)
and three times of exposure to the metal (3, 15, and 30 d). An
additional treatment, 100 lM Cd, was included but for only 15 d. All
nutrient solutions were labelled from the beginning of the Cd
treatments with 0.1 kBq ml�1 (=2.2310�3 lM) of 109CdCl2 (NEN
Life Science Products, Boston, USA). Shoots were collected, quickly
rinsed with deionized water, and then blotted dry. The samples were
arranged as flat as possible and wrapped in a single layer of thin
polyethylene film. To obtain autoradiographs of adaxial and abaxial
sides, samples were sandwiched between 2 X-OMAT AR-5 autoradi-
ography films (Kodak, Rochester, USA) at room temperature. Time
of exposure varied from 2 h to 10 d depending on the 109Cd activity
present in the samples. Autoradiographs were developed with an
automatic film processor (SRX-101A, Konica, Tokyo, Japan)
and subsequently enumerated on a Linotype-Hell Tango digitizer
(Heidelberg, Kiel, Germany). Control plants grown without 109Cd
were processed at the same time to detect any possible artefacts on
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the autoradiographs. Distribution of Cd within each leaf was deter-
mined by examining the exposed film. Leaves of plants grown in 50 lM
Cd were then individually dried at 80 8C, weighed, hot-digested for 1 h
at 95 8C in HNO3 65% suprapur, and analysed for Cd concentration.

Energy dispersive X-ray microanalysis

The microanalysis of leaves was performed on both Ganges and
Prayon populations grown for 8 weeks without Cd prior to growth for
4 weeks in nutrient solution supplemented with 100 lM Cd. The aim
was to reach high biomass production and high Cd concentrations in
the leaves and to avoid the problem of Cd phytotoxicity. Indeed, in
contrast to seedlings, older plants were able to withstand this
extremely high Cd concentration without showing toxicity symp-
toms. Old leaves of plants grown in high Cd concentrations were used
because preliminary analyses and autoradiographs had shown that Cd
concentrations in the whole leaves were 10 times greater in old
leaves. In fact, Cd could not be detected in young leaves or in plants
grown in lower Cd concentrations. Fresh leaves were cut into small
pieces (approximately 434 mm). The samples were mounted
vertically on an SEM stub using a Tissue-Tek and rapidly frozen
by plunging into liquid propane as previously described (Frey et al.,
2000a). Microanalysis of freeze-fractured leaves was performed in
a Philips SEM 515 equipped with an SEM cryo unit (SCU 020, Bal-
Tec, Balzers, Liechtenstein) and a Tracor Northern energy dispersive
X-ray analysis system interfaced with a Noran System Six Version
1.3 software package. Electron-induced X-rays were detected by
a Si(Li) spectrometer detector (Tracor Northern 30 mm2 Microtrace)
with an ultra-thin beryllium window. The microscope was operated at
an acceleration voltage of 18 kV with a beam current of 80 nA and the
stage-tilt was adjusted to obtain a take-off angle of 448. Working
distance was 12 mm. The temperature on the SEM cold stage was
kept below�120 8C. After preliminary measurements, analyses were
carried out in the spot mode at 310 000 magnification (50 nm spot
size). Selected spots at the edge and in the middle of the leaf (n=1�5)
and on mesophyll and epidermal cells as well as in the vein, the
cuticle, the cell walls, and the intercellular space were analysed using
a standard detection time of 100 live seconds. The depth resolution at
18 kV in frozen-hydrated samples was estimated to be 2.4 lm (Van
Steveninck and Van Steveninck, 1991). This may be satisfactory for
determining the elemental contents in vacuolar and cell walls in the
spot mode. Spectra were processed using the standardless analysis
program of the Noran System Six software package for automatic
background substraction and calculations of net counts of elements of
interest. The program uses a digital top hat filter to remove
background and a multiple least squares fit to determine net peak
counts. Any net intensity less then 50 counts per 100 s was designated
‘not detected’. Net counts of Cd were obtained at Cd La 3.13 keV.
Elemental maps were also produced to determine the distribution of
S, Ca, K, P, C, and Cd at the edge of the leaf in the Ganges
population, but did not give additional information. It was not
possible to obtain a discriminative distribution of Cd within the leaf.
Analyses of variance (ANOVA) were performed to test the effect

of ecotype, position in leaf and type of cell on the Cd signal
(ANOVA, SYSTAT 10.2, SYSTAT Software Inc.). The effect of
a given factor was considered significant when the P-value was
<0.05. In addition, Student’s t-tests were performed to test whether
the Cd count obtained for Ganges for a given type of cell differed
from that of the Prayon ecotype. The difference between means was
significant when the P-value was <0.05.

