STRIBUTION OF CHLORIDE CONCENTRATIONS

THE PRINCIPAL AQUIFERS OF THE

W JERSEY COASTAL PLAIN, 1977-81

F. L. Schaefer

S. GEOLOGICAL SURVEY

ter-Resources Investigations Report 83-4061

epared in cooperation with the NEW JERSEY PARTMENT OF ENVIRONMENTAL PROTECTION, VISION OF WATER RESOURCES

Trenton, New Jersey

1983

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:	Copies of this report can be purchased from:
District Chief U.S. Geological Survey Room 430, Federal Building 402 East State Street Trenton, New Jersey 08608	Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Lakewood, Colorado 80225 (Telephone: [303] 234-5888)

CONTENTS

Page

Abstract	1
Introduction	2
Purpose and scope	2
Data collection and presentation	ົ້ວ
	2
The study area	2
Previous studies	6
Acknowledgments	8
The ground-water system	8
Chloride concentrations in ground water in the Coastal Plain	v
•	
of New Jersey	11
Middlesex County	11
Monmouth County	20
Ocean County	25
Atlantic County	29
Cape May County	32
Cumberland County	38
· · · · · · · · · · · · · · · · · · ·	44
Salem County	
Gloucester County	47
Summary	50
Selected references	51
Glossary	54
	57

ILLUSTRATIONS

Figure	1.	Location of study area and areas of significant	
	_	saltwater intrusion in the principal aquifers of the New Jersey Coastal Plain	4
	2.	Location of saltwater monitoring network wells in	40
	3.	Middlesex County Map of the Sayreville area, Middlesex County, showing well locations, chloride concentrations,	13
		and ground-water movement in the Farrington aquifer, 1977	14
	4.	Chloride concentrations from selected wells tapping the Farrington aquifer in the Sayreville area,	• •
		Middlesex County, 1965-81	15
	5.	Map of the Sayreville area, Middlesex County, showing well locations and chloride concentra- tions from wells tapping the Old Bridge aquifer, 1977	18 [°]
	6.	Chloride concentrations from selected wells tapping the Old Bridge aquifer in the Sayreville area, Middlesex County, 1965-81	19
	7.	Location of saltwater monitoring network wells in Monmouth County	23
	8.	Location of saltwater monitoring network wells in	_
	9.	Ocean County Chloride concentrations from selected wells tapping the Kirkwood-Cohansey aquifer system at Point Pleasant Beach and Seaside Heights	27
		Boroughs, Ocean County, 1968-81	28

ILLUSTRATIONS--Continued

Page

10.	Location of saltwater monitoring network wells in	
	Atlantic County	31
11.	Location of saltwater monitoring network wells in	
	Cape May County	33
12.	Chloride concentrations from wells tapping the	
	Cohansey Sand in the Cape May City area, Cape	
	May County, 1964-81	35
13.		24
4.11	City area, 1958 and 1977	36
14.		20
15	Cumberland County Chloride concentrations from selected wells	39
12.	tapping the Piney Point aquifer in the Gandys	
	Beach area, Cumberland County, 1963-81	41
16	Location of saltwater monitoring network wells in	1
101	the Gandys Beach area of Cumberland County	42
17.	Location of saltwater monitoring network wells in	
• • •	Salem County	45
18.	Location of saltwater monitoring network wells in	
	Gloucester County	49

TABLES

Table 1.	Stratigraphic and hydrologic characteristics of geologic units of the New Jersey Coastal Plain	9
2-9.	Well records and chloride analyses from saltwater monitoring network wells, 1977 water year, in: 2. Middlesex County	12 21
	4. Ocean County	26 30
	 Cape May County	32 38
	8. Salem County 9. Gloucester County	44 48

FACTORS FOR CONVERTING INCH-POUND UNITS TO METRIC UNITS

For those readers who prefer to use metric units rather than inch-pound units, the conversion factors for the terms used in this report are listed below:

Multiply inch-pound unit	By	<u>To obtain metric unit</u>
foot (ft) mile (mi) gallon (gal) million gallons per day (Mgal/d)	0.3048 1.609 0.003785 0.04381	meter (m) kilometer (km) cubic meter (m ³) cubic meter per second (m ³ /s)

DISTRIBUTION OF CHLORIDE CONCENTRATIONS IN THE PRINCIPAL

AQUIFERS OF THE NEW JERSEY COASTAL PLAIN, 1977-81

By F. L. Schaefer

ABSTRACT

The U.S. Geological Survey maintains a saltwater monitoring network in New Jersey to document and evaluate the movement of saline water into freshwater aquifers that serve as sources of water supply. This report delineates areas in the Coastal Plain where existing or potential saltwater intrusion exists.

During the 1977 water year, chloride concentrations were measured in samples from 202 wells, screened in 13 different aquifers or aquifer systems in Middlesex, Monmouth, Ocean, Atlantic, Cape May, Cumberland, Salem, and Gloucester Counties. These data, complemented by data collected prior and subsequent to 1977, indicate that freshwater aquifers in parts of seven counties are contaminated by saline water.

Encroachment of saltwater into freshwater aquifers in the Sayreville area of Middlesex County and in the lower peninsula of Cape May County has been reported for about 40 years and is now more extensive. Many production wells have been abandoned in both In some existing production wells, chloride concentrations areas. currently are approaching the 250 mg/L potable water standard. Several other areas are experiencing limited saltwater intrusion. These include the Keyport-Union Beach area in Monmouth County, areas adjacent to the Delaware estuary in Gloucester and Salem Counties, and at Point Pleasant Beach and Seaside Heights in Ocean County. The continuing updip movement of saline water in the heavily used aquifers in the Potomac-Raritan-Magothy aquifer system is also threatening existing freshwater supplies in the interior areas of Gloucester and Salem Counties. At Clavton Borough in Gloucester County and at Woodstown Borough in Salem County, chloride concentrations from wells currently vary between 140 and 195 mg/L.

Saltwater intrusion has resulted from extensive groundwater withdrawals. The resultant freshwater head declines have caused reversals in the natural hydraulic gradients permitting inland movement of saline water from adjacent saltwater bodies.

INTRODUCTION

Purpose and Scope

The usability of ground water in the Coastal Plain of New Jersey was described by Seaber (1963, p. 5) as follows:

The usability of the ground water of the Coastal Plain of New Jersey depends primarily on its chemical quality. In near-shore areas, actual or potential saltwater contamination of ground water is of paramount importance, and chloride concentration is an excellent index of the extent and degree of contamination. High chloride concentrations, in themselves, do not necessarily prove actively advancing salt-water encroachment. They may represent a natural static condition common in shallow deposits bordering saline creeks, bays, and In the deeper formations, the occurrence of marshes. saline ground water may represent residual water trapped in the sediments. Salt-water encroachment in these areas can be proved only by periodic sampling which shows an increase in chloride concentration with time. It is difficult to establish limits of chloride concentration that can be used to indicate salt-water encroachment, because encroachment is indicated by changes in chloride content and not by actual concentration. However, water containing less than 10 ppm (parts per million) of chloride generally indicates no encroachment.

The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, Division of Water Resources, maintains a network of wells to monitor the movement of saltwater into the freshwater aquifers of the New Jersey Coastal Plain. The periodic sampling of wells was established in the 1940's for most areas of the Coastal Plain where the possibility of saltwater contamination was suspected. The sampling program was revised in 1958 and continues to the present. Chloride concentrations in samples are used as indicators of saltwater. This report discusses the chloride data only as it relates to saltwater intrusion or contamination of the ground water. Results of the chloride sampling are presented through water year 1981, with primary emphasis on the comprehensive sampling of 1977.

Data Collection and Presentation

In 1977, there were about 430 wells in the saltwater monitoring network in the eight Coastal Plain counties covered in this report. The counties are Middlesex, Monmouth, Ocean, Altantic, Cape May, Cumberland, Salem, and Gloucester. The majority of wells, approximately 400, are large capacity (300 to 1,000 gal/min) production wells. Because of their high yield and relative constant pumping, these wells draw from a large volume of the aquifer and provide the most representative water samples for analysis. In areas where no large production wells exist, water samples are collected from lower-yielding domestic wells. Observation wells or unused wells are sampled if no pumping wells are available.

Water samples from large production wells were collected from a tap in the discharge line near the wellhead. With some domestic wells, it was not possible to collect samples from the discharge line before it entered a pressure tank. These samples were collected after the water passed through the tank. All water samples, however, were collected before the water had passed through a water softener or other treatment process. A portable submersible pump was used to sample observation wells and unused wells.

Prior to sampling all wells were pumped until the casings were flushed and the water temperature had stabilized. Thus, the water sample came directly from the aquifer. Two samples were collected from each well. The first was used for field determinations of pH and specific conductance and the second was forwarded to the U.S. Geological Survey National Water Quality Laboratory in Doraville, Georgia for chloride analysis.

Data collected in 1977 were the most comprehensive to date (1981), especially in areas of significant saltwater intrusion such as the Sayreville area of Middlesex County, the Keyport-Union Beach areas of Monmouth County, and the Cape May City area of Cape May County. Most of the interpretations that follow are based upon the 1977 survey. However, the graphs of chloride concentrations depicting the concentration trends with time (figs. 4, 6, 9, 12, and 15) include data through the 1981 water year. Also, the text describing chloride concentration for each county includes any significant changes since 1977.

During the 1977 water year, 202 wells in the saltwater monitoring network were sampled in the eight counties in the Coastal Plain covered in this report. The locations of these wells are shown on individual maps for each county (figs. 2, 7, 8, 10, 11, 14, 17, and 18). A total of 266 water samples were collected and analyzed for temperature, pH, specific conductance, and chloride concentration. Tables 2-9 contain selected well records and chloride analyses by county. The water temperature, pH, and specific conductance data, which are not included in this report, were published in the annual series of U.S. Geological Survey Water-Data Reports for water years 1977 through 1981.

The Study Area

The study area of this report is located entirely within the Coastal Plain physiographic province (fig. 1). A Fall Line, which extends northeast along the Delaware River and through Mercer and Middlesex Counties, separates the Coastal Plain from the Appalachian Highlands province to the north.

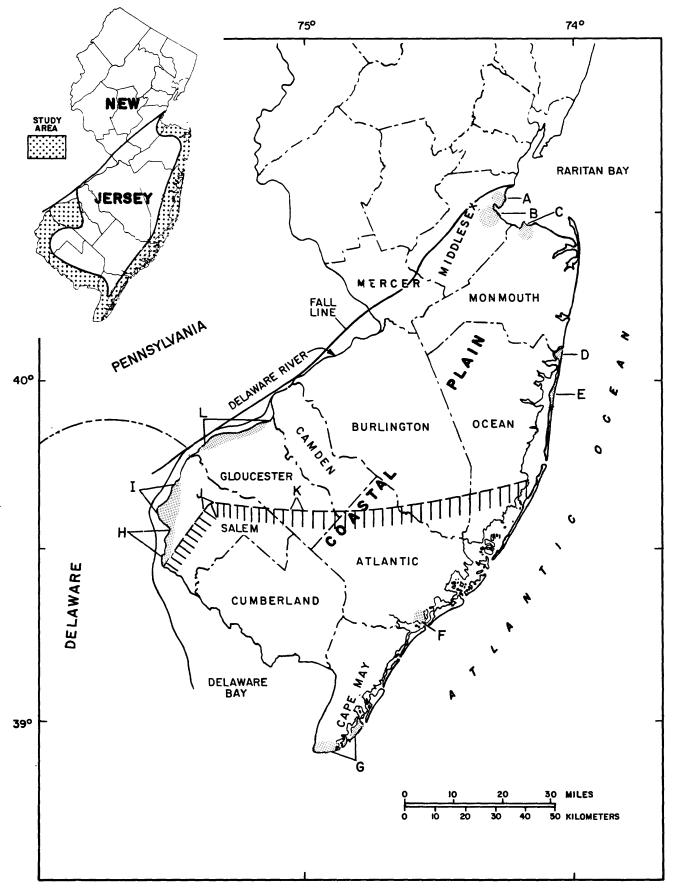


Figure 1.--Location of study area and areas of significant saltwater

EXPLANATION

Areas of saltwater intrusion in principal aquifers. Letter identifies locations listed below.

Area	Location	County	Aquifer affected
A	Perth Amboy City and Woodbridge Township	Middlesex	Farrington aquifer
В	Sayreville Borough and South Amboy City	Middlesex	Farrington and Old Bridge aquifers
С	Keyport and Union Beach Boroughs	Monmouth	Old Bridge aquifer
D	Point Pleasant Beach Borough	Ocean	Kirkwood-Cohansey aquifer system
E	Seaside Heights Borough	Ocean	Kirkwood-Cohansey aquifer system
F	Somers Point City	Atlantic	Kirkwood-Cohansey aquifer system
G	Cape May City and surrounding areas	Саре Мау	Cohansey Sand
н	Salem City and surrounding areas	Salem	Wenonah-Mount Laurel aquifer
I	Areas between Penns Grove and Salem City	Salem	Potomac-Raritan-Magothy aquifer system
L	Woodstown Borough and surrounding areas	Salem	Potomac-Raritan-Magothy aquifer system
к	Clayton Borough and surrounding areas	Gloucester	Potomac-Raritan-Magothy aquifer system
L	Areas between Paulsboro and Gibbstown	Gloucester	Potomac-Raritan-Magothy aquifer system

Line of 250-milligrams-per-liter chloride concentration near the top of the Potomac-Raritan-Magothy aquifer system (from Luzier, 1980, p.6). South and east of this line, chloride concentrations increase.

intrusion in the principal aquifers of the New Jersey Coastal Plain.

The Coastal Plain of New Jersey covers about 4,000 mi². More than half of this land area is below an altitude of 50 ft above sea level. The study area is largely surrounded by brackish or saltwater and is bounded by Raritan Bay on the north, the Atlantic Ocean on the east, Delaware Bay on the south, and the Delaware River on the west. A detailed description of the Coastal Plain physiographic province appears in Parker and others (1964, p. 41-42).

Previous Studies

Numerous studies have been made of existing or potential saltwater intrusion in the New Jersey Coastal Plain since the 1920's. Many of the studies and ensuing reports were restricted to limited areas, such as a county or a part of the county.

Barksdale (1937) indicated the potential for saltwater intrusion in the Farrington aquifer in Sayreville, Middlesex County. A later study by Barksdale and others (1943) concluded that saltwater intrusion was in evidence in the Farrington aquifer in several areas along the Raritan River between the South River and Raritan Bay. This report also indicated that overpumpage of the Old Bridge aquifer could induce saltwater into this aquifer, and suggested that a tidal dam could be constructed on the South River or its tributaries to prevent such contamination. Appel (1962) investigated the extent of saltwater intrusion in both the Farrington and Old Bridge aquifers in Middlesex County and indicated measures that could be considered to retard saltwater encroachment into these aquifers.

Hasan and others (1969) studied the Old Bridge aquifer in the vicinity of the South River and recommended a pumped storage diversion project instead of a tidal dam to increase the yield of this aquifer. Schaefer and Walker (1981) reported on saltwater intrusion in the Old Bridge aquifer in Keyport and Union Beach Boroughs in northern Monmouth County. Anderson and Appel (1969), in their ground-water study of Ocean County, noted the existence of saline water in the Potomac-Raritan-Magothy aquifer system in the southern part of the County. This report also indicated a potential for saltwater intrusion in other aquifers, especially the Englishtown and Atlantic City 800-foot sand aquifers along the barrier beaches in Ocean County. Thompson (1928) discussed the ground-water supplies in the Atlantic City areas of Atlantic County, including the problem of potential saltwater intrusion in the Atlantic City 800-foot sand. In 1936, a supplementary report was published on the Atlantic City area (Barksdale and others, 1936). This study concentrated on the saltwater intrusion problem in the shallow aquifers underlying the tidal marshes in the area of the Atlantic City Water Works at Pleasantville. In addition, this study focused on the extent of pumpage from the Atlantic City 800-foot sand and the danger of saltwater intrusion into this

important aquifer. Chemical analyses presented in Clark and others (1968) show high chlorides (9,000 to 13,000 mg/L) from three wells tapping the Kirkwood-Cohansey aquifer system in Atlantic County, one in Somers Point and two in Atlantic City. Gill (1962) discussed the existing and potential danger of saltwater intrusion in all the principal aquifers of Cape May County. Rooney (1971) and Nemickas and Carswell (1976) discussed saltwater intrusion in aquifers in Cumberland County. Rosenau and others (1969), in their study of Salem County, evaluated saltwater intrusion in the Vincentown, Wenonah-Mount Laurel, and Englishtown aquifers in the vicinity of Salem City. The report also noted the incidence of saline water intrusion into the Potomac-Raritan-Magothy aquifer system from the Delaware River from Pennsville northward to Penns Grove. The authors also expressed concern about the consequences of the continual updip movement of highly saline water within this aquifer system from the southeast. In Gloucester County, Hardt and Hilton (1969) documented that saltwater intrusion had occurred in the Potomac-Raritan-Magothy aquifer system in areas in proximity to the Delaware River from Gibbstown northward to Paulsboro. The report also referred to the potential problem associated with the northward migration of saline water within this aquifer system, especially in Clayton Borough and Harrison Township (Mullica Hill).

