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We confirm that distributions of human response times have power-law tails and argue that, among closed-form

distributions, the generalized inverse gamma distribution is the most plausible choice for their description. We spec-

ulate that the task difficulty tracks the half-width of the distribution and show that it is related to the exponent of

the power-law tail. VC 2015 Wiley Periodicals, Inc. Complexity 000: 00–00, 2015
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1. INTRODUCTION

H
uman response time (RT) is defined as the time

delay between a signal and the onset of human

action. For example, one can measure time interval

from a word appearing on a computer screen to when a

participant pushes a keyboard button to indicate his or

her response. Two well established empirical facts of RT

are the power law tails of RT distributions [1] and 1/f

noise of RT time series [2–4], which any theoretical

description must address.

The generalized inverse gamma (GIGa) function [5,6]

belongs to a family of distributions [6–8], which includes

inverse gamma (IGa), lognormal (LN), gamma (Ga) and

generalized gamma (GGa). The remarkable property of

GIGa is its power-law tail. GIGa emerges as a steady state

distribution in a number of systems, from stock volatility

[6], to a network model of economy [9,10], to ontogenetic

mass growth [11,12]. This common feature can be traced

to a ‘‘birth-death’’ phenomenological model subject to sto-

chastic perturbations (see below).

Here we argue that, among closed-form distributions,

GIGa is the most plausible candidate for the description

of RT distributions. GIGa has a natural scale parameter,

which determines the onset of the power law tail, and

two shape parameters, which determine the exponent of

the tail and the behavior of the front end. As such, the

GIGa framework is an extension of previous approaches,

such as the ‘‘cocktail’’ model, [1] which effectively con-

tains shape and scale parameters as well. Furthermore,

we speculate that the difficulty of a cognitive task, within

a class of tasks of progressively increased complexity,

tracks the half-width and modal PDF of the RT

distribution.

It must be emphasized that while the GIGa framework,

theoretically motivated by the dynamics of complex
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networks, [10] provides for a clear analytical description of

distribution’s properties as a function of its parameters,

our tail fitting technique apropos power-law tails and our

conjecture of the relationship between the progressive

task complexity and distribution’s half-width and modal

PDF are not conceptually tied to the specifics of the GIGa

and could be readily applied to analysis of alternative

frameworks. Toward that end, we point out to a number

of studies that attack similar problems with a variety of

approaches [13–17].

Our numerical analysis is performed on the following

data (explained in text): English Lexicon Project (ELP),

Hick’s Experiments (HE) and Lexical Decision Time

(LDT). Two key features distinguish our approach. First,

in addition to usual individual participant fitting, we per-

form distribution fitting on combined participants’ data.

While in line with individual fitting, this creates consider-

ably less noisy sets of data. Second, we develop a proce-

dure for fitting the tails of the distribution directly [6]

and decidedly confirm that the tails of RT contain power

law behavior.

This article is organized as follows. In section 2, we

give a brief mathematical summary at the basis of our

results. In section 3, we provide description of the experi-

mental setup and data acquisition. In section 4, we con-

duct log-log tail fitting and RT distribution fitting with

GIGa. In section 5, we discuss possible relation of our

analysis to complexity and relative difficulty. We summa-

rize our results in section 6.

2. MATHEMATICAL BACKGROUND
A detailed discussion of the properties of the GIGa dis-

tribution, the tail and distribution fitting and the stochas-

tic ‘‘birth-death’’ model is given in a collection of

Appendices in [6]. Here we present only a brief summary.

The four parameter GIGa function is given by [5]

GIGaðx; a;b; c; lÞ5 c
bCðaÞ e2

b
x2lð Þ

c b
x2l

� �11ac

(1)

for x> 0 and 0 otherwise. Here l is a shift parameter, b is

a scale parameter and a and c are shape parameters. Since

the effect of the overall shift l is trivial, we will consider a

three-parameter distribution function:
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The power-law tail of this distribution is given by

PGIGaðxÞ / x212ac, as x !1.

The key properties of GIGa—the exponential front end

and the power-law tail—can be gleaned from its c51 limit,

namely the two-parameter IGa distribution PDF [5]

PIGaðxÞ5
1

bCðaÞ exp 2
b
x

� �
b
x

� �11a

: (3)

Furthermore, as explained below, in analyzing RT dis-

tributions it is meaningful to set the mean to unity, which

yields the following scaled distribution:

FIGURE 1

Histogram and log-log plot of ELP.
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: (4)

so that a single parameter describes both the shape and

scale of the distribution.

GIGa distribution is a steady state distribution of the

stochastic ‘‘birth-death’’ model, described by the equation

dx5c1x12cdt2c2xdt1rxdW ; (5)

where dW is the Wiener noise and constants c1, c2 and r

are simply related to the parameters of GIGa. Many natu-

ral and social phenomena can be modeled by it so that x

can alternatively stand for such additive quantities as vol-

atility variance [6], wealth [10] mass of a species [11], and

so forth, and cognitive RTs here. Since the first and second

terms describe growth and decay, in cognitive phenomena

they can be interpreted as various competing processes.