Leaf tissue fractionation

To measure the involvement of different plant compartments (apo-
plasm, cell walls, and protoplasts) in Cd storage, mesophyll proto-
plasts were prepared from leaves of eight different 12-week-old T.
caerulescens plants grown with or without Cd (0, 5, 10, and 50 lM

Cd) spiked with 0.1 kBq ml�1 (=2.2310�3 lM) of 109Cd for better
accuracy and because of the small volumes and low concentration
involved.
The method used for extraction of protoplasts has been described

in detail elsewhere (Cosio et al., 2004). The abaxial side of leaves,
consisting of the lower epidermis and the cuticle, was peeled using
tweezers, weighed, and placed in a counting vial. Peeled leaves were
weighed and placed in a cell-wall-digesting medium composed of
sorbitol medium (500 mM sorbitol, 10 mM MES, 10 lM CaCl2, pH
5.3), 0.75% (w/v) Cellulase Y-C (Kikkoman, Tokyo, Japan), and
0.075% (w/v) Pectolyase Y-23 (Kikkoman, Tokyo, Japan). The
leaves were incubated for 2–4.5 h at 30 8C until digestion was judged
satisfactory but had not reached the epidermal cell layer. The
resulting suspension was centrifuged at 400 g for 7 min on top of
a 100% Percoll medium cushion comprising 500 mM sorbitol, 10 lM
CaCl2, 20 mM MES, pH 6 solubilized in Percoll (Sigma, St Louis,
USA). The supernatant corresponding to the apoplasm/cell walls
fraction was removed, filtered through 0.45 lm to remove all the
debris, and 10–20 aliquots were placed in counting vials. The layer of
mesophyll protoplasts was resuspended in the residual liquid. Percoll
medium (100%) was added to the protoplasts mix to obtain a final
Percoll medium of 50% (1:1 v/v) sorbitol medium with 100% Percoll
medium), which was overlaid with a Percoll medium of 40% (3:2 v/v)
sorbitol medium with 100% Percoll medium) and finally with a layer
of sorbitol medium. The gradient was centrifuged at 400 g for 5 min.
The protoplasts were collected from the upper interface. All centri-
fugation steps were performed at 4 8C. The number of protoplasts per
ml obtained in the concentrated preparation was counted with
a haemocytometer. Depending on the plant sample, 10–20 aliquots
of 200 ll concentrated protoplasts solution were placed in counting
vials. For technical reasons (poor quality of the material) the upper
epidermis was not recovered. Four ml of scintillation solution (Ultima
Gold LSC-cocktail, Packard Bioscience, Meriden, USA) were added
to the counting vials with all the aliquots (lower epidermis, apoplasm/
cell walls and protoplasts). The 109Cd was quantified by scintillation
counting (Packard, Tri-Carb, liquid scintillation analyser, Meriden,
USA).
The percentage of viable protoplasts was determined by staining

with fluorescein diacetate (Flucka, Buchs, Switzerland) as described
by Cosio et al. (2004) and inspected using a fluorescence microscope.
Protoplasts showing bright fluorescence were counted as viable.
Protoplast viability ranged between 80% and 95%. In addition,
the size of protoplasts was measured to assess homogeneity between
the different samples. Protoplasts were similarly distributed for all the
plants tested and the different treatments.

Preparation of the apoplast wash fluid and cell walls

Two experiments were conducted to further differentiate Cd
distribution between apoplasm and cell walls.

Extraction of apoplast wash fluid: As the apoplast wash fluid
extraction resulted in very small volumes, the treatment giving
the largest signal was used and plants were grown in the presence of
the radiotracer only (=2.2310�3 lM 109Cd) to avoid dilution of the
activity. Leaves of eight 12-week-old T. caerulescens Ganges and
Prayon were cut at the base with a razor blade and weighed. Leaves
were then infiltrated with deionized water under vacuum three times
for 4 min to ensure complete infiltration. Fully infiltrated leaves sank
and were darker in colour. Leaves were blotted dry, weighed, and
packed tip down into a 5 ml syringe that was centrifuged at 4 8C for
5 min at 200, 500, or 4500 g. The volume of the collected apoplastic
solution was measured. The 109Cd was quantified as described
previously by scintillation counting. Two grams of infiltrated leaves
were then recovered from the syringe and hot-digested for 1 h at 95 8C
in HNO3 65% suprapur for the determination of Cd concentration.
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All samples were also tested for cytoplasmic contamination. Since K+