Several regional studies have been conducted which in part dealt with saltwater intrusion in aquifers of the Coastal Plain. Barksdale and others (1958) discussed and evaluated the present and the potential for additional saltwater encroachment in the Potomac-Raritan-Magothy aquifer system in the southern part of the Coastal Plain. This report was one of the first to stress the importance of maintaining adequate freshwater flow in the Delaware River to protect the Potomac-Raritan-Magothy aquifer system from Luzier (1980) augmented more widespread saltwater encroachment. the above work in terms of the documentation of saltwater intrusion and proposed artificial recharge as an alternate means of retarding the migration of saline water northward within the Potomac-Raritan-Magothy aquifer system. Seaber (1963) presented basic chloride and well data for all aquifers throughout the Coastal Plain of New Jersey. This work contains 8,957 chloride analyses from 884 wells sampled from 1923 to 1961.

Walker (1983) provides water-level data and potentiometric surface maps for the major aquifers of the New Jersey Coastal Plain. The maps show cones of depression in many aquifers that are of major significance to the movement of saltwater. Vowinkel and Foster (1981, p. 22-28) contains information on ground-water withdrawals from the major Coastal Plain aquifers for 1956-78. Ground-water withdrawals by county and aquifer for 1978 also are presented.

Acknowledgments

The author gratefully acknowledges the assistance of public and industrial water-supply officials and private individuals who permitted access to their wells for sampling and provided information about their wells.

THE GROUND-WATER SYSTEM

The New Jersey Coastal Plain is underlain by a wedge-shaped mass of unconsolidated marine, marginal marine, and nonmarine deposits of clay, silt, sand, and gravel. The sediments range in age from Cretaceous to Holocene and lie unconformably on the pre-Cretaceous bedrock consisting chiefly of Precambrian and lower Paleozoic rocks. The total thickness of the Coastal Plain sediments ranges from a featheredge along the Fall Line to a thickness of about 6,500 ft at the extreme southern part of Cape May County. The Tertiary and Cretaceous sediments, in general, strike northeast-southwest and dip gently to the southeast from 10 The overlying Quaternary deposits, where present, to 60 ft/mi. are essentially flatlying. The stratigraphic and hydrologic characteristics of the geologic units are given in table 1. The outcrops of the geologic formations and a fence diagram of the Coastal Plain are shown in Parker and others (1964, plates 5 and 6, respectively).

Table 1.--Stratigraphic and hydrologic characteristics of geologic units of the New Jersey Coastal Plain

(Modified from Walker, 1983, p.7)

т

٦

т

٢

T

SYSTEM	GEOLOGIC UNIT	LITHOLOGY	HYDROLOGIC CHARACTERISTICS			
Quater-	Quater- nary Beach sand Sand, quartz, light-colored, medium grained,		Locally may yield small quantities of water to shallow wells.			
nary	and gravel Cape May	pebbly.				
	Formation Pensauken Formation Bridgeton Formation	Sand, quartz, light-colored, heterogeneous, clayey, pebbly, glauconitic.	Thicker sands are capable of yielding large quantities of water.			
	Beacon Hill Gravel	Gravel, quartz, light-colored, sandy.	No known wells tap this formation.			
	Cohansey Sand	Sand, quartz, light-colored, medium to coarse-grained, pebbly; local clay beds.	A major aquifer. Ground-water occurs generally under water-table conditions. In Cape May County, the aquifer is under artesian conditions. Inland from the coast and in the northern part of Ccean County, the Cohansey Sand is in hydraulic connection with the Kirkwood Formation, forming the unconfined Kirkwood-Cohansey aquifer system.			
Tertiary	Kirkwood Formation	Sand, quartz, gray to tan, very fine- to medium-grained, micaceous, and dark- colored diatomaceous clay.	Includes a major and minor artesian aquifer near the coast. The major aquifer is the Atlantic City 800-foot sand. The minor aquifer is the Rio Grande water-bearing zone or upper aquifer. The Kirkwood Formation includes up to three confining layers near the coast. Inland from the coast and in the northern part of Ocean County, the Kirkwood Formation is hydraulically connected to the unconfined Cohansey Sand, forming the unconfined Kirkwood- Cohansey aquifer system.			
-	Piney Point Formation	Sand, quartz and glauconitic, fine- to coarse-grained.	Minor aquifer in New Jersey. Greatest thickness in Cumberland County.			
	Shark River Marl	Sand, quartz and glauconite, gray, brown, and green, fine- to coarse-grained,	Locally may yield small quantities of water to wells.			
	Manasqu a n Formation	clayey, and green silty and sandy clay.	Locally may yield small to moderate quantities of water to wells.			
	Vincentown Formation	Sand, quartz, gray and green, fine- to coarse-grained, glauconitic, and brown clayey, very fossiliferous, glauconite and quartz calcarenite.	Locally may yield small to moderate quantities of water to wells.			
	Hornerstown Sand	Sand, glauconite, green, medium- to coarse- grained, clayey.	Locally may yield small quantities of water to wells.			
	Tinton Sand	Sand, quartz, and glauconite, brown and gray,	No known wells tap this sand.			
	Red Bank Sand	fine- to coarse-grained, clayey, micaceous.	Yields small quantities of water to wells in Monmouth County.			
	Navesink Formation	Sand, glauconite, and quartz, green, black, and brown, medium- to coarse-grained, clayey.	Locally may yield small quantities of water to wells.			
	Mount Laurel Sand Wenonah Formation	Sand, quartz, brown and gray, fine- to coarse- grained, glauconitic. Sand, quartz, gray and brown, very fine- to fine-grained, glauconitic, micaceous.	A major aquifer in the northern part of the Coastal Pla A sand unit within the two formations forms the Wenon Mount Laurel aquifer.			
Cretaceous	Marshalltown Formation	Sand, quartz and glauconite, gray and black, very fine to medium-grained, very clayey.	Leaky confining bed.			
	Englishtown Formation	Sand, quartz, tan and gray, fine- to medium-grained; local clay beds.	A major aquifer in the northern part of the Coastal Plain, the Englishtown aquifer consists of two sand units in Ocean and Monmouth Counties.			
	Woodbury Clay	Clay, gray and black, micaceous.	The two formations form the Merchantville-Woodbury confin-			
	Merchantville Formation	Clay, gray and black, micaceous, glauconitic, silty; locally very fine-grained quartz and glauconitic sand.	ing unit, a major confining layer throughout the New Jersey Coastal Plain. Locally the Merchantville may con- tain a thin water-bearing sand.			
	Magothy Formation	Sand, quartz, light-gray, fine-grained, and dark-gray lignitic clay.	Potomac- Uppor aquifer referred to as Old Bridge aquifer in the northern Coastal Plain.			
	Raritan Formation	Sand, quartz, light-gray, fine- to coarse- grained, pebbly, arkosic, red, white, and variegated clay.	Raritan- Major confining layer Magothy Middle aquifer referred to as the Farrington aquifer aquifer in the northern Coastal Plain is combined			
	Potomac Group	Alternating clay, silt, sand, and gravel.	system with sands of the Potomac Group forming a large lower aquifer, as used in this report.			
Pre- Cretaceous	Pre-Cretaceous basement	Precambrian and lower Paleozoic crystalline rocks, metamorphic schist and gneiss; locally Triassic basalt, sandstone, and shale	Except along Fall Line, no wells obtain water from these consolidated rocks.			

The principal aquifers of the New Jersey Coastal Plain are the Potomac-Raritan-Magothy aquifer system (Potomac Group, Raritan and Magothy Formations), Englishtown aquifer (in the Englishtown Formation), Wenonah-Mount Laurel aquifer (in the Wenonah Formation and Mount Laurel Sand), aquifers within the Kirkwood Formation, and Cohansey Sand. Minor aquifers are found within the Red Bank Sand, the Vincentown, Manasquan, and Piney Point Formations, and the Cape May Formation in Cape May County. Separate aquifers, the Farrington and Old Bridge (in the Farrington Sand Member of the Raritan Formation and the Old Bridge Sand Member of the Magothy Formation) have been defined within the Potomac-Raritan-Magothy aquifer system in the northern part of the Coastal Plain (Barksdale and others, 1943; Farlekas, 1979). The Kirkwood Formation contains two artesian aquifers along the New Jersey coast. The principal artesian aquifer is the lower aquifer and is known as the Atlantic City 800-foot sand (Thompson, 1928, p. 35-119; Barksdale and others, 1936, p. 91-125). The upper artesian aquifer is referred to as the Rio Grande water-bearing zone and is primarily utilized in Cape May County (Gill, 1962, p. 17-18). The major unconfined aquifer within the New Jersey Coastal Plain is known as the Kirkwood-Cohansey aquifer system. It is composed of hydraulically connected sediments of the Kirkwood Formation, Cohansey Sand, and overlying surficial deposits. In Cape May County the Cohansey Sand is under artesian conditions.

CHLORIDE CONCENTRATIONS IN GROUND WATER IN THE COASTAL PLAIN OF NEW JERSEY

Figure 1 shows locations of significant saltwater intrusion in the principal Coastal Plain aquifers. The following sections are county by county descriptions of chloride concentrations in ground water.

Middlesex County

All wells sampled are screened in either the Old Bridge aquifer or the underlying Farrington aquifer. In 1977, 57 samples were collected from 40 wells. Twelve of these wells tap the Old Bridge and 28 tap the Farrington. Well records and chloride analyses are shown in table 2, and the well locations are shown in figure 2.

The movement of saltwater into the Farrington aquifer in areas near the Raritan and South Rivers has been documented for about 40 years (Barksdale and others, 1943; Appel, 1962; Hasan and others, 1969). Data collected during 1977 indicate a continued increase in chloride concentrations south of the Raritan River in Sayreville Borough, South Amboy City, and in adjacent areas of Old Bridge Township. The distribution of chloride concentrations in 1977 is shown on figure 3. The direction of ground-water movement indicated in figure 3 is based on the potentiometric surface of the Farrington aquifer in November, 1973 (Farlekas, 1979, p. 17).

Saltwater in the Farrington aquifer continues to move south and southeast through large areas in Sayreville Borough and South Amboy City. In the summer of 1977, Sayreville WD well M (map No. 352) and the nearby Perth Amboy WD well 2 (map No. 197) yielded chloride concentrations of 100 mg/L and 49 mg/L, respectively. Historical data from Perth Amboy WD well 2, which has been sampled frequently during the past 20 years, show evidence of saltwater intrusion beginning about 1970 (fig. 4).

There were indications about 1977 that saltwater was moving southwestward toward the South River WD well field. This is indicated by slowly increasing chloride concentration in South River WD well 2 (map No. 434, see fig. 4), and by samples from two other wells (fig. 3) north of the borough well field, South River 2 obs. (map No. 439) and Thomas and Chadwick 1 (map No. 440). These two wells contained chloride concentrations of 12 mg/L and 16 mg/L, respectively. A third well, DuhSay 4 obs. (map No. 365), on the eastern shore of South River, 0.5 mi from the borough well field, had a chloride concentration of 520 mg/L.

Increased chloride concentrations in 1977 were also found at the E.I. duPont well field in Sayreville. A September, 1977 sample from duPont well 3 (map No. 393) contained 47 mg/L. The previous recorded maximum was 8.1 mg/L in September, 1973. Two samples in 1977 from the Duhernal Water System 60F well (map No. 425) located nearby yielded chloride concentrations of 535 and 680 mg/L. In 1974, chloride concentration from this well was about

Table 2.--Well records and chloride analyses from saltwatermonitoring network

wells in MIddlesex County, 1977 water year

MAP* NO.	LOCAL NAME AND Well Number	LATITUDE	LONGITUDE	GEOLOGIC UNIT	ELEVA- TION OF LAND SURFACE ABOVE NGVD OF 1929 (FT)	SCREENED INTERVAL (FT)	DATE OF Sample	CHLO- RIDE (MG/L AS CL)
135 192 193	OLD BRIDGE TWP MUA-BRN 2 PERTH AMBOY WD 3 PERTH AMBOY WD 4	40 23 45 40 25 35 40 25 36	74 18 38 74 20 14 74 20 12	2110DBG 2110DBG 2110DBG 2110DBG 2110DBG	95 15 15 15	190-250 48- 68 51- 66 51- 66	JAN 5, 1977 AUG 18, 1977 APR 6, 1977 AUG 18, 1977	2.7 31 51 55
195	PERTH AMBOY WD 5	40 25 37	74 20 02	2110DBG	15	50- 80	AUG 18, 1977	12
196 197	PERTH AMBOY WD 1A PERTH AMBOY WD 2	40 25 37 40 25 43	74 20 20 74 20 10	211FRNG 211FRNG 211FRNG 211FRNG 211FRNG	20 20 20 20 20	201-261 201-261 205-260 205-260 205-260	APR 6, 1977 AUG 18, 1977 APR 6, 1977 JULY 6, 1977 AUG 18, 1977	4.8 6.3 9.0 49 42
434 432 438 346	SOUTH RIVER BORO WD 2 SOUTH RIVER BORO WD 4-75 SOUTH RIVER BORO WD 5-77 SAYREVILLE BORO WD B	40 25 56 40 25 57 40 25 59 40 26 04	74 21 41 74 21 38 74 21 42 74 20 04	211FRNG 211FRNG 211FRNG 2110DBG 2110DBG	20 20 27 27	173-198 149-179 132-182 71- 81 71- 81	AUG 18, 1977 AUG 18, 1977 AUG 31, 1977 APR 6, 1977 SEPT 30, 1977	7.2 6.1 7.0 63 130
352 355 365 368	SAYREVILLE BORO WD M SAYREVILLE BORO WD A DUHSAY 4 OBS** SAYREVILLE BORO WD I	40 26 09 40 26 14 40 26 33 40 26 26	74 19 52 74 19 50 74 21 20 74 19 36	211FRNG 2110DBG 211FRNG 2110DBG 2110DBG	35 30 58 58	225-278 72- 82 148-160 83- 94 83- 94	SEPT 30, 1977 SEPT 30, 1977 NOV 30, 1977 APR 6, 1977 SEPT 30, 1977	100 85 520 13 12
371 439 440 376 380	HERCULES INC 5 S. RIVER BORO WD 2 OBS** THOMAS AND CHADWICK 1 HERCULES INC 3 HERCULES INC 2	40 26 38 40 26 33 40 26 47 40 26 49 40 26 59	74 20 22 74 22 00 74 22 27 74 20 25 74 20 20	211FRNG 211FRNG 211FRNG 211FRNG 211FRNG 211FRNG	48 21 21 45 52	183-228 121-126 167-195 180-220 184-237	JULY 6, 1977 NOV 30, 1977 SEPT 29, 1977 JULY 6, 1977 JULY 6, 1977	950 12 16 850 370
205 206 383 384	OLD BRIDGE TWP MUA-LH 1 OLD BRIDGE TWP MUA-LH 2 EI duPONT-PARLIN 8A HERCULES INC 1R	40 27 00 40 27 00 40 27 03 40 27 05	74 14 59 74 14 59 74 18 59 74 20 23	2110DBG 2110DBG 211FRNG 211FRNG 2110DBG 211FRNG	60 60 93 59	193-213 193-213 360-395 97-116 170-225	JAN 5, 1977 AUG 18, 1977 AUG 18, 1977 SEPT 30, 1977 JULY 6, 1977	3.9 4.2 3.3 17 200
386 389 392 393	EI duPONT-PARLIN 6 EI duPONT-PARLIN 5 EI duPONT-PARLIN 1 EI duPONT-PARLIN 3	40 27 01 40 27 10 40 27 15 40 27 15	74 19 17 74 19 10 74 19 24 74 19 32	211FRNG 211FRNG 211FRNG 211FRNG 211FRNG 211FRNG	103 118 104 104 91	253-314 257-305 237-286 237-286 246-284	SEPT 30, 1977 SEPT 30, 1977 APR 6, 1977 SEPT 30, 1977 SEPT 30, 1977	1.1 17 6.0 7.5 47
401 403 411 413	SAYREVILLE BORO WD P SAYREVILLE BORO WD Q-73 South Amboy City WD 8 South Amboy City WD 9	40 27 44 40 27 45 40 28 22 40 28 24	74 16 28 74 16 31 74 16 30 74 16 31	211FRNG 2110DBG 2110DBG 211FRNG 211FRNG 2110DBG	40 40 40 10 10	254-288 78-136 78-136 210-234 33- 48	SEPT 30, 1977 JAN 4, 1977 SEPT 30, 1977 NOV 16, 1976 HOV 16, 1976	2.2 4.0 16 4.2 15
414	SOUTH AMBOY CITY WD 10	40 28 25	74 16 32	2110DBG 2110DBG 2110BDG	10 10 10	33- 48 39- 49 39- 49	AUG 18, 1977 JAN 4, 1977 AUG 18, 1977	15 17 18
415 418 430	NL INDUSTRIES 4 NL INDUSTRIES 3 JERSEY CENT P&L-WERNER 7	40 28 31 40 28 42 40 29 23	74 18 15 74 18 11 74 16 51	21 1FRNG 21 1FRNG 21 1FRNG 21 1FRNG	109 120 10 10	220-251 240-270 135-165 135-165	APR 6, 1977 APR 6, 1977 NOV 16, 1976 SEPT 29, 1977	4.7 7.6 377 710
425 255 263	DUHERNAL WS 60F Carborundum co 1 Chevron oil co 2	40 30 46	74 19 38 74 18 27 74 16 20	211FRNG 211FRNG 211FRNG 211FRNG 211FRNG 211FRNG 211FRNG	149 149 15 15 45 45	282-287 282-287 57- 67 57- 67 96-106 96-106	APR 6, 1977 SEPT 30, 1977 NOV 16, 1976 SEPT 29, 1977 NOV 16, 1976 SEPT 29, 1977	535 680 13 12 8.7 9.2

[Geologic unit (aquifer): 2110DBG - Old Bridge aquifer; 211FRNG - Farrington aquifer]

*Well locations shown in figure 2. **Sampled in 1978 water year.