The third, stochastic, term is the one that changes the

otherwise deterministic approach, characterized by the

saturation to a final value of the quantity, with the proba-

bilistic distribution of the values—as it were, GIGa in the

steady-state limit.

FIGURE 2

Histogram and log-log plot of Hick’s experiment.
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3. DATA ACQUISITION
3.1. Data Sources and Description

ELP data is from the English Lexicon Project [18,19].

HE and LDT data was collected under the supervision of

J. G. Holden.

ELP—studies pronunciation latencies to visually pre-

sented words; participants sampled from six different Uni-

versities [18,19]. Data: Two sessions, 470 participants each:

session 1 (ELP1), 1500 trials; session 2 (ELP2), 1030 trials.

Hick’s Choice RT Experiment (HE)—given a stimulus

selected from a finite set of stimuli, participants try to

respond with an action from a set of actions correspond-

ing to this set of stimuli. Original HE is described in [20].

Data: 11 participants completed 1440 trials of 2, 4, 6, and

8 options, approximately 16,000 combined datapoints for

each condition.

LDT—given a combination of letters, participants had

to determine whether it was a word or a nonword. Data:

Three groups of 60 participants completed 100 word and

100 nonword trials of 1, 2, and 4 word LDT respectively,

only the correct word trials are depicted, approximately

6000 datapoints for each group.

4. DATA ANALYSIS
4.1. Data Preprocessing

To enhance our efforts to understand the distribution’s

tail behavior, we combined all participants’ data from each

experiment into a single distribution.

4.2. Tail Fitting
This section is motivated by the question of whether

RT distributions express power-law tails. In this regard, a

general technical problem arises of whether we can reli-

ably ascertain the power-law behavior of a distribution’s

tail. Toward this end, we developed a method, described

in Appendix H of [6], which is based on log-log fitting of

FIGURE 3

Histogram and log-log plot of one, two, and four word LDT.
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(1-CDF). It proved reliable in distinguishing power-law (fat

tails) from even heavy-tail distributions, such as LN.

In Figures 1–3, we show the results of such fitting spe-

cifically for RT experiments, where RT is measured in

milliseconds. With the exception of LDT, trials for most of

the tasks timed out by 4 or 5 s. The latter has the potential

to distort RT distributions and especially their slow tails,

as manifested by downward bending of log-log plots1. In

contrast, the maximum RT for LTD is approximately 10 s

and, as seen in Figures 3 and 5, the log-log plots are closer

to straight lines and GIGa fit is good. It must be made

clear that it is reliability with which we can identify

power-law tails that motivated us to seek a suitable

power-law distribution—GIGa in this instance.

4.3. GIGa Distribution Fitting
In Figures 4–6, we show GIGa distribution fitting of RT.

In the figures, the distance from the origin to the blue dot

is rightward shift of GIGa distribution. The RTs to the left

of the red lines are censored from the fitting of GIGa dis-

tribution. a; b; c, the cut and shift parameters are all found

by minimizing the chi-squared test statistic as follows. We

choose the cut and shift parameters, find a; b; c through

maximum likelihood estimation and compute the chi-

squared test statistic. We repeat this process for another

FIGURE 5

GIGa fitting of one, two, four word LDT. One word LDT: GIGað0:754;
357; 3:96Þ with ag53:0. Two word LDT: GIGað1:96; 1424; 2:39Þ
with ag54:7. Four word LDT: GIGað25:1; 7:373106; 0:376Þ with
ag59:4. The p-values are 0.97, 0.82, and 0.87 respectively.

FIGURE 4

GIGa fitting of ELP. ELP1: GIGað0:73; 396; 3:69Þ with ag52:7.
ELP2: GIGað1:04; 345; 2:33Þ with ag52:4. The p-values are
both 0.

1The scaling behavior observed in natural systems is always

bounded within an interval. However, precision with which

the power law exponent is evaluated depends on the size of

the interval [6]. We use a ‘‘3-decade rule’’ to claim scaling

behavior in these performances, that is, that observed quan-

tity changes by at least three orders of magnitude. Nonethe-

less, the manner in which the scaling behavior decays may

be of scientific interest, warranting extensions of time-out

times in future experiments and temporal decay models.
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group of cut and shift parameters. In the end, we obtain

the parameters that minimize the chi-squared test

statistic.

Visually, GIGa fitting is good, yet p-values are all zero,

with the exception of LDT, which may be an artifact of

very large samples. Reference [21] argues that chi-squared

statistic yields poor results for goodness-of-fit—we used

chi-squared statistic because, due to the cut parameter,

the total number of RTs is not fixed in our parameter fit-

ting. Lastly, in Figure 7 we show the relationship between

the tail exponent parameter ac and log-log fitted exponent

parameter—with the exception of 4 LDT (which is one of

the hardest tasks—see below), the correspondence is quite

good. We also point out that a GIGa fit of 4 LDT is charac-

terized by a small c, in which case a direct tail fitting

becomes less reliable [6].

We wish to emphasize that, per Figure 7, both direct

tail fitting and GIGa fitting convincingly demonstrate the

significant variability of the power law exponent in the

tails of RT distributions. This clearly undermines the

recent prediction of an a-stable distribution in [22], which

constrains the power law exponent to the interval (1, 3).