occurs in the cytosol at concentrations at least one order of magnitude
higher than in the apoplastic solute (Lohaus et al., 2001), the
concentration of K+ in the apoplastic wash fluid and in the digest
was analysed by flame-AAS (AAanalyst 300; Perkin Elmer,
Wellesley, USA). Due to the large volumes necessary for flame-
AAS analysis, samples were pooled before analysis. The values
obtained for K+ are therefore a mean (n=4) without SD.
The intercellular gas space was estimated by weighing the leaves

before and after complete infiltration. It was calculated that 8%,
15%, and 30% of the total apoplast wash fluid was recovered at 200,
500, and 4500 g, respectively. In order to avoid underestimation, the
Cd and K+ contents measured in the extracted apoplast wash fluid
were therefore extrapolated to 100% by multiplying each result with
the ratio of total intercellular gas space volume to the volume
extracted experimentally.

Cell wall extraction: The distribution of Cd between the cell walls
and symplast of leaves and roots was further estimated after isolating
the cell walls using the method developed by Hart et al. (1992). This
treatment isolates the cell walls without destroying their morphology
(Hart et al., 1992). Plants were grown for 8 weeks without Cd prior to
growth for 4 weeks in 100 lM non-labelled Cd in order to reach high
biomass production and concentrations above the detection limit of
Cd by ICP-AES, and to avoid the problem of Cd phytotoxicity (see
above). Shoots of four plants were harvested and quickly rinsed.
Abaxial sides of leaves were peeled using tweezers to remove the
cuticle. Peeled leaves and roots were weighed, soaked in 2:1 v/v
methanol:chloroform for 3 d and then washed thoroughly in water.
Tissues were processed as for the tolerance experiment and Cd was
measured. The purity of the isolated cell walls was checked by
analysis of the fatty acids composition of the extracts performed by
the Lipid Analysis Unit of the Scottish Crop Research Institute in
Dundee, Scotland. Briefly, lipids were converted to the methyl esters
by reaction with 1% (v/v) HSO4 in methanol at 50 8C overnight
(Christie, 2003). They were analysed by gas chromatography on
a Hewlett Packard 5690 Series II gas chromatograph equipped with
a CP-wax 52CB column (25 m30.25 mm 3 0.2 lm; Chrompack,
UK), temperature was programmed from 170 8C (held at this for 3 min)
then increased at 4 8C min�1 to 220 8C (held for a further 3 min) with
hydrogen (1 ml min�1) as the carrier gas. Fatty acid 21:0 was added
as an internal standard. This confirmed that all membranes had been
destroyed by the solvents and that cellular components were washed
away.
The dry weight of the whole leaves was calculated from the fresh

biomass weighed before the solvent extraction and based on previous
observations (20% of fresh weight for shoots). The dry weight of the
cell walls was determined after extraction.

Results

Biomass production and metal uptake

To assess the potential of the two T. caerulescens popula-

tions under this study’s growth conditions, biomass pro-

duced and Cd concentrations in shoots were measured

(Table 1). The Prayon ecotype grew best in the presence of

Cd with no significant reduction in shoot biomass until

50lMCd (43%decrease in biomass, Student t-testP<0.05).

Ganges was more affected by low and medium Cd concen-

trations (36% decrease in shoot biomass at 10 lM Cd,

P <0.05) but showed a similar decrease in shoot biomass

(51%,P <0.05) at 50 lM. Prayon also producedmore leaves

than Ganges (see below). On the other hand, Prayon

exhibited necrotic spots on the leaves at 50 and 100 lM
Cd (Fig. 1a) butGanges appeared healthy.None of the plants

showed chlorosis.

Cadmium concentrations were always higher in Ganges

than in Prayon (Table 1). For example, at 10 lM Cd in the

nutrient solution Ganges accumulated 4-fold more Cd in the

shoots (10916160 mg Cd kg�1) than did Prayon (264644

mg Cd kg�1). However, this factor diminished with in-

creasing concentrations of Cd and both plants exhibited

similar high Cd concentrations in their shoots at 50 lMCd,

reaching 29606635 mg Cd kg�1 in Ganges and 24576519

mg Cd kg�1 in Prayon.

Visualization of heavy metals in plants

Autoradiographs were prepared to assess whether the

concentration of Cd in the nutrient solution or the duration

of exposure to Cd had any influence on Cd distribution in

the leaves. The darkness of the autoradiographs depended

on the 109Cd only. The concentration of 109Cd remained

constant (2.2310�3 lM 109Cd) in all solutions, whereas

total Cd concentration increased from 2.2310�3 lM to

100 lM. Thus the 109Cd activity present in the samples

decreased proportionally and the autoradiographs became

lighter with increasing total Cd concentration (Fig. 2).