AMERICAN CYANAMID CO 2A

HAAGEN DAZS INC

473

478

40 32 33 74 16 33

40 32 36 74 16 16

211FRNG 211FRNG 211FRNG

211FRNG

30

30 9 9

39- 59 39- 59 45- 60 45- 60

NOV 16, 1976 SEPT 29, 1977 NOV 16, 1976 SEPT 29, 1977

82

240 76

110

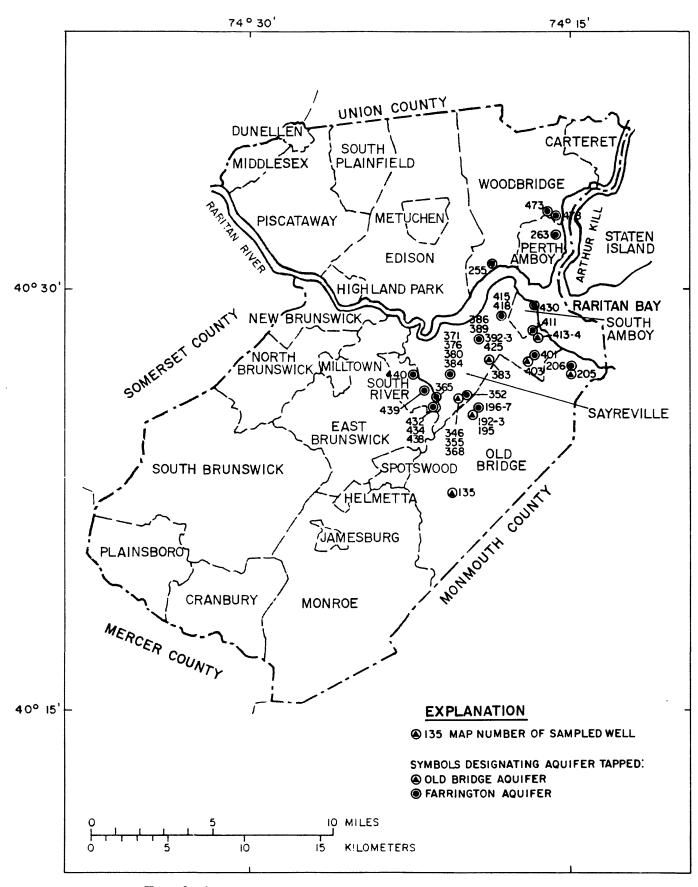


Figure 2.--Location of saltwater monitoring network wells in Middlesex County.

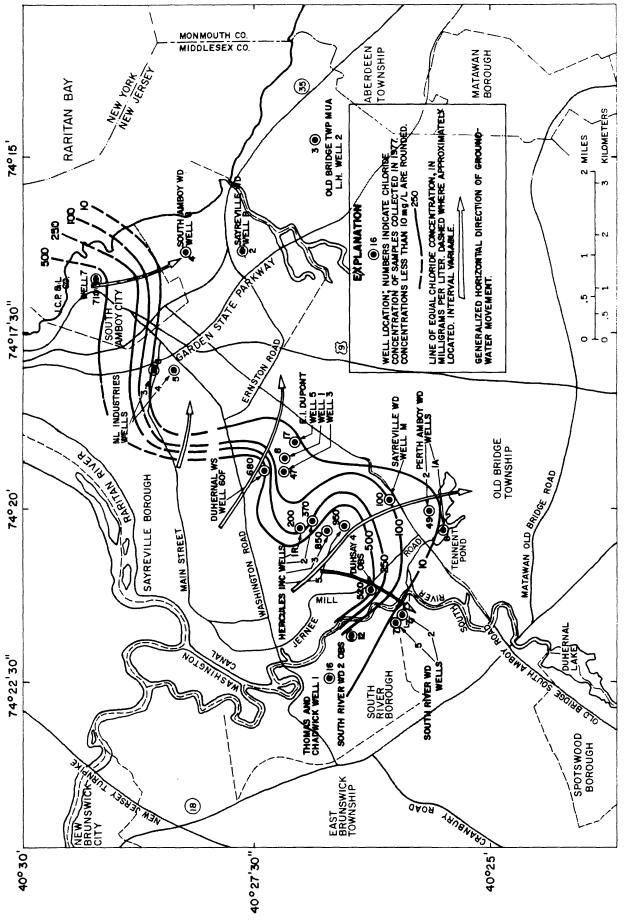


Figure 3.--Map of the Sayreville area, Middlesex County, showing well locations, chloride concentrations, and ground-water movement in the Farrington aquifer, 1977.

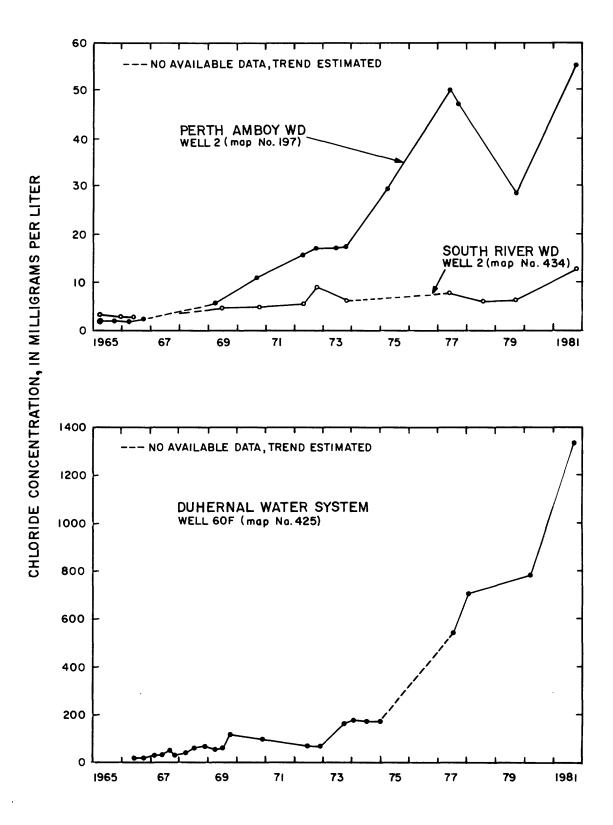
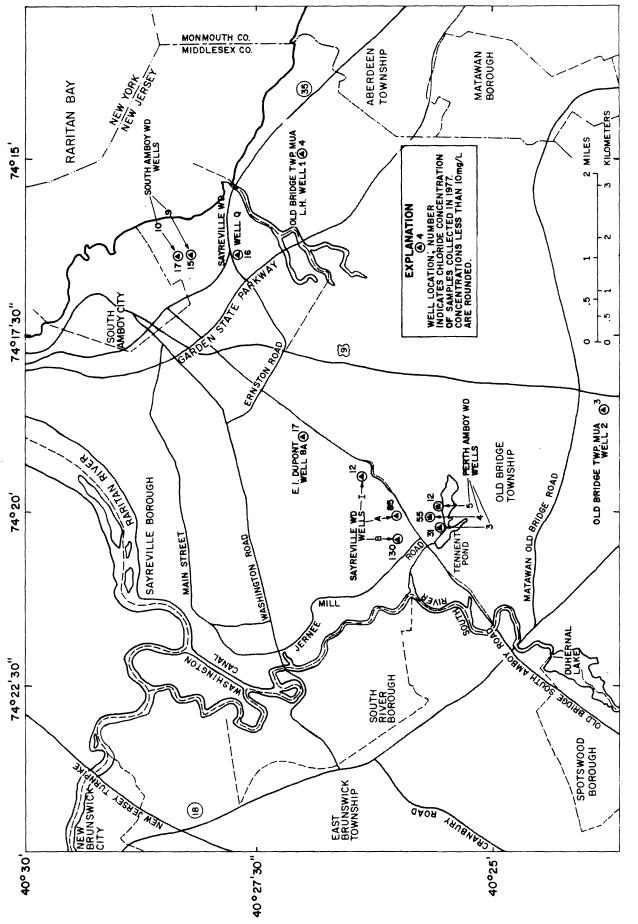


Figure 4.--Chloride concentrations from selected wells tapping the Farrington aquifer in the Sayreville area, Middlesex County, 1965-81.

130 mg/L (fig. 4). In the vicinity of the Garden State Parkway, wells sampled at the NL Industries, South Amboy City WD, and Sayreville Borough WD-Morgan well fields do not show significant upward trends. However, the Jersey Central Power and Light Co. (J.C.P. and L. Co.) Werner well 7 (map No. 430) located to the northeast (fig. 3) had a chloride concentration of 710 mg/L in September 1977, compared to 377 mg/L in November 1976.

Since 1977, chloride concentrations have continued to increase in many of the wells in the Farrington aquifer shown in figure 3. The following comparison of 1977, 1979, and 1981 data illustrates this upward trend:


Well name	Chloride cor in milligram	
	1977	1981
Perth Amboy WD 1A	6.3	32
Perth Amboy WD 2	49	54
outh River Boro WD 2	7.2	12
South River Boro WD 5-77	7.0	12
South River Boro WD 2 obs.	12	26
Sayreville Boro WD M	100	190 *
Thomas and Chadwick 1	16	42 *
EI duPont - Parlin 1	7.5	45
EI duPont - Parlin 3	47	96
Duhernal Water System 60F	680	1,300
NL Industries 3	7.6	55 *

*Sampled in 1979.

These data suggest an additional 0.2 to 0.4 mi inland migration of the freshwater-saltwater transition zone as compared to 1977.

North of Raritan River in Perth Amboy City and Woodbridge Township, chloride concentrations from four wells tapping the Farrington ranged from 8.7 to 240 mg/L. The maximum of record for the Haagen Dazs Inc. well (map No. 473, formerly owned by Swift and Company) is 240 mg/L; the previous recorded maximum was 96 mg/L in September, 1972. The data from the other three wells (map Nos. 255, 263, 478), however, are comparable to past records. The source of high chloride concentration in this area is believed to be a result of either surface contamination from industrial wastes, sporadic tidal flooding, or saltwater intrusion from the Arthur Kill. Data collected subsequent to 1977 do not indicate significant changes in chloride distribution in the Farrington aquifer in this area. Twelve wells tapping the Old Bridge aquifer in the Sayreville area were sampled in 1977. Several show concentrations in excess of 10 mg/L (fig. 5). The Old Bridge aquifer is vulnerable to saltwater intrusion from South River and its tributaries and from Raritan Bay. The aquifer is relatively shallow in and near the outcrop area and, therefore, very susceptible to contamination from vertical leakage from the surface in the vicinity of the outcrop. Poor waste-disposal practices and accidental spills of pollutants have been considered the cause of the water-quality problems, including elevated chlorides, in some areas of the Old Bridge aquifer (Hasan and others, 1969, p. 11).

Figure 6 illustrates the trends in chloride concentration from wells tapping the Old Bridge aquifer at the Perth Amboy WD and Sayreville WD well fields. Most of the wells sampled at these two well fields have yielded chloride concentrations in excess of 10 mg/L in recent years, and wells nearest to South River and its tidal tributaries generally had the highest salinities in 1977-81. A comprehensive investigation is required to determine the source of these high chloride concentrations.

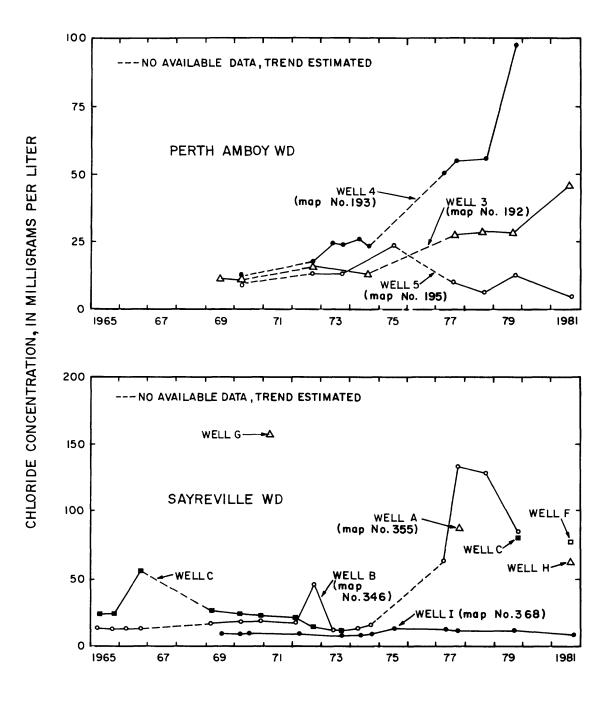


Figure 6.--Chloride concentrations from selected wells tapping the Old Bridge aquifer in the Sayreville area, Middlesex County, 1965-81.

Monmouth County

Seventy-nine samples were collected from 50 wells near Raritan Bay and along the Atlantic Coast. These wells tap the Farrington and Old Bridge aquifers, the Englishtown aquifer, the Wenonah-Mount Laurel aquifer, and the Kirkwood-Cohansey aquifer system. Well records and chloride analyses are shown in table 3, and the well locations are shown in figure 7.

The most significant finding is the increasing salinity from wells tapping the Old Bridge aquifer in Keyport and Union Beach Boroughs. Schaefer and Walker (1981) describes the source, areal extent, and reasons for intrusion of saltwater. The following is a summary of some of the major findings:

- 1. An analysis of the changes in freshwater head and chloride concentration indicate that saline water has moved into the Old Bridge aquifer from the Old Bridge outcrop submerged beneath Raritan Bay.
- 2. The saline water reached some of the coastal wells at Keyport and Union Beach in significant amounts by 1972-73.
- 3. Data from 1950 to 1968 indicate that the background chloride concentrations in the Old Bridge aquifer were generally less than 5 mg/L. However, by 1977 chloride concentration had increased to more than 600 mg/L at one well in the Union Beach WD well field and 98 mg/L at one well in Keyport (Infern-otherm Co. map No. 208).
- 4. By January 1977, withdrawals from the Old Bridge aquifer had lowered the hydraulic head in the center of the cone of depression to 45 ft below sea level.
- 5. The rate of ground-water movement was about 400 ft/yr in January 1977. The primary direction of movement was from Raritan Bay to the southeast toward the center of the cone of depression in Hazlet Township.

The original Keyport well field near Raritan Bay was abandoned in May 1976. All of the wells tap the Old Bridge aquifer. Only wells 5 (map No. 202) and 6 were in use during 1975-76. Wells 1 and 4 (map No. 206) were abandoned in 1965 and 1974, respectively. Since 1977, these four wells were sampled using portable submersible pumps. Between 1977 and 1981, chlorides from all four wells have not changed significantly (about 40-100 mg/L). This is probably due to the cessation of pumping. Although the concentration of chloride at the well field has not changed since 1977, the variation in chlorides between individual wells has changed. The cause or significance of this is not known at present. Keyport well 7 (map No. 197), drilled in 1976, is about 1 mi south of the original well field near the southern Keyport Borough boundary. Samples collected from well 7 from 1976 to 1981 have yielded low chlorides between 1.5 and 2.6 mg/L.

Table 3.--Well records and chloride analyses from saltwater monitoring network

wells in Monmouth County, 1977 water year

[Geologic unit (aquifer): 121CKKD - Kirkwood-Cohansey aquifer system; 211MLRW - Wenonah-Mount Laurel aquifer; 211EGLS - Englishtown aquifer; 2110DBG - Old Bridge aquifer; 211FRNG - Farrington aquifer]

MAP* NO.	LOCAL NAME And Well Number	LATITUDE	LONGITUDE	GEOLOGIC UNIT	ELEVA- TION OF LAND SURFACE ABOVE NGVD OF 1929 (FT)	SCREENED INTERVAL (FT)	DATE OF Sample	CHLO- RIDE (MG/L AS CL)
29 233 234 235 236	BRIELLE BORO WD 1 MANASQUAN BORO WD 6 MANASQUAN BORO WD 3 MANASQUAN BORO WD 2R MANASQUAN BORO WD 1R	40 06 44 40 07 10 40 07 12 40 07 12 40 07 13	74 03 44 74 03 29 74 03 28 74 03 28 74 03 28 74 03 29	121CKKD 121CKKD 121CKKD 121CKKD 121CKKD 121CKKD	33 10 15 21 15	130- 150 - 180 118** 103- 118 98- 116	JULY 27, 1977 JULY 27, 1977 JULY 27, 1977 JULY 27, 1977 JULY 27, 1977 JULY 27, 1977	8.0 9.5 14 14 11
237 464 470 374 383	MANASQUAN BORO WD 5 SEA GIRT BORO WD 6 SEA GIRT BORO WD 2 SEA GIRT BORO WD 5 SPRING LAKE BORO WD 1	40 07 14 40 08 01 40 08 02 40 08 04 40 08 49	74 03 29 74 02 31 74 02 28 74 02 27 74 02 07	121CKKD 121CKKD 121CKKD 211EGLS 211EGLS	15 21 21 20 15	97- 117 80- 130 159** 660- 710 631- 711	JULY 27, 1977 JULY 27, 1977 JULY 27, 1977 JULY 27, 1977 JULY 27, 1977 JULY 27, 1977	11 11 9.8 0.5 0.6
386 18 13 14 336	SPRING LAKE BORO WD 4 BELMAR BORO WD 2-ELEC AVON-BY-THE-SEA WD 4 AVON-BY-THE-SEA WD 1 MON CON WC-OCEAN GROVE 21	40 09 52 40 10 38 40 11 37 40 11 38 40 12 16	74 01 49 74 01 46 74 01 21 74 01 25 74 01 08	211EGLS 211EGLS 2110DBG 211MLRW 211MLRW	10 20 29 28 20	600- 670 581** 1105-1165 424- 504 395- 430	JULY 27, 1977 JULY 28, 1977 JULY 28, 1977 JULY 28, 1977 JULY 28, 1977 JULY 28, 1977	1.2 2.8 2.0 2.8 3.5
1 358 190	ALLENHURST BORO WD 4 RED BANK BORO WD 18-50 Keansburg Boro Mua 4	40 14 01 40 20 47 40 26 21	74 00 25 74 04 20 74 07 38	21 1EGLS 21 10DBG 21 10DBG 21 10DBG 21 10DBG	10 40 10 10 94	525- 565 637- 687 280- 340 280- 340 345- 425	JULY 28, 1977 AUG 3, 1977 OCT 20, 1976 AUG 31, 1977	2.2 7.2 3.4 2.0 2.3
288 117 295 6 8	MATAWAN TWP MUA 3 HIGHLANDS PORO WD 4-73 MATAWAN BORO WD 2 ATL HIGHLANDS BORO WD 1 ATL HIGHLANDS BORO WD 3	40 23 59 40 24 01 40 24 27 40 24 37 40 24 41	74 12 35 73 59 20 74 13 48 74 02 36 74 02 33	2110DBG 2110DBG 2110DBG 2110DBG 2110DBG 2110DBG 2110DBG	20 20 20 20 20 20	630- 680 228- 258 228- 258 519- 582 547- 572	JAN 5, 1977 AUG 3, 1977 OCT 21, 1976 JAN 4, 1977 JAN 13, 1977 JAN 13, 1977	2.4 4.3 2.8 3.1 6.0
9 153 154	ATL HIGHLANDS BORO WD 2 W KEANSBURG WC-HOLMDEL 4 W KEANSBURG WC-HOLMDEL 3	40 24 41 40 24 43 40 24 45	74 02 34 74 10 10 74 10 19	21 10DBG 21 1EGLS 21 1EGLS 21 1FRNG 21 1FRNG 21 10DBG	20 15 65 65 73	547 - 572 180 - 200 180 - 200 635 - 690 635 - 690 400 - 430	AUG 31, 1977 JAN 13, 1977 AUG 31, 1977 OCT 20, 1976 AUG 31, 1977 JAN 6, 1977	0.2 6.6 6.0 4.3 0.4 0.4
314 284	ÈNGR PRECISION CAST CO MATAWAN BORO WD 3	40 25 00 40 25 15	74 08 11 74 14 50	2110DBG 2110DBG 2110DBG 2110DBG 2110DBG 2110DBG	73 20 90 90 90	400- 430 354- 364 231- 271 231- 271 231- 271	AUG 31, 1977 JAN 13, 1977 OCT 21, 1976 JAN 5, 1977 SEPT 1, 1977	2.8 2.1 6.2 4.4 3.9
195 111	KEANSBURG BORO MUA 5A W KEANSBURG WC-HAZLET 1	40 26 21 40 25 33	74 07 43 74 09 32	2110DBG 2110DBG 2110DBG 2110DBG 2110DBG 2110DBG 2110DBG	10 10 59 59 59	290- 350 290- 350 290- 350 327- 366 327- 366 327- 366	OCT 20, 1976 JAN 7, 1977 AUG 31, 1977 OCT 20, 1976 JAN 6, 1977 AUG 31, 1977	4.0 1.8 4.0 3.3 1.8 3.0
112 197 316 199	W KEANSBURG WC-HAZLET 2 KEYPORT RORO WD 7 SANDY HOOK SP OBS 1 KERR GLASS CO	40 25 37 40 25 35 40 25 36 40 25 42	74 09 33 74 12 14 73 59 05 74 12 20	2110DBG 2110DBG 2110DBG 2110DBG 2110DBG 2110DBG	44 44 35 11 20	312- 352 312- 352 304- 354 371- 391 285- 315	OCT 20, 1976 AUG 31, 1977 OCT 20, 1976 SEPT 7, 1977 JAN 5, 1977	2.4 2.0 2.6 2.2 2.0
294 317 201	MATAWAN BORO WD 1 Sea coast products 1 Lex lucas	40 24 27 40 26 12 40 26 15	74 13 45 74 05 11 74 10 55	2110DBG 2110DBG 2110DBG 2110DBG 2110DBG 2110DBG	30 30 10 10 20	210- 235 210- 235 420** 420** 250- 282		3.3 0.7 6.3 9.3 3.1
299 191 202	MATAWAN TWP WD-LAYNE 2 Keansburg boro Mua 6–68 Keyport boro WD 5	40 26 04 40 26 20 40 26 24	74 14 17 74 07 42 74 11 45	211FRNG 211FRNG 2110DBG 2110DBG 2110DBG 2110DBG	70 70 10 10 10	422- 457 422- 457 302- 362 302- 362 204- 261	OCT 21, 1976 SEPT 1, 1977 OCT 20, 1976 AUG 31, 1977 OCT 20, 1976	5.5 2.9 3.6 4.6 9.0
206 196 208	KEYPORT BORO WD 4 KEANSBURG BORO MUA 3 INFERN-O-THERM CO	40 26 26 40 26 28	74 11 42 74 07 44 74 11 29	2110DBG 2110DBG 2110DBG 2110DBG 2110DBG 2110DBG	14 12 12 12 15	225- 285 308- 348 308- 348 308- 348 308- 348 300**	MAR 30, 1977 OCT 20, 1976 JAN 7, 1977 AUG 31, 1977	7.3 3.3 2.0 0.4 98

.

Table 3.--Well records and chloride analyses from saltwater monitoring network

MAP* NO.	LOCAL NAME AND Well Number	LATITUDE	LONGITUDE	GEOLOGIC UNIT	ELEVA- TION OF LAND SURFACE ABOVE NGVD OF 1929 (FT)	SCREENED INTERVAL (FT)	DATE OF Sample	CHLO- RIDE (MG/L AS CL)
419	UNION BEACH BORO WD 1-62	40 26 32	74 10 49	2110DBG 2110DBG 2110DBG 2110DBG 2110DBG 2110DBG 2110DBG	10 10 10 10 10 10	235- 285 235- 285 235- 285 235- 285 235- 285 235- 285 235- 285	OCT 21, 1976 JAN 6, 1977 MAR 30, 1977 APR 20, 1977 AUG 15, 1977 SEPT 1, 1977	194 198 224 232 260 250
453 420 424	UNION BEACH BORO WD 3-77 UNION BEACH BORO WD 2-69 INT FLAVOR FRAG 2	40 26 32 40 26 34 40 26 41	74 10 51 74 10 52 74 09 11	21 1FRNG 2110DBG 2110DBG 2110DBG 2110DBG 2110DBG 2110DBG	10 10 10 10 10 10	480- 532 262- 289 262- 289 302- 326 302- 326 302- 326	SEPT 1, 1977 OCT 21, 1976 MAR 30, 1977 OCT 20, 1976 JAN 6, 1977 SEPT 1, 1977	4.3 401 660 3.3 2.2 0.2
423 320 321	INT FLAVOR FRAG 1 NPS-SANDY HOOK 5A-70 NPS-SANDY HOOK 4	40 26 41 40 27 05 40 27 06	74 09 19 73 59 59 73 59 52	2110DBG 2110DBG 2110DBG 211FRNG 2116DBG	10 10 10 10 15	298- 328 298- 328 298- 328 838- 878 332- 486	OCT 20, 1976 JAN 6, 1977 SEPT 1, 1977 SEPT 1, 1977 SEPT 1, 1977 SEPT 1, 1977	2.3 2.8 1.0 7.0 42

wells in Monmouth County, 1977 water year--Continued

*Well locations shown in figure 7. **Total depth of well.

At Union Beach, well 2-69 (map No. 420) was sampled in October 1979 and in October 1981, and the chloride concentrations were 950 and 1,400 mg/L, respectively. These concentrations are the highest of record for the two wells in the Old Bridge aquifer at Union Beach (wells 2-69 and 1-62), even though both wells have not been pumped except for monitoring, since late 1977 or early 1978. The increasing chlorides at the Union Beach well field indicate a continuing movement of high chloride water in the Old Bridge aquifer to the southeast. Starting in 1977, Union Beach used the well tapping the Farrington aquifer, well 3-77 (map No. 453), for their total water supply. In this area of Monmouth County, the Farrington aquifer has not experienced saltwater intrusion.

As of 1981, elevated chlorides were not measured in any wells in the Old Bridge aquifer in areas surrounding the Keyport and Union Beach well fields except for the following. Samples collected from a well owned by the Keansburg Amusement Park Co. located in the extreme northern tip of Keansburg Borough, about 1,000 ft from Raritan Bay, contained elevated concentrations of chloride. This well (screened interval 200-250 ft) was unknown to us prior to 1978, consequently, no data is shown in either table 3 or figure 7. However, samples collected in September or October in 1978, 1979, and 1981 yielded 18, 20, and 38 mg/L of chloride, respectively (all above the background level of 5 mg/L). Wells owned by the Keansburg MUA, located 1.2 mi south of the Amusement

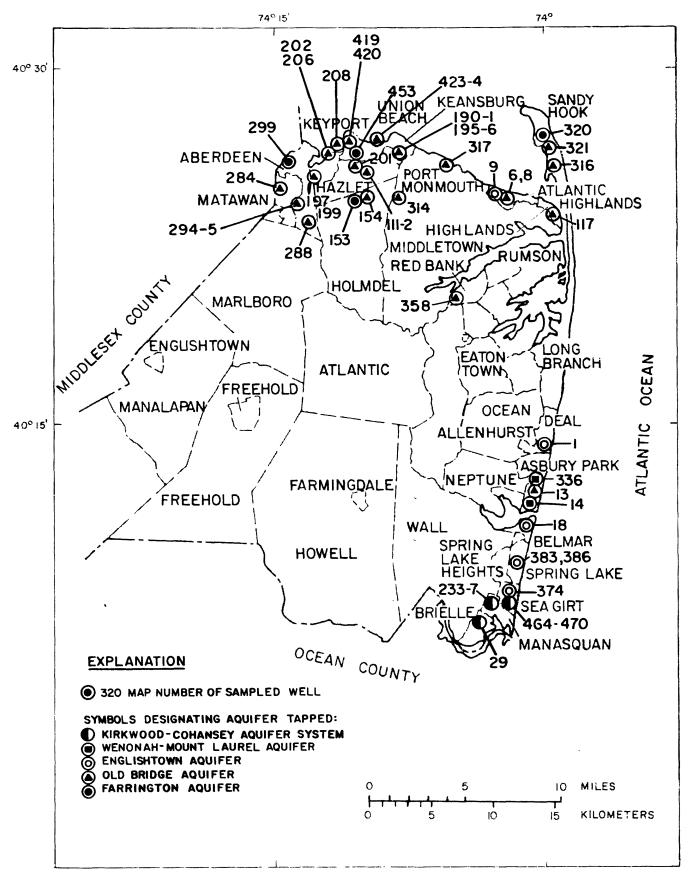


Figure 7.--Location of saltwater monitoring network wells in Monmouth County.

Company well, also yielded elevated chloride concentrations in 1980-81. Chlorides from two of the four Keansburg MUA wells, 4 and 6-68 (map Nos. 190, 191), were 26 mg/L and 18 mg/L, respectively, in September 1981. Prior to 1980, chlorides from these wells varied between 1 and 5 mg/L. The source or significance of these elevated chlorides is not known at this time.

The 1977 analyses of water samples from wells along Raritan Bay east of Keansburg at Port Monmouth, from Atlantic Highlands and Highlands Boroughs, and at Sandy Hook ranged from about 1.0 to 9.0 mg/L. The NPS-Sandy Hook well 4 (map No. 321) yielded a higher chloride concentration of 42 mg/L in 1977. The range in concentration from 1948-77 was from 6.0 mg/L in 1956 to 68 mg/L in 1968. This Sandy Hook well taps a shallow zone within the Potomac-Raritan-Magothy aquifer system. Minard (1969, plate 1) indicates that Holocene beach sands directly overlie the Magothy Formation approximately 2 mi north of the NPS-Sandy Hook well 4. Because the beach sands are in direct contact with Raritan Bay and the Atlantic Ocean, the source of the high chloride may be offshore. This area of northern Monmouth County adjacent to the bays and ocean is especially susceptible to saltwater intrusion.

Along the Atlantic Coast in Monmouth County, 16 wells were sampled from Allenhurst southward to Brielle. Chloride concentrations from wells tapping the Old Bridge, Englishtown, and Wenonah-Mount Laurel aquifers ranged from 0.5 to 3.5 mg/L. The highest chloride concentrations (8-14 mg/L) were from eight wells tapping the Kirkwood-Cohansey aquifer system at Sea Girt, Manasquan, and Brielle Boroughs. A review of past records indicates no significant change in chlorides.

Ocean County

Twenty-six wells screened in the Potomac-Raritan-Magothy aquifer system, the Englishtown and Wenonah-Mount Laurel aquifers, the aquifer in the Manasquan Formation, the Atlantic City 800-foot sand in the Kirkwood Formation, and the Kirkwood-Cohansey aquifer system were sampled during 1977. Well records and chloride analyses are shown in table 4, and the well locations are shown in figure 8. Results from the 1977-81 sampling and from past records indicate no significant change in chloride concentration in most wells. The two exceptions are wells tapping the Kirkwood-Cohansey aquifer system at Point Pleasant Beach and at Seaside Heights Boroughs.

The intrusion of saline water into the Kirkwood-Cohansey aquifer system at Point Pleasant Beach was documented in 1972 (Donsky, written communication, 1972). Since that time saline water has been detected in samples from both wells 9 and 10 (map Nos. 521, 523, fig. 9). Well 10 is the northernmost well in the three-well system. Well 9 is about 1,800 ft south of well 10. Chloride concentrations from samples collected since the mid-1970's generally have exceeded 100 mg/L, and an increasing trend with time is evident. The reason for the decrease in chloride from Well 9 in 1981 is not known, but it is probably of little consequence. As of 1979, the chloride concentration from well 11 (map No. 579) was 13 mg/L and has not increased significantly. Well 11 is about 2,500 ft south of well 9.