Thus, the intensity of the darkening did not reflect the total

concentration of Cd found in the leaves and the intensity of

darkening could only be compared when plants were grown

with the same 109Cd/total Cd ratio.

In Ganges leaves, a change in the Cd distribution pattern

was observed with increasing Cd concentration (Fig. 1). At

low Cd concentration, younger leaves exhibited higher Cd

concentrations than older ones as shown by the darker print

on the autoradiographs, but the reverse was true at high Cd

concentrations. Cadmium was localized mainly at the edge

of the leaves, but also in points of higher concentrations

spread over the whole limb surface. The number of points

Table 1. Effect of Cd on biomass and accumulation: average

dry weight (mg) and Cd concentration (mg kg
�1
) per plant of

12-week-oldT. caerulescensGanges andPrayon grown for 8weeks

in hydroponics with or without Cd (n=4, SD in parentheses)

Cd in nutrient
solution (lM)

Dry weight (mg) Cd (mg kg�1)

Ganges

0 205 (37) 3 (2)
5 138 (61) 751 (299)
10 131 (39) 1091 (160)
50 101 (37) 2960 (635)
100 22 (9) 8163 (1058)

Prayon

0 235 (73) 4 (4)
5 242 (5) 170 (11)
10 287 (52) 264 (44)
50 135 (58) 2457 (519)
100 43 (31) 5670 (558)
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of higher concentrations increased with increasing Cd

concentration. The autoradiographs of the adaxial and

abaxial sides of the leaves were always different (data not

shown).

A similar overall Cd distribution pattern was observed in

Prayon (Fig. 2). Points of higher concentration and accu-

mulation at the margin of the leaves were visible. Neverthe-

less, younger leaves exhibited lower Cd concentration than

older ones, as shown by the lighter print on the autoradio-

graphs observed for all the treatments. In addition, the

concentration in older leaves seemed to be more variable,

some of the leaves appearing dark and others being very

slightly coloured. In this ecotype, the localization of the

spots observed on the autoradiographs at high Cd concen-

trations (50 and 100 lM) could be directly related to the

necrotic spots also observed at these concentrations (Fig. 1).

As for Ganges, the autoradiographs of the adaxial and

abaxial sides of the leaves were different (Fig. 1).

In both ecotypes the duration of exposure to the metal

had no influence on the Cd distribution pattern. After 3, 15,

or 30 d the distribution of Cd remained similar in the leaves,

although Cd concentration increased in leaves as indicated

by the increasing darkness of the autoradiographs (Fig. 3).

Cadmium concentration in individual leaves of

T. caerulescens

To confirm the autoradiography results, individual leaves of

Prayon and Ganges grown in 50 lM Cd were weighed and

the Cd concentration was measured (data not shown).

Darker leaves on the autoradiographs of a plant correspon-

ded to leaves with higher Cd concentrations. In Prayon, Cd

concentrations found in leaves were proportional to leaf dry

weight with a correlation coefficient of r=0.648 (1 plant,

n=80; significant P <0.001). Cadmium concentration was

higher in larger leaves. By contrast, the same comparison

Fig. 2. Autoradiographs of T. caerulescens leaves of the Ganges (top) and Prayon (bottom) ecotypes grown for 30 d in hydroponics with 0.1 kBq ml�1

(=2.2310�3 lM) 109Cd and (a) 0 lM Cd, (b) 5 lM Cd, (c) 10 lM Cd, and d) 50 lM Cd.

Fig. 1. Leaf of T. caerulescens Prayon grown for 15 d in hydroponics
with 100 lM Cd spiked with 0.1 kBq ml1 (=2.2310�3 lM) 109Cd. (a)
Photograph of the adaxial side, (b) autoradiograph of the adaxial side, and
(c) autoradiograph of the abaxial side.

Cadmium distribution in Thlaspi leaves 769



for Ganges resulted in r=0.118 (3 plants, n=37; not sig-

nificant). When the three Ganges plants tested were studied

independently the results were r=0.694 (n=8; significant

P <0.05), 0.254 (n=15; not significant) and �0.750 (n=14;

significant P <0.001). Surprisingly, the average concen-

trations in leaves of the three plants were similar with

11426180 mg Cd kg�1 for the first, 11536171 mg Cd

kg�1 for the second, and 1257630 mg Cd kg�1 for the

third. In Ganges, there was no obvious relationship between

Cd concentration and the leaf weight.

Localization of Cd in leaves by SEM-EDXMA

The localization of Cd at the edges of old leaves was stud-

ied further with SEM-EDXMA. Examples of scanning

electron micrographs and the spots analysed are presented

in Fig. 4. The pattern of Cd distribution was similar for both

Ganges and Prayon (Fig. 5) and no difference between the

two ecotypes was observed in the Cd counts when all cells

were taken into account (ANOVA F=3.32, not significant).

However, the location of the cells (edge versus middle of

the leaf) significantly affected the Cd signal (ANOVA,

F=15.49, P <0.001). At the edge of the leaves, the Cd

counts were significantly different between the ecotypes

(ANOVA F=20.17, P <0.001), but also depended on the

location of the analysis (epidermal or mesophyllic cells,

intercellular space; ANOVA F=16.11, P <0.001). Cad-

mium was found mainly in the large epidermal cells at the

edge of the leaves and in a larger amount in Ganges than in

Prayon. In fact, the only significant difference between the

two ecotypes was the size of the signals measured in the

epidermal cells (Student t-test P <0.05 for both the large

and the small epidermal cells), probably resulting from the

1.5-fold Cd concentration difference found between leaves

of both populations when grown at 100 lM Cd (Table 1).

However, Cd was also detected in the mesophyll cells at the

edge of the leaf and in epidermal and mesophyll cells in the

middle of the leaves (Fig. 5), but in significantly lower

amounts than at the edges and no significant difference was

found between the two ecotypes. Cadmium was virtually

absent from the lateral veins. No central vein was analysed.

Subcellular distribution of Cd in T. caerulescens

The overall Cd storage of different leaf compartments

was quantified using a protoplast extraction procedure.

Fig. 3. Autoradiographs of leaves of T. caerulescens Ganges grown in hydroponics with 5 lM Cd spiked with 0.1 kBq ml�1 (=2.2310�3 lM) 109Cd at
(a) 3 d, (b) 15 d, and (c) 30 d.

Fig. 4. Scanning electron micrographs of (a) the leaf edge of Ganges and (b) epidermal cells of the leaf edge of Prayon. The crosses represent the single
spot analyses performed on the freeze-fractured samples.
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Cadmium distribution between apoplasm/cell walls, lower

epidermis, and mesophyll protoplasts was similar for the

different concentrations tested (5, 10, and 50 lM Cd) and

for both ecotypes (Fig. 6), although the Cd content of

the different subcellular fractions increased with increasing

Cd treatments. The ranking with respect to Cd concentra-

tion was as follows: apoplasm/cell walls>lower epider-

mis>mesophyll protoplasts. In Ganges 5.4-fold more Cd

was measured in the apoplasm/cell walls than in the lower

epidermis (4-fold in Prayon). The concentration of Cd

measured in the mesophyll protoplasts was negligible.

To characterize the distribution of Cd between the

apoplasm and the cell walls further, the apoplast wash fluid

was extracted by centrifugation and separated from the cell

walls (Table 2). In Ganges, K concentration was 1.3-fold

higher at 500 g and 1.5-fold higher at 4500 g than at 200 g.

In Prayon, cytoplasmic contamination was greater with

a 15-fold increase in K concentration at 500 g and 81-fold at

4500 g compared with 200 g. However, even at 4500 g, Cd

amounts measured in the apoplasm fluid were 108-fold for

Ganges and 109-fold for Prayon smaller than the Cd amount

in the whole leaf. It was concluded that cytoplasmic con-

tamination was negligible compared with K concentrations

measured in the whole leaf and that the Cd concentration

found in the apoplasm wash fluid was very limited.

The cell wall extraction allowed further investigation and

comparison of the Cd binding capacity of cell walls of both

ecotypes (Table 3). Concentrations measured in cell walls

after extraction with methanol:chloroform were similar to

concentrations inwhole shoots. Cell wall biomass accounted

for 26% of shoot biomass in Ganges and 35% in Prayon.

Overall for both ecotypes, between 33% and 35%of the total

Cd content of shoots could be allocated to the cell walls.