Seaside Heights currently has three wells tapping the Kirkwood-Cohansey aquifer system and one tapping the aquifer in the Manasquan Formation. The historical record for the latter well does not indicate an upward trend in chloride concentration. However, samples from two of the three wells in the Kirkwood-Cohansey aquifer system, 1R and 3 (map Nos. 538, 539), do show a substantial rise in chloride especially since 1977 (fig. 9). These three wells are located on the bay side of the island, separated by approximately 2,000 ft.

At both Point Pleasant Beach and Seaside Heights, increases in chloride are probably attributable to saltwater, under pumping influence, entering the water-table aquifer near Barnegat Bay and/or the ocean and infiltrating downward into the hydraulically connected Kirkwood-Cohansey aquifer system.

25

Table 4.--Well records and chloride analyses from saltwater monitoring network

wells in Ocean County, 1977 water year

[Geologic unit (aquifer): 121CKKD - Kirkwood-Cohansey aquifer system; 122KRKDL - Kirkwood Formation, Atlantic City 800-foot sand; 124MNSQ - Manasquan aquifer; 211EGLS - Englishtown aquifer; 211MRPA - Potomac-Raritan-Magothy aquifer system]

MAP* NO.	LOCAL NAME AND Well Number	LATITUDE	LONGITUDE	GEOLOGIC UNIT	ELEVA- TION OF LAND SURFACE ABOVE NGVD OF 1929 (FT)	SCREENED INTERVAL (FT)	DATE OF Sample	CHLO- RIDE (MG/L AS CL)
9 549 567 4 512	BEACH HAVEN BORO WD 8 SHIP BOTTOM BORO WD 5-74 BARNEGAT WC 4-75 BARNEGAT LIGHT BORO WD 2 OCEAN TWP MUA 1-60	39 33 46 39 38 48 39 45 20 39 45 24 39 47 44	74 14 30 74 10 53 74 13 17 74 06 32 74 11 29	122KRKDL 122KRKDL 121CKKD 124MNSQ 121CKKD	5 25 7 10	572- 656 528- 588 141- 163 593- 646 140- 160	JULY 12, 1977 JULY 12, 1977 JULY 12, 1977 JULY 12, 1977 JULY 12, 1977 JULY 12, 1977	5.9 4.5 7.0 2.6 6.0
513 613 23 540 612	GARDEN STATE PKWY 1 OBS BERKELEY WC-PINEWALL SHORE WATER CO 2 SEASIDE PARK BORO WD 3 BERKELEY WC-BAYVILLE	39 47 42 39 52 48 39 54 23 39 54 51 39 54 54	74 14 20 74 10 11 74 04 59 74 05 02 74 09 06	121CKKD 121CKKD 124MNSQ 124MNSQ 121CKKD	50 45 10 4 20	18- 21 200** 495- 527 459- 503 90**	JAN 20, 1977 JULY 21, 1977 JULY 13, 1977 JULY 13, 1977 JULY 13, 1977 JULY 21, 1977	8.9 7.5 2.1 1.3 12
13 508 543 538 539	BEACHWOOD BORO WD 4 OCEAN GATE BORO WD 3 SEASIDE PARK BORO WD 5 SEASIDE HTS BORO WD 1R SEASIDE HTS BORO WD 3	39 55 30 39 55 28 39 56 07 39 56 36 39 56 43	74 12 21 74 08 26 74 04 43 74 04 39 74 04 43	121CKKD 121CKKD 124MNSQ 121CKKD 121CKKD	60 7 5 5 4	67- 97 133- 153 383- 425 144- 175 146- 156	JULY 12, 1977 JULY 21, 1977 JULY 13, 1977 JULY 13, 1977 JULY 13, 1977 JULY 13, 1977	9.3 7.1 2.4 37 15
453 454 80 614 504	LAVALLETTE BORO WD 4 LAVALLETTE BORO WD 2 OCEAN CO COLLEGE 2-70 TOMS R WC-SILVERTON 1-56 OCEAN CO WC-MANTOLOKING 7	39 58 08 39 58 08 40 00 05 40 00 20 40 02 10	74 04 16 74 04 21 74 09 37 74 07 29 74 03 10	211MRPA 211EGLS 121CKKD 121CKKD 211MRPA	5 5 15 6 10	1358-1515 1009-1136 66- 80 209- 236 1263-1369	JULY 13, 1977 JULY 13, 1977 JULY 13, 1977 JULY 13, 1977 JULY 13, 1977 JULY 14, 1977	2.1 3.4 9.3 5.6 2.2
6 524 553 579 521	OCEAN CO WC BAYHEAD 6 PT PLEASANT BORO WD 7 PT PLEASANT BORO WD 4 PT PLEAS BEACH BORO WD 11 PT PLEAS BEACH BORO WD 9	40 04 05 40 04 09 40 05 01 40 05 12 40 05 36	74 02 44 74 04 06 74 04 55 74 02 51 74 02 52	21 1EGLS 21 1MRPA 12 1CKKD 12 1CKKD 12 1CKKD 12 1CKKD	10 15 13 10 11	778- 818 1183-1219 45- 75 130- 143 96- 131	JULY 14, 1977 JULY 14, 1977 JULY 14, 1977 JULY 14, 1977 JULY 14, 1977 JULY 14, 1977	2.0 1.8 5.3 13 130
523	PT PLEAS BEACH BÒRO WD 10	40 05 51	74 02 43	121CKKD	10	86- 130	JULY 21, 1977	110

*Well locations shown in figure 8. **Total depth of well.

•

. .

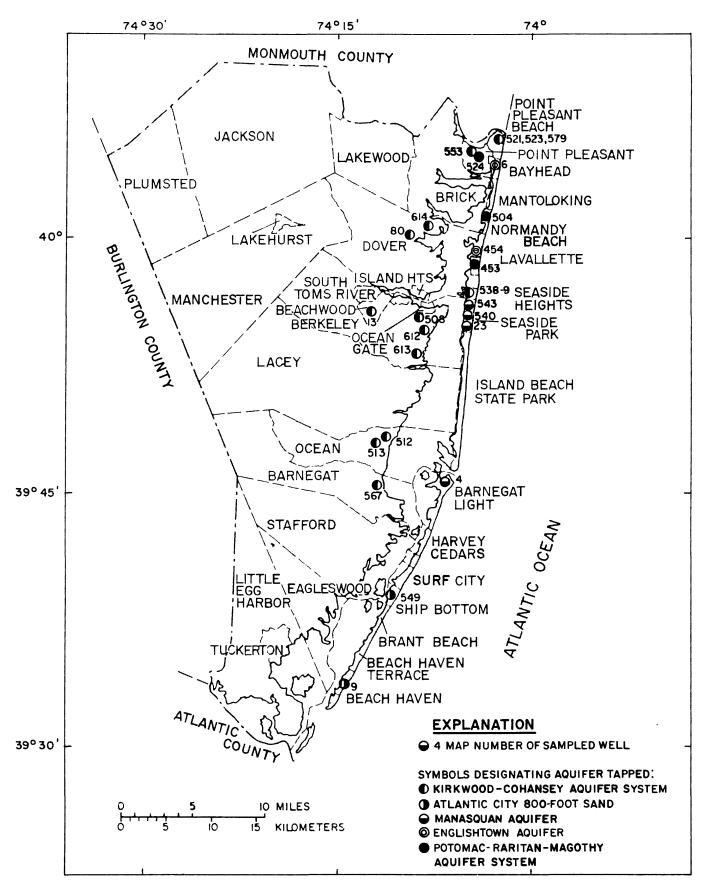


Figure 8.--Location of saltwater monitoring network wells in Ocean County.

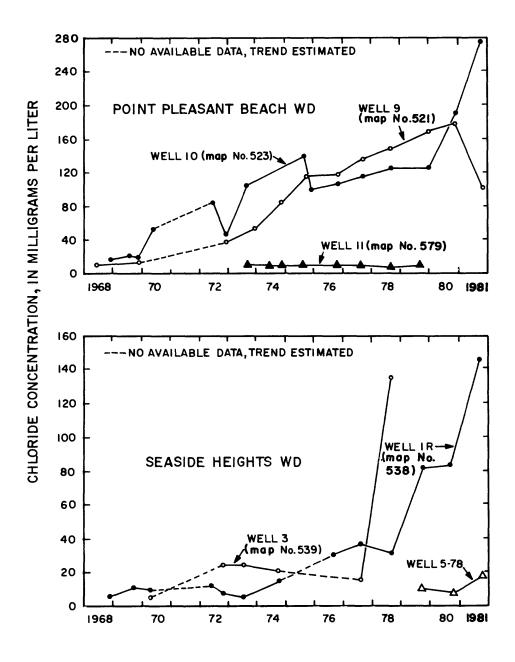


Figure 9.--Chloride concentrations from selected wells tapping the Kirkwood-Cohansey aquifer system at Point Pleasant Beach and Seaside Heights Boroughs, Ocean County, 1968-81.

Atlantic County

Twelve wells in Atlantic County were sampled in 1977. The well records and chloride analyses are shown in table 5, and the well locations are shown in figure 10. Data collected since 1977 in Atlantic County do not indicate any significant changes in the distribution of chlorides.

In Absecon, Pleasantville, and Somers Point, eight wells screened in the Kirkwood-Cohansey aquifer system were sampled in 1977, and the chloride analyses from seven of the wells (7.0 to 19 mg/L) are consistent with the historical record which shows no definite trend. The exception is a single well at Somers Point, NJWC-Atlantic Co.-Groveland (map No. 590). Somers Point is surrounded on three sides by tidal streams and Great Egg Harbor The well yielded a chloride concentration of 110 mg/L. Bay. This well has been affected by saltwater intrusion since 1969. This recent value, however, does not represent a sharply rising trend. Data supplied by the water company indicate chloride concentration from the Groveland well varied between 100 and 150 mg/L during 1969-77. Because of the high chloride concentration, this well has been pumped only during times of peak demand.

Chlorides in three wells tapping the Atlantic City 800-foot sand within the Kirkwood Formation at Ventnor City, Atlantic City, and Brigantine ranged from 3.3 to 11 mg/L and showed no change from long-term records.

The chloride concentration (54 mg/L) from the Marlborough-Blenheim well 3 (map No. 21) in Atlantic City is higher than nearby wells, but is within the range of chlorides recorded since the first sampling in 1934. From 1934 to 1954, chlorides ranged from 67 to 118 mg/L. The maximum concentration since the well was rebuilt in 1954 was 86 mg/L in 1972. It is believed that these elevated chlorides resulted primarily from leakage from the nearby Marlborough-Blenheim well 2 that was reported sealed in 1938. Furthermore, the structural integrity of well 3 has been suspect because an inner casing and new screen was installed in October 1954.

Since the 1930's other wells near the Marlborough-Blenheim Hotel have yielded higher than normal chlorides--greater than about 20 mg/L. Among these were Shelburne Hotel wells 1 and 2, Traymore Hotel wells 1 and 2, and the Dennis Hotel well. Barksdale and others (1936, table 5) lists 30 privately owned wells tapping the 800-foot sand in Atlantic City. By the early 1970's, the number was reduced to about 10 operable wells.

29

Table 5.--Well records and chloride analyses from saltwater monitoring network

wells in Atlantic County, 1977 water year

MAP# NO.	LOCAL NAME AND Well Number	LATITUDE	LONGITUDE	GEOLOGIC UNIT	ELEVA- TION OF LAND SURFACE ABOVE NGVD OF 1929 (FT)	SCREENED INTERVAL (FT)	DATE OF SAMPLE	CHLO- RIDE (MG/L AS CL)
582 583 590	NJWC-ATL CO-DOBBS AVE NJWC-ATL CO- 2 -5TH ST NJWC-ATL CO-GROVELAND	39 19 05 39 19 08 39 19 24	74 36 31 74 36 02 74 35 49	121CKKD 121CKKD 121CKKD	20 32 19	79- 99 78-118 129-159	JULY 20, 1977 JULY 20, 1977 JULY 20, 1977 JULY 20, 1977	17 17 110
353 599	NJWC-ATL CO-KIRKLIN AVE Ventnor city wd 7	39 20 01 39 20 32	74 35 22 74 28 59	121CKKD 122KRKDL	20 8	56- 71 800-830	JULY 20, 1977 JULY 20, 1977	18 6.4
362 21 30 549 558	NJWC-ATL CO-OAK AVE MARLBOROUGH-BLENHEIM 3 CHALFONTE HOTEL-NEW NJWC-ATL CO-MILL ROAD NJWC-ATL CO-WOODLAND AVE	39 21 19 39 21 23 39 21 32 39 21 58 39 23 33	74 34 24 74 26 00 74 26 22 74 33 17 74 31 44	121CKKD 122KRKDL 122KRKDL 121CKKD 121CKKD	15 5 8 20 50	96-165 765-823 797-837 117-152 127-157	JULY 20, 1977 JULY 20, 1977 JULY 20, 1977 JULY 20, 1977 JULY 20, 1977 JULY 20, 1977	19 54 11 14 10
42 13	BRIGANTINE CITY WD 2-29 NJWC-ATL CO-ABSECON 1	39 24 56 3 9 25 51	74 21 22 74 30 23	122KRKDL 121CKKD	12 30	718-778 177-205	JULY 20, 1977 JULY 20, 1977	3.3 7.9

[Geologic unit (aquifer): 121CKKD - Kirkwood-Cohansey aquifer system; 122KRKDL - Kirkwood Formation, Atlantic City 800-foot sand]

*Well locations shown in figure 10.

The high chloride water was believed to be local contamination resulting from breaks in well casings or failures of plugs or packers installed between casing segments (Thompson, 1928, p. 98-99). Structural failures of this type could permit saline water to leak downward inside the well casings when the wells were not in use. The Cohansey Sand which overlies the Kirkwood Formation is known to contain brackish water at Atlantic City (Thompson, 1928, p. 16; Barksdale and others, 1936, p. 6; Clark and others, 1968, p. 13). Chloride concentrations from samples of suspect wells typically ranged from several hundred to over 1,000 mg/L. Due to a lack of information, it is not known which wells leaked the salty water and which were affected by the residual water from the leaky wells. To date, however, there is no evidence in the Atlantic City area of lateral saltwater intrusion in the 800-foot sand from a seaward direction. Nevertheless, the probability of this occurrence is as significant today as it was in the 1930's. (See Barksdale and others, 1936, p. 117-125.)

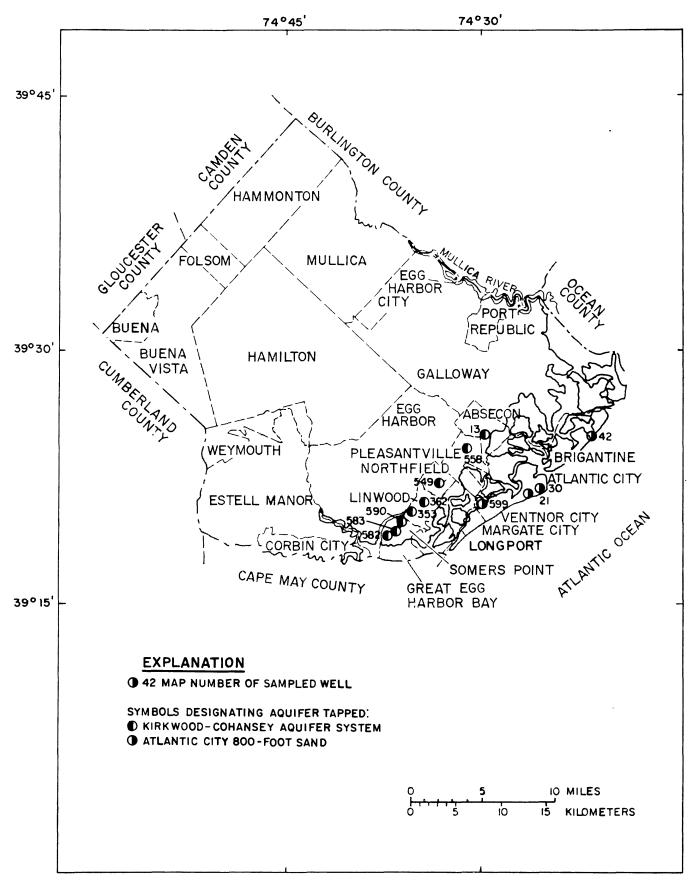


Figure 10.--Location of saltwater monitoring network wells in Atlantic County.