Discussion

Growth and metal uptake

The Prayon ecotype produced the larger biomass and

number of leaves in these experimental conditions. Cad-

mium concentrations found in the leaves of Prayon were

always smaller than in the leaves of Ganges, but they were

above the 100 mg kg�1 Cd threshold that defines Cd hyper-

accumulation in the natural environment (Brown et al.,

1994). Although Ganges is a Cd hyperaccumulating eco-

type, Prayon does not usually hyperaccumulate Cd in the

field (Lombi et al., 2000; Zhao et al., 2003). It is, however,

known that plants in solution culture accumulate more Cd

than those in soil (Grant et al., 1998). Roosens et al. (2003)

similarly studied several populations of T. caerulescens in

solution culture including one Prayon and two Ganges

populations. They reported Cd concentrations in shoots of

Prayon of the same order as those reported here (over 100

mg kg�1 even at low Cd concentration in the growth

medium). However, they also reported slightly higher Cd

concentrations in shoots of Ganges ecotypes than the ones

determined in this work. Different populations originate

from the Ganges area and this may account for this dis-

crepancy. Indeed, seeds were used from ‘Les Avinières’

whereas those used by Roosens et al. (2003) originated

from ‘St Félix-de-Pallières’ and ‘Les Malines’.

Overall, the differences in accumulation between both

ecotypes tested in this work were smaller than those observed

in the field. However, Prayon tolerated large amounts of Cd

in its leaves. It was therefore interesting to compare the Cd

Fig. 5. Cadmium net counts in different leaf compartments of Ganges
and Prayon grown with 100 lM Cd determined by SEM-EDXMA (Ep.,
epidermis; UEp., upper epidermis). Analyses of variance (ANOVA) were
performed to test the position in leaf (significant), effect of ecotype and
type of cell (both significant when the edge of leaf was considered) on the
Cd signal. The difference between Prayon and Ganges was significant
when large and small epidermal cells from the edge of the leaves were
compared (Student t-test, P <0.05).
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Fig. 6. Cadmium concentrations measured in mesophyll protoplasts
(circles), apoplasm and cell walls (squares) and lower epidermis
(triangles) in Ganges (closed symbols) and Prayon (open symbols)
leaves. Error bars=means (n=4) 6SD. Error bars do not extend outside
some data symbols.
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distribution in its leaves with that in Ganges leaves obtained

under the same growth conditions.

Distribution of Cd in leaves

To learn more about the general Cd allocation in leaves of

T. caerulescens, macro-autoradiographs were performed on

plants grown in solution culture and treated with increasing

Cd concentrations. It was observed that the duration of

exposure to the metal had no influence on the Cd distribu-

tion pattern within the plant. After 3, 15, or 30 d the

allocation of Cd in the leaves remained similar, as also

reported by Weigel and Jäger (1980) for Cd in bean plants.

By contrast, Cd localization in leaves of Ganges changed

according to the Cd concentration in the nutrient solution.

At very low Cd concentration, the metal was preferentially

located in the younger leaves, whereas at higher Cd

concentration Cd was located mainly in the older leaves.

Perronnet et al. (2003) measured 600 mg Cd kg�1 in shoots

of the Vivier population of T. caerulescens grown on

contaminated soil, close to the concentrations that this

study measured in shoots of Ganges grown at 5 lMCd, and

they similarly reported that younger leaves exhibited higher

Cd concentrations. No such difference was found in Prayon

between low and high Cd treatments and the highest Cd

concentrations were always found in the larger, more

mature leaves.

The distribution of Cd was highly uneven in both

ecotypes. Although having spots spread over the leaf sur-

face and along the edges, the autoradiographs of adaxial and

abaxial sides of the same leaf were not similar, indicating

highly localized Cd accumulation. In Prayon, the spots of

highCd accumulation observed on the autoradiographswere

directly correlated with the necrotic spots observed on the

leaves. It is believed that this indicates that the necrosis

resulted directly from Cd accumulation, which decreased

cellular viability and finally resulted in cell death. Salt et al.

(1995a) analysed Cd in leaves of Indian mustard by auto-

radiography. They found that Cd toxicity induced chlorosis

in young leaves and that Cd preferentially accumulated

within these young leaves, explaining the localization of the

chlorosis. However, contrary to these results with T. caer-

ulescens, they found an even distribution on the leaf surface

that they correlated with trichomes localization. Sequestra-

tion of metals in trichomes has been reported in a number of

other annual hyperaccumulators andnon-hyperaccumulators

(Küpper et al., 1999, 2000; Zhao et al., 2000; Choi et al.,

2001; Ager et al., 2002). However, T. caerulescens does not

possess trichomes andmechanismsmust, therefore, be based

on a different compartment or cell type.