Cape May County

Samples were collected from 24 wells in Cape May County in 1977. Two wells tap aquifers in the Cape May Formation, 14 tap the Cohansey Sand, 7, the Atlantic City 800-foot sand within the Kirkwood Formation, and 1, the Rio Grande water-bearing zone within the Kirkwood. The Cohansey Sand in Cape May County is an artesian aquifer. Well records and chloride analyses are shown in table 6, and the well locations are shown in figure 11.

Table 6.--Well records and chloride analyses from saltwater monitoring network

wells in Cape May County, 1977 water year

[Geologic unit (aquifer): 112CPMY - Cape May Formation, undifferentiated; 112ESRNS - Cape May Formation, estuarine sand facies; 121CNSY - Cohansey Sand; 122KRKDU - Kirkwood Formation, Rio Grande water-bearing zone; 122KRKDL - Kirkwood Formation, Atlantic City 800-foot sand]

MAP# NO.	LOCAL NAME AND Well Number	LATITUDE	LONGITUDE	GEOLOGIC UNIT	ELEVA- TION OF LAND SURFACE ABOVE NGVD OF 1929 (FT)	SCREENED INTERVAL (FT)	DATE Of Sample	CHLO- RIDE (Mg/L AS CL)
150 11 27 28 29	WEST CAPE MAY 1 OBS CAPE MAY CITY WD COL 1 CAPE MAY CITY WD 1 HARBESON-WALKER REF CO 2 HARBESON-WALKER REF CO 1	38 56 07 38 56 13 38 56 43 38 56 43 38 56 43 38 56 45	74 55 52 74 54 57 74 55 33 74 57 55 74 58 03	121CNSY 121CNSY 121CNSY 121CNSY 121CNSY 121CNSY	7 11 12 10 10	283-293 281-321 277-306 235-265 296-321	SEPT 15, 1977 SEPT 15, 1977 AUG 31, 1977 AUG 31, 1977 AUG 31, 1977	490 850 140 196 270
17 36 43 49 52	US COAST GUARD 1 Cape May City WD 2 Cape May City WD 3 Higbee Beach 3 Obs Lower TWP MUA 1	38 56 50 38 57 01 38 57 24 38 58 04 38 58 53	74 53 11 74 55 28 74 55 21 74 57 42 74 57 12	121CNSY 121CNSY 121CNSY 121CNSY 121CNSY 121CNSY	11 12 15 6 18	292-322 174-282 -276 240-250 241-262	AUG 31, 1977 AUG 31, 1977 AUG 31, 1977 SEPT 16, 1977 AUG 31, 1977	45 40 22 16 14
54 154 67 70 72	LOWER TWP MUA 2 WILDWOOD WD PINE 2 WILDWOOD WD RIO GRANDE 38 WILDWOOD WD RIO GRANDE 36 WILDWOOD WD RIO GRANDE 31	38 59 05 38 59 32 39 01 35 39 01 37 39 01 38	74 56 25 74 48 51 74 53 52 74 53 52 74 53 52 74 53 50	121CNSY 121CNSY 122KRKDU 112CPMY 112ESRNS	12 10 10 9 10	212-247 304-354 461-590 48- 63 108-135	AUG 31, 1977 SEPT 1, 1977 AUG 31, 1977 AUG 31, 1977 AUG 31, 1977 AUG 31, 1977	13 120 30 26 13
74 1 <u>32</u> 89 4 5	WILDWOOD WD RIO GRANDE 29 STONE HARBOR WD 4 OYSTER LAB 4 OBS AVALON BORO WD 6-68 AVALON BORO WD 8-76	39 01 39 39 03 01 39 04 25 39 05 28 39 05 45	74 53 49 74 45 45 74 54 46 74 43 38 74 43 26	121CNSY 122KRKDL 121CNSY 122KRKDL 122KRKDL 122KRKDL	8 10 7 10 8	191-231 830-880 195-210 880-920 784-839	AUG 31, 1977 SEPT 1, 1977 SEPT 16, 1977 SEPT 1, 1977 SEPT 1, 1977 SEPT 1, 1977	12 31 10 46 13
129 136 106 125	SEA ISLE CITY WD 2 Aramingo wc 1 Njwc-ocean city dist 7 Njwc-ocean city dist 11	39 09 26 39 11 52 39 13 43 39 17 26	74 41 31 74 39 27 74 37 55 74 33 52	122KRKDL 122KRKDL 122KRKDL 122KRKDL 122KRKDL	7 7 8 10	744-861 802-834 760-810 747-797	SEPT 1, 1977 SEPT 1, 1977 SEPT 1, 1977 SEPT 1, 1977 SEPT 1, 1977	14 14 12 7.2

*Well locations shown in figure 11.

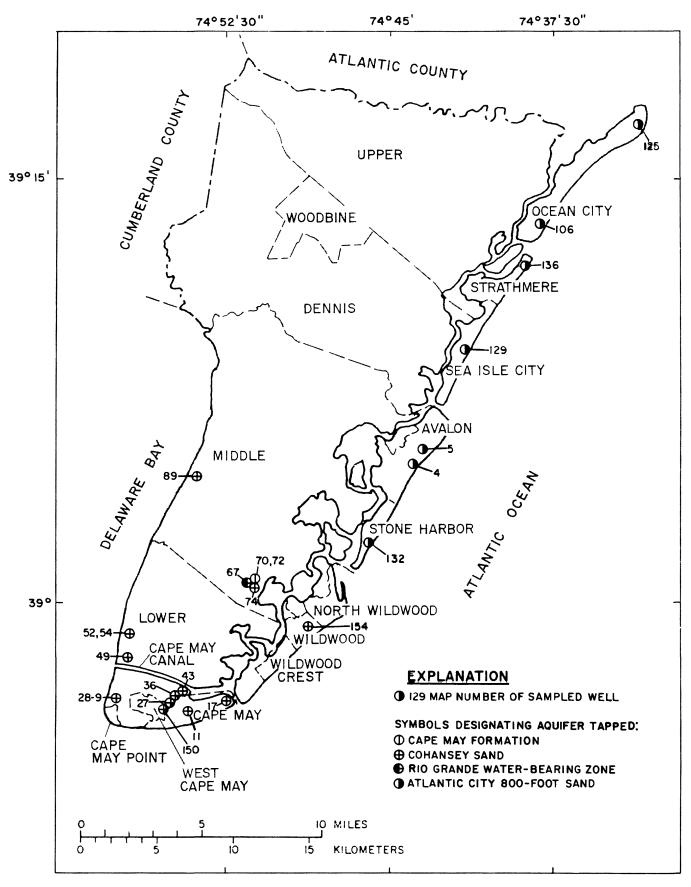


Figure 11.--Location of saltwater monitoring network wells in Cape May County.

High chloride concentrations from wells in the Cohansey Sand in the lower peninsula indicate a serious salinity problem. Lateral saltwater intrusion into the Cohansey south of the Cape May Canal, first documented by Gill (1962), has continued and chloride concentrations have risen substantially in the operational wells in the coastal areas. Chloride concentrations from two wells, Cape May City WD 1 (map No. 27) and Harbeson-Walker Refractories Co. 2 (map No. 28), are shown in figure 12. In contrast, the other two city wells (Cape May City WD 2 and 3) shown in figure 12, further to the north in Lower Township, had lower concentrations. Increased chloride concentrations in the monitoring wells indicate that saline water is moving further inland toward Cape May City WD wells 2 and 3 (map Nos. 36, 43). The increasing trend in chloride in the WD 2 well is of major significance. Chloride concentrations in samples collected from well 2 in 1981 were 65 mg/L, compared to 40 mg/L in 1977 and 19 mg/L in 1973. These two wells are about 2,000 and 4,000 feet, respectively, north of well 1, and they provide the public water supply (1.2 Mgal/d in 1980) for the entire area south of Cape May Canal, including the U.S. Coast Guard base.

The areal extent of saline water intrusion in the Cohansey Sand in the Cape May City area is shown for 1958 and 1977 in figure 13. An estimate of the inland movement of saline water since 1958 can be made by comparing the positions of the 50 and 500 mg/L isochlors for the two years. The net movement between the old and new city well fields was about 2,500 ft during the 20-year period. The difference in shape of the isochlors for 1958 and 1977 is due largely to changes in the distribution of withdrawals. Through the mid 1960's, 6 to 8 production wells were withdrawing water regularly in Cape May City, West Cape May, and Cape May Point. By 1977, all but two of these had been abandoned. The only wells in regular use in 1977 were the Harbeson-Walker Refractories Co. wells 1 and 2. Increases in chloride concentration in two observation wells, West Cape May 1 obs. (map No. 150) and Cape May City WD Col. (Columbia Avenue) 1 (map No. 11) were as follows:

	Chloride concentration, in milligrams per liter					
Well name	Previous sampling					
	1957	1964	1965	1977		
West Cape May 1 obs. Cape May City WD Col. 1 Higbee Beach 3 obs.	 16	690	220	490 850 16		

See figures 11 and 13 for their locations. The Higbee Beach well (map No. 49), north of the Canal, has not shown significant change in chloride concentration in recent years.

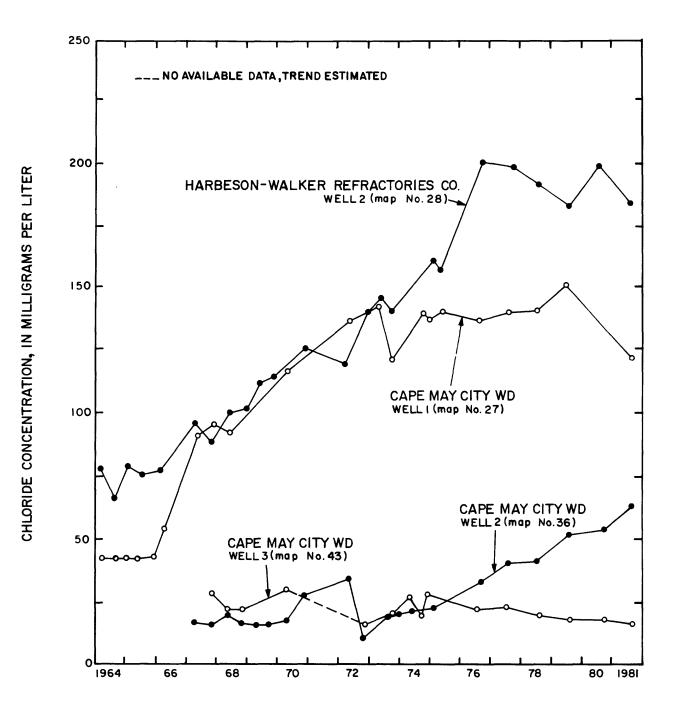


Figure 12.--Chloride concentrations from wells tapping the Cohansey Sand in the Cape May City area, Cape May County, 1964-81.

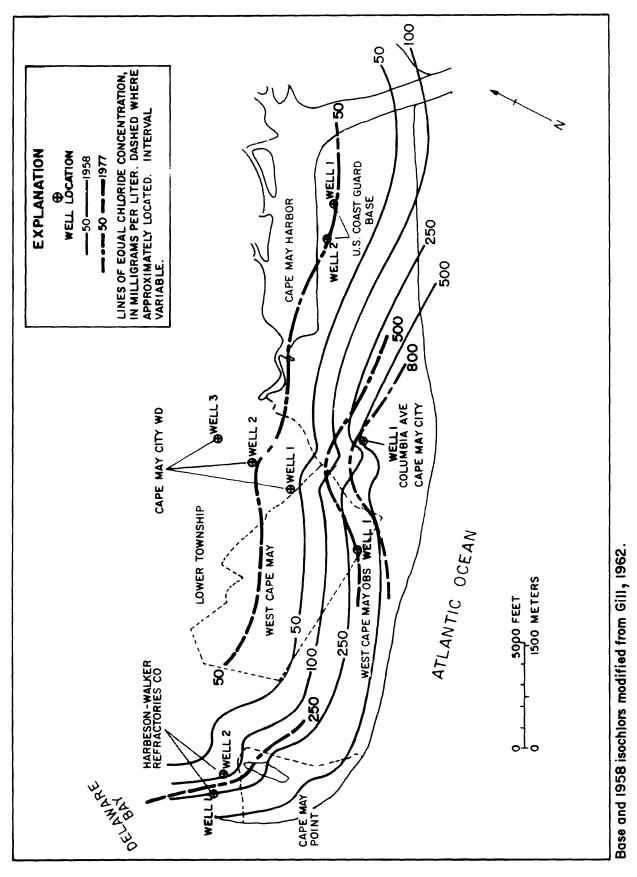


Figure 13.--Isochlors for the Cohansey Sand in the Cape May City area, 1958 and 1977.

The salinity problem in the Cohansey Sand in the lower peninsula is especially significant because there is no alternative freshwater source in the area. The water in both the Rio Grande water-bearing zone and the Atlantic City 800-foot sand within the Kirkwood Formation in this area is more saline than in the Cohansey Sand (Gill, 1962, p. 99, 103, and 107). To obtain potable ground water, it would be necessary for Cape May City to either establish a new well field north of the canal in Lower Township, or purchase water from another supplier in that same area.

No significant increases in chloride concentration are indicated elsewhere in Cape May County through 1981. Samples from wells in Lower and Middle Townships ranged from 10 to 30 mg/L and are similar to previously recorded data. Chloride concentrations from wells in the Atlantic City 800-foot sand within the Kirkwood Formation along the barrier beach islands from Stone Harbor north to Ocean City ranged from 7.2 to 46 mg/L, with the higher concentrations at Stone Harbor and Avalon. There has not been a significant change in concentration at these two municipalities during the past 20 years. However, the proximity of relatively high chloride concentrations (more than 250 mg/L) in the 800-foot sand at Wildwood City as recently as 1971 indicates that the Stone Harbor and Avalon areas are susceptible to saltwater intrusion. The freshwater-saltwater transition zone in the 800-foot sand was defined by Gill (1962, p. 103) based on chloride data collected through 1957. The present delineation of this transition zone is not known because there are no existing wells in the 800-foot sand south of Stone Harbor. (See Gill, 1962, p. 96-109.)

Cumberland County

Five wells were sampled for chloride in the 1977 water year; two tap the unconfined Kirkwood-Cohansey aquifer system and three tap the Piney Point aquifer. Well records and chloride analyses are shown in table 7, and the well locations are shown in figure 14. Chloride ranged from 4.5 to 6.5 mg/L for the wells in the Kirkwood-Cohansey aquifer system and from 68 to 81 mg/L for wells tapping the Piney Point. These concentrations are similar to previous concentrations, and upward trends are not evident. However, chlorides in the Piney Point aquifer are significantly higher than natural background levels (20 mg/L or less) in the other Coastal Plain aquifers.

Table 7.--Weil records and chloride analyses from saltwater monitoring network

wells in Cumberland County, 1977 water year

	[Geologic unit (aquifer):	121CKKD - K		ansey aquii	ELEVA-	; 124PNPN -	Piney Point aqu	
MAP# NO.	LOCAL NAME And Well Number	LATITUDE	LONGITUDE	GEOLOGIC UNIT	TION OF LAND SURFACE ABOVE NGVD OF 1929 (FT)	SCREENED INTERVAL (FT)	DATE OF SAMPLE	CHLO- RIDE (MG/L AS CL)
123 52 56 92 61	NJDIA LEESBURG SP FARM 1 Fortescue realty 4 Money Island Marina 1 Bay PT Rod & Gun Club 2 Sea breeze tavern 2	39 13 56 39 14 20 39 17 04 39 17 46 39 19 26	74 57 51 75 10 23 75 14 15 75 15 10 75 19 21	121CKKD 121CKKD 124PNPN 124PNPN 124PNPN 124PNPN	13 8 4 5 4	248-268 283-303 350-370 397-417 281-354	JULY 21, 1977 JULY 21, 1977 JULY 21, 1977 JULY 21, 1977 JULY 21, 1977 JULY 21, 1977	4.5 6.5 77 81 68

[Cashada unit (anud Cam) . 1010KKD Kirkwood-Cohansey aquifer system, 124PNPN - Piney Point aquifer]

*Well locations shown in figure 14.