Localization of Cd at the subcellular level

To learn more about the cellular and subcellular Cd

allocation in leaves of T. caerulescens several different

approaches were tested to examine the importance of

different leaf parts in Cd storage. Indeed, as mentioned

by Frey et al. (2000b) artefacts and/or Cd losses may occur

during the preparation of cell fractions separated by bio-

chemical and physical methods (epidermal strips, proto-

plast extraction, apoplast wash fluid, and cell wall

extraction). Cryo-SEM-EDXMA is more reliable in this

respect, but lack of sensitivity and interference with other

cations (e.g. K) impose the use of high concentrations of Cd

that do not always represent a realistic environment.

Consequently, the test concentrations were selected accord-

ing to the sensitivity of the method employed. The different

approaches were combined in this study in order to (i)

validate the results obtained by each specific method and

(ii) make the link between observations and measurements

performed at different scales.

Overall, the results of the different experiments were

consistent with one another. Furthermore, it was demon-

strated with the protoplast extraction procedure that Cd

distribution between compartments remained similar for the

different concentrations tested, although the Cd content of

the different subcellular fractions increased with increasing

Cd treatments. The SEM-EDXMA analysis confirmed that

an important site of Cd allocation was at the edges of the

leaves in both Ganges and Prayon ecotypes.

Mizuno et al. (2003) pointed out the importance of Ni

allocation at the leaf edges of T. japonicum. They suggested

Table 2. Concentration of Cd and K measured in the apoplasm

wash fluid and in the leaf extract in mg per kg of infiltrated

leaves of 12-week-old T. caerulescens grown in hydroponics with

0.1 kBq ml�1 (=2.2310�3 lM) of 109Cd (n=4, SD in parentheses)

Centrifugation
(g)

Apoplasm wash (mg kg�1) Leaf extract (mg kg�1)

Cd Ka Cd Ka

Ganges
200 4.2310�3 (2.9310�5) 135 4432 (968) 4883
500 7.0310�3 (1.7310�4) 179 4011 (247) 5460
4500 24310�3 (3.1310�4) 205 3518 (821) 4512
Prayon
200 0.4310�4 (7.1310�6) 3 1035 (156) 5330
500 6.0310�4 (1.2310�5) 39 1370 (68) 5910
4500 17.0310�4 (2.9310�5) 204 9743 (4109) 6045

a Samples were pooled before analysis. The values obtained are
therefore a mean without SD.

Table 3. Concentration of Cd of whole shoots and cell walls of

12-week-old T. caerulescens grown for 4 weeks in hydroponics

with 100 lM of Cd (n=4, SD in parentheses)

Cd (mg kg�1)

Shoots Cell walls

Ganges 1122 (156) 1436 (278)
Prayon 920 (125) 938 (104)
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that Ni was transported along with the transpiration stream

and that Ni in excess was excreted together with guttation.

It was earlier reported that the guttation fluid commonly

functions to exclude various substances including K, Mg,

and Ca in sunflower, and recombinant protein in tobacco

(Komarnytsky et al., 2000; Tanner and Beevers, 2001).

Very low Cd concentrations were obtained from the apo-

plastic wash fluid. It is therefore questionable whether this

would be an acceptable hypothesis for Cd in T. caerules-

cens. However, this experiment did not take into account

the process kinetics and must be regarded as a snap shot

performed at one particular time. A high rate of Cd loading/

unloading as well as a possible time-dependent mechanism

could not be assessed and thus cannot be excluded.

Cellular Cd is known to accumulate preferentially within

vacuoles in the leaves of a number of different plant species

including tobacco and Silene vulgaris (Vögeli-Lange and

Wagner, 1990; Chardonnens et al., 1998, 1999), and this

has often been proposed as a possible mechanism of Cd

tolerance in plants. Chardonnens et al. (1998, 1999) also

showed that, in S. vulgaris, Cd accumulated mainly in the

lower leaf epidermis. In this study Cd was mostly found in

the epidermal cells as observed previously for Zn in

T. caerulescens (Vázquez et al., 1992, 1994; Küpper et al.,

1999; Frey et al., 2000a), but no consistent differences were

observed between the upper and lower epidermis. The

variation in relative Cd concentration in the epidermal cells

appeared to be mainly associated with the cell size as shown

for Zn (Küpper et al., 1999; Frey et al., 2000a). This

relationship suggests that vacuolation may be an important

driving force for Cd sequestration in epidermal cells of

T. caerulescens leaves.

However, Cd was found both inside the vacuoles and in

the cell walls. This latter result was obtained by both the

SEM-EDXMA observations and the compartmental studies

and in both ecotypes, indicating an additional storage

mechanism. Indeed, it was shown that up to 35% of Cd

could be bound to cell walls (epidermal or mesophyll) in

contrast to Salt et al. (1999) who reported 12% Zn in the

cell walls of T. caerulescens. Accumulation of Cd in the

cell walls may therefore be an important tolerance mech-

anism in T. caerulescens as in other organisms or plants

(Galli et al., 1994; Turnau et al., 1994; Blaudez et al.,

2000). However, the role of cell walls in Cd binding and

storage in plants remains controversial. For example,

Vögeli-Lange and Wagner (1990) and Vázquez et al.