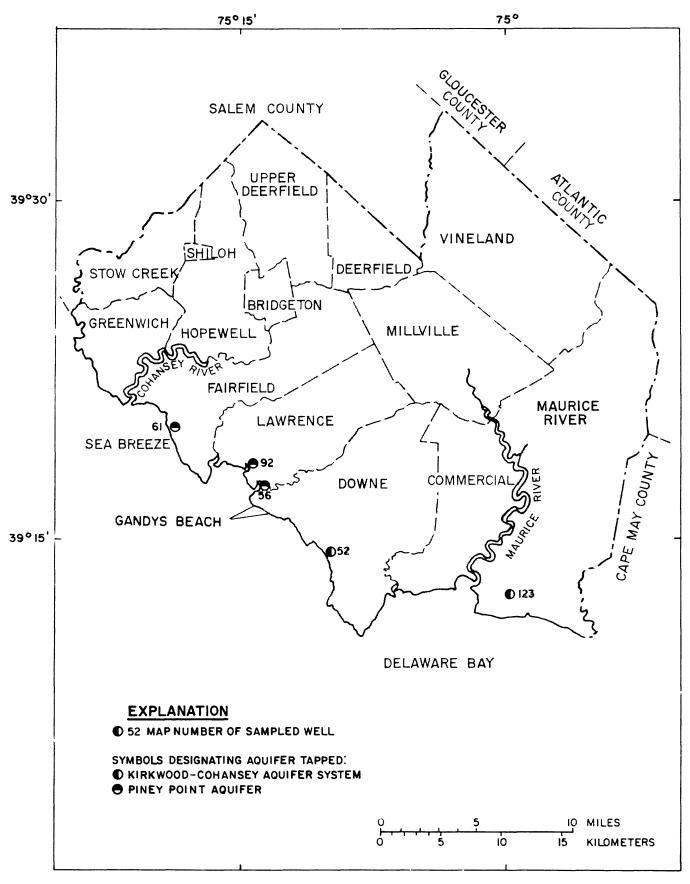


Figure 14.-Location of saltwater monitoring network wells in Cumberland County.

At Gandys Beach, some samples collected subsequent to 1977 from wells tapping the Piney Point aquifer have yielded excessively high chlorides. This aquifer is used for domestic and semipublic water supply in coastal communities from Gandys Beach northward to Sea Breeze. Long-term records from 1963 to 1981 for all communities except Gandys Beach show that chlorides have varied between 55 and 85 mg/L, and no trends are evident. At Gandys Beach, three wells sampled from 1978-81 show chlorides with above background levels:

Well name	Screened interval,	Chloride concentration, in milligrams per liter				
or owner	in feet	1978 1979 1980			1981	
M. Gandys Beach	378-402	8 30	900	9 30	1000	
G. Stanger H. Myers	440* 399-409	220	220 55	 91	200 140	
R. Gondolf	405 - 425		60			

*Total depth of well.

The M. Gandys Beach well, yielding the highest chlorides, was Graphs of chloride concentrations from constructed about 1945. this well and other nearby wells at Gandys Beach and at Money Island Marina are shown in figure 15 and the well locations are shown in figure 16. The elevated chlorides from the M. Gandys Beach well, about 500 to 1,000 mg/L, were first detected in 1973-74, and noted again in higher concentrations from 1978 to 1981. Abnormally high chlorides also were measured in 1978-81 in the G. Stanger and H. Myers wells, about 100 ft south and 300 ft west, respectively, from the M. Gandys Beach well (fig. 16). Another well at Gandys Beach owned by R. Gondolf and located about 1,500 ft west of the M. Gandys Beach well was sampled only in 1979 (not shown in fig. 15). This sample had a chloride concentration of 60 mg/L, which is comparable to long-term records from other wells. Figure 15 also contains chloride data for the Money Island Marina 1 well located about 1 mi north of the M. Gandys Beach well. Since 1963, chlorides from this well varied between about 70 and 85 mg/L with no evident trends.

The source of the relatively high chlorides in the Piney Point aquifer near Delaware Bay can not be substantiated at present. Nemickas and Carswell (1976) suggest two possible causes. First, a freshwater-saltwater transition zone may exist within the Piney Point aquifer near the wells in question. The second possibility is vertical leakage of high chloride water from Delaware Bay through the overlying Kirkwood Formation.

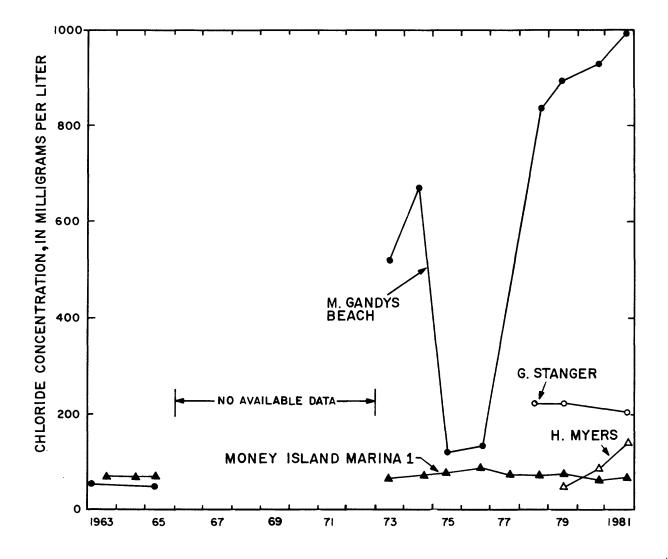


Figure 15.--Chloride concentrations from selected wells tapping the Piney Point aquifer in the Gandys Beach area, Cumberland County, 1963-81.

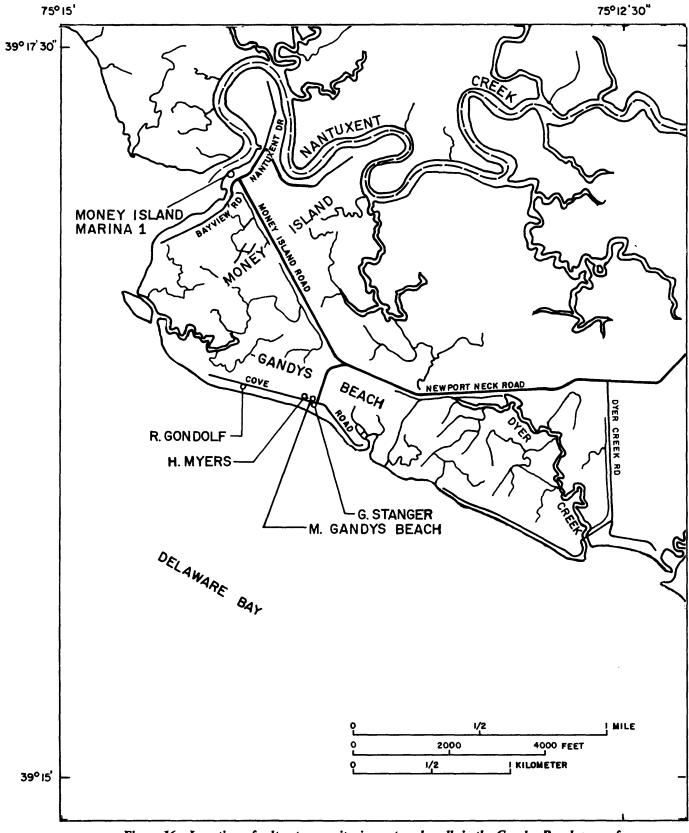


Figure 16.--Location of saltwater monitoring network wells in the Gandys Beach area of Cumberland County.

Abnormally high chlorides near the M. Gandys Beach well also may have resulted from a casing break in that well. If the casing failed, it probably failed fairly close to land surface where the water-table aquifer contains corrosive saltwater. Thus, the salty water may be entering the well bore and mixing with water from the Piney Point aquifer. Several factors support this. Based on conversations with the present owner and several users of the well water, the quality of water from this well has deteriorated in recent years. Not only have chloride and total dissolved solids increased, the hardness of the water has increased. This deterioration in quality was a major reason many customers decided to have new wells drilled. Also, when the well was sampled in 1978, 1979, and 1980, the pH of the water was lower than in most previous samplings, indicating a possible mixing of waters of different quality. The recent increases in chloride in the nearby Stanger and Myers wells and the age of the M. Gandys Beach well (37 years old) also support this theory.

A comprehensive study is needed to determine the exact cause and areal extent of the high chlorides in the Piney Point aquifer in Cumberland County.

Salem County

Samples were collected from 24 wells in Salem County during the 1977 water year. Well records and chloride analyses are shown in table 8, and the well locations are shown in figure 17. Eighteen of these wells are screened within the Potomac-Raritan-Magothy aquifer system. Thirteen of the eighteen wells are within 1.5 mi of the Delaware River in areas subject to induced recharge from the river. Chloride concentrations of 23 samples from these 13 wells ranged from 8.4 to 210 mg/L, and most are consistent with

Table 8.--Well records and chloride analyses from saltwater monitoring network

wells in Salem County, 1977 water year

MAP# NO.	LOCAL NAME AND Well Number	LATITUDE	LONGITUDE	GEOLOGIC UNIT	ELEVA- TION OF LAND SURFACE ABOVE NGVD OF 1929 (FT)	SCREENED INTERVAL (FT)	DATE OF Sample	CHLO- RIDE (Mg/L AS CL)
34 35 32 364 33	SALEM NUCLEAR GEN STA 1 SALEM NUCLEAR GEN STA 2 SALEM NUCLEAR GEN STA 3 SALEM NUCLEAR GEN STA 5 L ALLOWAY CR ELEM SCH 1	39 27 42 39 27 44 39 27 40 39 27 43 39 27 51	75 32 00 75 32 05 75 32 02 75 31 58 75 24 41	211MLRW 211MLRW 211MLRW 211MRPA 211MRPA 211MLRW	20 20 20 20 20 10	248-298 230-280 243-293 765-840 340**	OCT 7, 1976 OCT 7, 1976 OCT 7, 1976 OCT 7, 1976 OCT 7, 1976 SEPT 27, 1977	36 114 30 18 45
241 249 107	SALEM CITY WD-QUINTON ML Salem City WD-Keasb CR 2 NJ DEP-FORT MOTT SP 1	39 32 53 39 33 42 39 36 20	75 24 25 75 27 18 75 33 10	21 1MLRW 21 1MLRW 21 1MLRW 21 1MLRW 21 1MRPA 21 1MRPA 21 1MRPA	7 7 5 8 8	248 ** 248 ** 110-157 110-157 300-320 300-320	OCT 7, 1976 SEPT 27, 1977 OCT 7, 1976 SEPT 27, 1977 OCT 6, 1976 SEPT 22, 1977	14 17 54 26 102 98
108 112 354	VETS ADMIN-FINNS POINT PENNSVILLE TWP WD 4 WOODSTOWN BORO WD 2	39 36 41 39 37 54 39 39 04	75 33 22 75 31 48 75 19 46	21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA	7 7 10 10 45 45	282-319 282-319 117-137 117-137 670-705 670-705	OCT 6, 1976 SEPT 22, 1977 OCT 5, 1976 SEPT 22, 1977 OCT 7, 1976 SEPT 27, 1977	140 130 11 12 195 180
362 163 164	WOODSTOWN BORO WD 3 Richman ice cream 1 Richman ice cream 2	39 39 27 39 39 28 39 39 28	75 19 27 75 21 47 75 21 47	21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA	60 60 25 25 20	692-712 692-712 455-475 455-475 418-446	OCT 7, 1976 SEPT 27, 1977 OCT 7, 1976 SEPT 27, 1977 SEPT 27, 1977	182 190 22 24 50
117 118 119	PENNSVILLE TWP WD 3 PENNSVILLE TWP WD 1 PENNSVILLE TWP WD 2	39 3 9 54 39 39 58 39 40 09	75 30 13 75 30 45 75 30 43	21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA	7 7 8 7 7	87-102 87-102 213-238 213-238 210-230 210-230 210-230	OCT 5, 1976 SEPT 22, 1977 OCT 5, 1976 SEPT 22, 1977 OCT 5, 1976 SEPT 22, 1977	8.4 10 65 67 108 110
122 123 125 127	ATLANTIC CITY ELECTRIC 3R ATLANTIC CITY ELECTRIC 2 ATLANTIC CITY ELECTRIC 5 ATLANTIC CITY ELECTRIC 6	39 40 46 39 40 47 39 40 50 39 41 00	75 30 22 75 30 27 75 30 30 75 30 30	21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA	10 20 15 15 15	165-235 158-234 149-219 149-219 158-188	SEPT 22, 1977 SEPT 22, 1977 OCT 6, 1976 SEPT 22, 1977 SEPT 22, 1977	49 76 62 54 110
137 345 346	EI duPONT-DRINKWATER 8 Penns grove wc 2b Penns grove wc-layne 1	39 41 12 39 42 47 39 42 56	75 30 28 75 27 14 75 27 18	21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA 21 1MRPA	14 14 19 19 19	317-361 317-361 45- 60 317-357 317-357	OCT 6, 1976 SEPT 22, 1977 OCT 6, 1976 OCT 6, 1976 SEPT 22, 1977	64 70 15 199 210

[Geologic unit (aquifer): 211MLRW - Wenonah-Mount Laurel aquifer; 211MRPA - Potomac-Raritan-Magothy aquifer system]

*Well locations shown in figure 17. **Total depth of well.

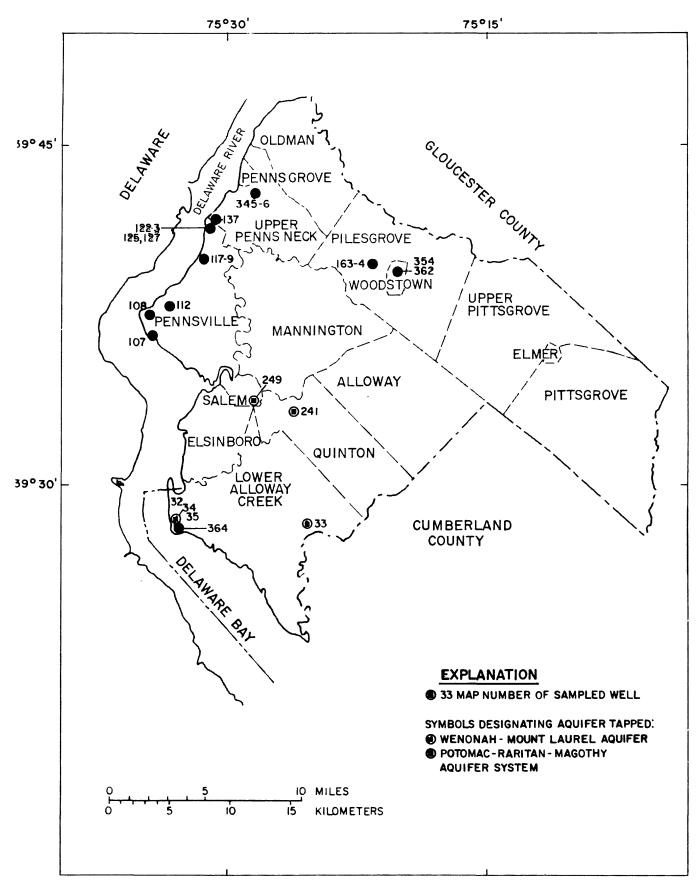


Figure 17.-Location of saltwater monitoring network wells in Salem County.

past records. However, five of these wells had record-high chloride concentrations (49-210 mg/L) in 1977. These include Penns Grove WC Layne 1, E.I. duPont Drinkwater 8, Atlantic City Electric Co. Deepwater 2 and 3R, and Pennsville Township WD 2 (map Nos. 346, 137, 123, 122, 119, respectively).

Chloride concentrations in seven samples from four wells tapping the Potomac-Raritan-Magothy aquifer system in the Woodstown area ranged from 22 to 195 mg/L. Concentrations from the two Woodstown Borough wells (180 and 195 mg/L) are now at record-high levels. In this region, the aquifer system is threatened by the lateral movement of highly saline water from the southeast (Barksdale and others, 1958). The approximate location of the freshwater-saltwater transition zone near the top of the aquifer system is shown in figure 1 (from Luzier, 1980, p. 6).

Chloride concentrations in six wells screened in the Wenonah-Mount Laurel aquifer in the southwestern part of the county ranged from 14 to 114 mg/L. The period of record for most of these wells is short and insufficient to determine trends. However, this aquifer is one of the most heavily used aquifers in the county, and continued surveillance is required to identify trends. The intrusion of saline water in this aquifer is believed to be a result of vertical leakage from the overlying water-table aquifers which are subject to tidal flooding (Rosenau and others, 1969, p. 43).

Since 1977, chloride concentrations have continued to increase in the wells tapping the Wenonah-Mount Laurel aquifer at the Salem Nuclear Generating Station in Lower Alloway Creek Township. The following comparison of 1977, 1979, and 1981 data illustrates this upward trend:

Well name		Chloride concentr in milligrams per			
	1977	1979	1981		
Salem Nuclear Generating Station					
Salem Nuclear Generating Station Well 1 Well 2	36 114	70 2 10	95 250		

Except as noted above, data collected since 1977 do not indicate any significant changes in chloride distribution in Salem County.