(1992) failed to show substantial Cd binding in cell walls

of tobacco and T. caerulescens roots, but the importance of

Cd binding to cell walls and the limitation of its subsequent

translocation to shoots has been demonstrated for root cells

of non-hyperaccumulating plants (Wagner, 1993; Grant

et al., 1998) and was recently described for T. caerulescens

hairy roots (Boominathan and Doran, 2003). In Zea mays,

cell walls were assumed to play the most important role in

Cd accumulation (Khan et al., 1984), but Carrier et al.

(2003) reported that Cd was distributed both in vacuoles

and in cell walls of B. napus leaves. Cell walls can easily

interact with metal ions because of the presence of many

enzymes and negative charge sites on their surfaces (Wang

and Evangelou, 1995), thereby potentially lowering toxic

Cd ions in the cytoplasm. The low Cd concentrations

measured in the apoplasm fluid could indeed be due to the

role of the cell walls in continuously reducing metal-ion

activity in the intercellular spaces through tight metal

binding (Bringezu et al., 1999). However, in the literature,

the emphasis is currently given to vacuolar metal compart-

mentation and sequestration by phytochelatins. So far, less

attention has been devoted to other tolerance mechanisms,

although different tolerance mechanisms could operate in

combination as proposed by Baker (1987).

To date, two mechanisms have been proposed to explain

partly the high uptake of metals by hyperaccumulators: (i)

enhanced absorption of metal into the roots (Lasat et al.,

1996) coupled with high rates of translocation of metal from

roots to shoots (Shen et al., 1997; Lasat et al., 1998), and (ii)

foraging for metal by the roots, involving preferential

allocation of root biomass into regions of metal enrichment

(Schwartz et al., 1999;Whiting et al., 2000) and a large root

system compared with shoot dry matter that might further

favour soil prospecting aswell as heavymetal uptake (Keller

et al., 2003). Kochian et al. (2002) hypothesized that this

increased transport could include a stimulated metal influx

across the leaf cell plasma membrane and an enhanced

storage in the leaf vacuole. According to these results, this

may be possible because the only differences found between

the two ecotypes in this study were in the Cd concentrations

found in the storage sinks, vacuoles, and cell walls.
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Galli U, Schüepp H, Brunold C. 1994. Heavy metal binding by

mycorrhizal fungi. Physiologia Plantarum 92, 364–368.
Grant CA, Buckley WT, Bailey LD, Selles F. 1998. Cadmium

accumulation in crops. Canadian Journal of Plant Science 78,
1–17.

Hammer D, Keller C. 2003. Phytoextraction of Cd and Zn with

Thlaspi caerulescens in field trials. Soil Use and Management 19,
144–149.

Hart JJ, Di Tomaso JM, Linscott DL, Kochian LV. 1992.

Characterization of the transport and cellular compartmentation

of paraquat in roots of intact maize seedlings. Pesticide Bio-

chemistry and Physiology 43, 212–222.
Kabata-Pendias A, Pendias H. 2001. Trace elements in soils and

plant. CRC Press.

Keller K, Hammer D, Kayser A, Richner W, Brodbeck M,
Sennhauser M. 2003. Root development and heavy metal

phytoextraction efficiency: comparison of different plant species

in the field. Plant and Soil 249, 67–81.
Khan DH, Duckett JG, Frankland B, Kirkham JB. 1984. An X-

ray microanalytical study of the distribution of cadmium in roots of

Zea mays L. Journal of Plant Physiology 115, 19–28.
Kochian L, Pence NS, Letham DLD, Pineros M, Magalhaes JV,
Hoekenga O, Garvin D. 2002. Mechanisms of metal resistance in

plants: aluminium and heavy metals. Plant and Soil 247, 109–119.
Komarnytsky S, Borisjuk NV, Borisjuk LG, Alam MZ, Raskin I.
2000. Production of recombinant proteins in guttation fluid. Plant

Physiology 124, 927–933.
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