· ·

Gloucester County

The well records and chloride analyses for wells sampled in Gloucester County are shown in table 9, and the well locations are shown in figure 18. Samples from 21 wells tapping aquifers within the Potomac-Raritan-Magothy aquifer system do not indicate any significant changes in chloride concentrations. Chloride concentrations from 8 wells along the Delaware estuary between Paulsboro and Bridgeport in Logan Township ranged from 14 to 177 mg/L. Some chloride concentrations are at or near maximums of record, but a few others have shown slight to moderate decreases during the past 5 to 10 years. This decline (up to 64 mg/L) is most notable in well water at the Mobil Oil Corp. facility in Paulsboro. The aquifer system throughout this area receives induced recharge from the river, in addition to contamination from vertical leakage from the surface (Hardt and Hilton, 1969, p. 13).

In the inland areas of the county, recent data from wells at Clayton, Glassboro, Pitman, and Mullica Hill (South Jersey Water Supply Co.) indicate gradually increasing salinities. The increases in chlorides ranged from about 10 to 20 mg/L between 1967 and 1977. Here, as in the northeastern part of Salem County, the Potomac-Raritan-Magothy aquifer system is threatened with the lateral movement updip of saline water from the southeast (Barksdale and others, 1958). Recent data, however, do not indicate increasing chloride concentrations at Swedesboro or in municipalities north of Pitman.

Data collected subsequent to 1977 do not indicate any noteworthy change in chloride distribution in Gloucester County.

Table 9. --Well records and chloride analyses from saltwater monitoring network

wells in Gloucester County, 1977 water year

MAP# NO.	LOCAL NAME And Well Number	LATITUDE	LONGITUDE	GEOLOGIC UNIT	ELEVA- TION OF LAND SURFACE ABOVE NGVD OF 1929 (FT)	SCREENED INTERVAL (FT)	DATE OF Sample	CHLO- RIDE (MG/L AS CL)
1	CLAYTON BORO WD 3	39 39 12	75 05 22	211MRPA	133	746-800	NOV 5, 1976	142
2	CLANTON DODO ND H	20 40 12	75 05 59	21 1MRPA	133 140	746-800 670-740	SEPT 14, 1977 NOV 5, 1976	140 98
59 59	CLAYTON BORO WD 4 OWENS ILLINOIS 1	39 40 13 39 41 47	75 05 58 75 07 14	21 1MRPA 21 1MRPA	144	607-647	SEPT 14, 1977	65
60	GLASSBORO BORO WD 3	39 42 05	75 07 53	211MRPA	150	562-612	SEPT 14, 1977	68
225	PITMAN BORO WD P1	39 44 05	75 07 45	211MRPA	140	468-514	SEPT 14, 1977	44
130	SOUTH JERSEY WS CO 3	39 44 08	75 13 30	211MRPA	35	234-265	NOV 5, 1976	140
				211MRPA	35	234-265	SEPT 14, 1977	160
238	SWEDESBORO BORO WD 2	39 44 38	75 18 33	211MRPA	30	217-240	SEPT 16, 1977	62
6	WOODBURY WD-SEWELL 1A	39 46 27	75 08 13	211MRPA	20	271-312	SEPT 16, 1977	25
191	SEWELL WC 2	39 46 29	75 08 59	211MRPA	60	336-368	SEPT 16, 1977	29
194	MANTUA WC 3	39 47 32	75 10 36	211MRPA	10	230-265	SEPT 16, 1977	35
275	WENONAH BORO WD 2	39 47 51	75 09 12	211MRPA	30	270-310	SEPT 16, 1977	22
166	PENNS GROVE WC-BRIDGPT 2	39 47 55	75 21 08	211MRPA	20	65- 85 91-101	SEPT 21, 1977 SEPT 21, 1977	14 140
72	EI dupont repauno 3	39 49 36	75 17 47	21 1MR PA	10	91-101	SEPT 21, 1911	
79	EI dupont repauno 6	39 49 44	75 17 34	211MRPA	10	84-109	SEPT 21, 1977	130
331	WOODBURY WD RAILROAD 5	39 49 50	75 09 09	211MRPA	35	405-457	SEPT 16, 1977	27
94	MOBIL OIL-GREENWICH 44	39 49 58	75 15 12	211MRPA	20	116-136	SEPT 21, 1977	54
98	MOBIL OIL-GREENWICH 45	39 50 05	75 15 23	211MRPA	3	95-118	NOV 5, 1976	132
101	MOBIL OIL-GREENWICH 40	39 50 12	75 15 20	211MRPA	20	195-225	NOV 5, 1976	177
109	MOBIL OIL-GREENWICH 41	39 50 27	75 15 03	211MRPA	20	230-259	NOV 5, 1976	111
				211MRPA	20	230-259	SEPT 21, 1977	110
118	MOBIL OIL-GREENWICH 47	39 50 36	75 15 01	211MRPA	20	220-240	NOV 5, 1976	132
	NATTONAL DARK DODO UD O	20 51 56	75 10 53	211MRPA 211MRPA	20 30	220-240 241-282	SEPT 21, 1977 SEPT 21, 1977	130 32
207	NATIONAL PARK BORO WD 2	39 51 56	75 10 53	ZIIMKPA	30	241-202	SEF1 21, 19/1	36

[Geologic unit (aquifer): 211MRPA - Potomac-Raritan-Magothy aquifer system]

#Well locations shown in figure 18.

• ·

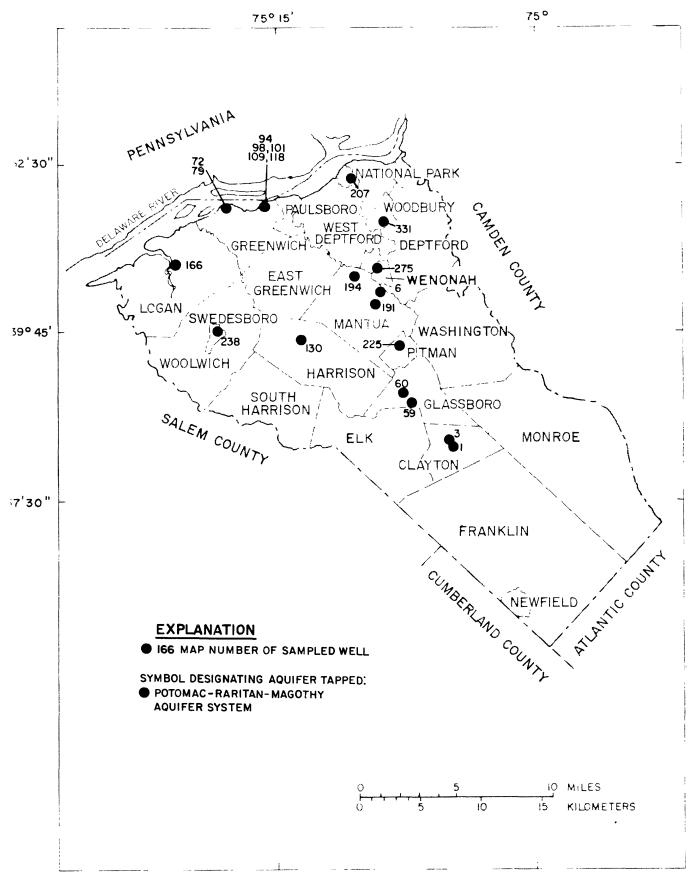


Figure 18.--Location of saltwater monitoring network wells in Gloucester County.

SUMMARY

During the 1977 water year, chloride concentrations were determined in samples from 202 wells, screened in 13 different aquifers in Middlesex, Monmouth, Ocean, Atlantic, Cape May, Cumberland, Salem, and Gloucester Counties. These data, complemented by data collected prior and subsequent to 1977, indicate that saline water is contaminating freshwater aquifers in parts of seven counties.

Encroachment of saltwater into freshwater aquifers in the Sayreville area of Middlesex County and in the lower peninsula of Cape May County has been reported for about 40 years and is now more extensive. Many production wells have been abandoned in both areas. In some existing production wells, chloride concentrations currently are approaching the 250 mg/L potable water standard.

The continual northward movement of saline water within the Potomac-Raritan-Magothy aquifer system toward pumping centers is threatening freshwater supplies. At Woodstown Borough in Salem County, chloride concentration was as high as 195 mg/L in 1977. In Gloucester County, 1977 chloride concentration in well water varied between 140 and 160 mg/L at Clayton Borough and at Harrison Township (Mullica Hill). Between 1977 and 1981, chloride concentrations did not change significantly in either of these areas.

Saltwater is also intruding into freshwater aquifers in other areas in the Coastal Plain, including the Keyport-Union Beach area in Monmouth County, Point Pleasant Beach and Seaside Heights Boroughs in Ocean County, Somers Point City in Atlantic County, and in areas adjacent to the Delaware estuary in Salem and Gloucester Counties.

Saltwater intrusion has resulted from extensive withdrawals of ground water. The resultant freshwater head declines have caused reversals in the natural hydraulic gradients permitting inland movement of saline water from adjacent saltwater bodies.

The downward leakage of saline water through damaged well casings has caused some local contamination of the Atlantic City 800-foot sand aquifer at Atlantic City. To date, however, there is no evidence in the Atlantic City area of the lateral intrusion of saltwater in the 800-foot sand from a seaward direction.

SELECTED REFERENCES

- Anderson, H. R., and Appel, C. A., 1969, Geology and ground-water resources of Ocean County, New Jersey: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Special Report 29, 93 p.
- Appel, C. A., 1962, Salt-water encroachment into aquifers of the Raritan Formation in the Sayreville area, Middlesex County, New Jersey: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Special Report 17, 47 p.
- Barksdale, H. C., 1937, Water supplies from the No. 1 Sand in the vicinity of Parlin, New Jersey: New Jersey Water Policy Commission Special Report 7, 33 p.
- Barksdale, H. C., Greenman, D. W., Lang, S. M., Hilton, G. S., and Outlaw, D. E., 1958, Ground-water resources in the tri-state region adjacent to the lower Delaware River: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Special Report 13, 190 p.
- Barksdale, H. C., Johnson, M. E., Baker, R. C., Schaefer, E. J., and DeBuchananne, G. D., 1943, The ground-water supplies of Middlesex County, New Jersey: New Jersey Water Policy Commission Special Report 8, 160 p.
- Barksdale, H. C., Sundstrom, R. W., and Brunstein, M. S., 1936, Supplementary report on the ground-water supplies of the Atlantic City region: New Jersey State Water Policy Commission Special Report 6, 139 p.
- Clark, G. A., Meisler, Harold, Rhodehamel, E. C., and Gill, H. E., 1968, Summary of ground-water resources of Atlantic County, New Jersey, with special reference to public water supplies: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Water Resources Circular 18, 53 p.
- Farlekas, G. M., 1979, Geohydrology and digital-simulation model of the Farrington aquifer in the northern Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations 79-106, 55 p.
- Gill, H. E., 1962, Ground-water resources of Cape May County, New Jersey - Salt-water invasion of principal aquifers: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Special Report 18, 171 p.
- Hardt, W. F., and Hilton, G. S., 1969, Water resources and geology of Gloucester County, New Jersey: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Special Report 30, 130 p.

SELECTED REFERENCES--Continued

- Hasan, Asghar, Kasabach, H. F., and Malone, J. E., 1969, Water resources of the Sayreville area, Middlesex County, N.J.: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Water Resources Circular 20, 32 p.
- Luzier, J. E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.
- Minard, J. P., 1969, Geology of the Sandy Hook Quadrangle in Monmouth County, New Jersey: U.S. Geological Survey Bulletin 1276, 43 p.
- Nemickas, Bronius, and Carswell, L. D., 1976, Stratigraphic and hydrologic relationship of the Piney Point aquifer and the Alloway Clay member of the Kirkwood Formation in New Jersey: U.S. Geological Survey Journal of Research, v. 4, no. 1, p. 1-7.
- Parker, G. G., Hely, A. G., Keighton, W. B., Olmsted, F. H., and others, 1964, Water Resources of the Delaware River Basin: U.S. Geological Survey Professional Paper 381, 200 p.
- Rooney, J. G., 1971, Ground-water resources Cumberland County, New Jersey: New Jersey Department of Environmental Protection, Division of Water Resources Special Report 34, 65 p.
- Rosenau, J. C., Lang, S. M., Hilton, G. S., and Rooney, J. G., 1969, Geology and ground-water resources of Salem County, New Jersey: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Special Report 33, 142 p.
- Schaefer, F. L., and Walker, R. L., 1981, Saltwater intrusion into the Old Bridge aquifer in the Keyport-Union Beach area of Mommouth County, New Jersey: U.S. Geological Survey Water-Supply Paper 2184, 21 p.
- Seaber, P. R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Special Report 22, 250 p.
- Thompson, D. G., 1928, Ground-water supplies of the Atlantic City region: New Jersey Department of Conservation and Development, Division of Waters Bulletin 30, 138 p.

- Vowinkel, E. F., and Foster, W. K., 1981, Hydrogeologic conditions in the Coastal Plain of New Jersey: U.S. Geological Survey Open-File Report 81-405, 39 p.
- Walker, R. L., 1983, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations Report 82-4077, 56 p.

GLOSSARY

- <u>Aquifer</u>. A formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.
- Artesian aquifer. An aquifer containing water under sufficient pressure to rise above the top of the aquifer when penetrated by a well; also called confined aquifer.
- Brackish water. Water intermediate in salinity between saltwater and freshwater.
- <u>Cone of depression</u>. A depression produced in the water table or other potentiometric surface by the withdrawal of water from an aquifer; it is shaped like an inverted cone with its apex at the area of greatest concentration of pumping.
- <u>Confining bed</u>. A body of relatively impermeable material stratigraphically adjacent to one or more aquifers. The hydraulic conductivity may range from nearly zero to some value distinctly lower than that of the aquifer.
- <u>Chloride</u>. A major chemical constituent in seawater but a very minor constituent in freshwater. Chloride concentration is used as an indicator of saltwater in this report; see saltwater.
- Discharge. The process by which water is depleted from an aquifer.
- Estuary. The tidal part of a river where freshwater mixes with and dilutes saltwater.
- <u>Head, static</u>. The height above a standard datum of the surface of a column of water (or other liquid) that can be supported by the static pressure at a given point. Head, when used alone, is understood to mean static head.
- <u>Hydraulic gradient</u>. The change in static head per unit of distance in a given direction. If not specified, the direction generally is understood to be that of the maximum rate of decrease in head.
- <u>Induced recharge</u>. Water which enters an aquifer from an adjacent surface-water body as a result of an established hydraulic gradient from the surface water toward pumping well(s).
- <u>Milligrams per liter (mg/L)</u>. A unit expressing the concentration of chemical constituents in solution as the mass (1 milligram = 1 X 10⁻³ gram) of solute per unit volume (liter) of water. One mg/L is approximately equal to 1 part per million (ppm) in aqueous solutions of low dissolved-solids concentration.

GLOSSARY--Continued

- National Geodetic Vertical Datum of 1929 (NGVD of 1929) A geodetic datum derived from a general adjustment of the firstorder level nets of both the United States and Canada, formerly called mean sea level. NGVD of 1929 is referred to as sea level in this report.
- Outcrop area. Regions where geologic units are exposed at or near the land surface.
- <u>Permeability</u>. The ability of a rock or earth material to transmit water in response to head differences.
- Potentiometric surface. A surface which represents the static head in an aquifer. The potentiometric surface is defined by the levels to which water will rise in tightly cased wells. See head, static.
- Recharge. The process by which water enters an aquifer.
- Saltwater. Water containing about 35,000 mg/L of dissolved solids including about 19,000 mg/L of chloride.
- Saltwater intrusion. The movement of saltwater or brackish water into a freshwater aquifer due to the lowering of the freshwater head below sea level by pumping.
- Screened interval (FT). The length of well screen through which water enters a well, in feet below land surface.
- <u>Transition (diffusion) zone</u>. A zone of mixed water between fresh and salty ground water.
- Total depth of well. The maximum depth in feet below land surface at which the well was originally finished. This depth may be slightly deeper than the bottom of the screened interval because many wells have a tailpiece or short length of casing installed below the well screen.
- <u>Water table</u>. That surface in an unconfined ground-water body at which the pressure is atmospheric.
- <u>Water year</u>. The twelve-month period, October 1 through September 30, designated by the calendar year in which it ends.

GLOSSARY--Continued

For brevity and ease of reading, abbreviations are used frequently in this report. The following list contains the most commonly used abbreviations with corresponding definitions:

Abbreviation

Definition

Boroborough Cocompany Corpcorporation	
Distdistrict Inc	
1UA	
NGVD of 1929 National Geodetic Vertical Datum of 1929 (formerly, mea sea level datum)	n
NJDEPNew Jersey Department of Environmental Protection	
VJWC	
NPS Park Service	
obs(well)	
ſwptownship	
NCwater company	
VDdepartment	
NSsystem	