Another point we wish to stress is that GIGa provides

good fits to individual participants’ data as well. The

importance of combining the data is that it serves two key

purposes: it significantly reduces the noise and, by mini-

mizing individual variations, it better identifies the trend.

The latter may be particularly important in identifying

drug efficacies for cognitive problems, such as ADHD, or

the nature of the problem, such as dyslexia. Another way

to look at individual versus group fitting is as a choice

between two averaging procedures: one involves fitting

individuals’ data with a distribution, such as GIGa, and

then averaging thus obtained parameters over all partici-

pants, while the other involves fitting the combined

data—we believe that the latter is superior.

5. TASK DIFFICULTY
In Figure 8, we plot the power law exponent from the

best fit GIGa above as a function of their half-width. With

the exception of Hick 6, there is a clear tracking between

the two (notice that by eye HE PDFs seemingly show

decrease of modal PDF and increase of PDF half-width

with the increase of Hick’s number). We speculate that the

half width of the distribution and modal PDF would be a

natural measure of a task difficulty, at least for a series of

tasks of progressing complexity within a particular class of

tasks.

This conjecture is easily analyzed in terms of the GIGa

distribution—a potentially plausible description of RT dis-

tributions, given its connection to complex networks. In

Appendix A of [6], it is explained that due to GIGa’s scaling

property, it is sufficient to consider the c51 case, that is,

FIGURE 6

GIGa fitting of Hick’s experiment. The parameters fa;b; gg of
GIGa are f0:731; 115; 3:41g; f1:57; 275; 2:48g, f1:64; 430; 3:07g,
and f7:80; 2922; 1:10g respectively. ag are 2.5, 3.9, 5.0, and 8.6
respectively. The p-values are all 0.
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IGa given by Eq. (3). Furthermore, we can eliminate one

more parameter by setting mean to unity. In general, this

is done to discard a simple stretching of a distribution by

a constant. In RT, specifically, the reason is that in some

cognitive tasks the mean may not be a good indicator of

difficulty since an easy cognitive task may require a more

idiosyncratic response and vice versa2.

For such IGa, given by Eq. (4), a single parameter a

then defines both scale and shape, that is, modal PDF and

the half width, which are roughly inversely proportional to

each other, are directly related to the exponent of the

power law tail (for exact analytical relationship, see

Appendix A of [6]). As shown in Figure 9, IGa undergoes a

transition from small a to large a, characterized by a mini-

mum/maximum in modal PDF/half-width in Figure 10.

This opens up an interesting possibility that, depending

on the magnitude of a, increase in a task difficulty may

either increase or decrease the magnitude of the power

law exponent (in contrast to Fig. 8 where the increase in

half width is accompanied by shrinking tails, that is,

increase of the power law exponent—consistent with the

values of of the power-law exponents obtained from direct

fitting of RT tails vis-a-vis Fig. 10).

We wish to emphasize that although GIGa gives us a

particularly lucid analytical description, our conjecture is

completely independent of a specific heavy- or fat-tail dis-

tribution and thus can be extended to other frameworks.

Furthermore, it may be also applied to the analysis of the

degree of subject’s attention, and so forth, in RT trials. For

instance, while the half-width/modal PDF can be reduced

(if not trivially) to other GIGa parameters, the reason for

FIGURE 7

Best fit GIGa ag versus log-log fitted tail exponent; triangles: ELP,
squares: LDT, diamonds: HE.

FIGURE 8

Best fit GIGa absolute power law tail exponent ag11 versus its
half width; triangles: ELP, squares: LDT, diamonds: HE.

FIGURE 9

PDF of IGa distributions given by Eq. (4). From left to right,
a51:5; 2; 3; 3:48; 4; 5, and 6, corresponding to red, magenta,
orange, green, cyan, blue, and purple lines.

2More precisely, there are indeed three parameters in the

GIGa model—one ‘‘scale’’ and two ‘‘shape’’ parameters, all of

which actually affect the form of the PDF (the fourth param-

eter describes the overall shift of the PDF along the abscissa).

The scale parameter uniformly stretches/compresses—

rescales—the PDF, while the shape parameters reshape both

the front end and the tail, the latter via the value of the tail

exponent. One of the three parameters is eliminated by fixing

the mean of the PDF to unity, which is equivalent to fixing

the scale parameter. For a specific cognitive task, this elimi-

nates the effect of ‘‘time dilation’’ [12], where the only differ-

ence between the PDFs is rescaling with the mean RT,

indicating the same neurophysiological process. The other

parameter can be approximately factored out through the

scaling property explained in Appendix A of [6]. So in effect,

to understand the behavior of GIGa, it is sufficient to con-

sider variations of just one parameter, while to perform the

actual fitting one needs all of them
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using it is that it is easily measured for empirical distribu-

tions and that it is not tied to a specific model, such as

GIGa.

Conversely, stochastic ‘‘birth-death’’ dynamics and

complex dynamics of the generalized Bouchaud–Mezard

network model [9,10] are specifically tied to GIGa and pro-

vide an appealing frameworks for thinking about cognitive

processes, as well as many other natural phenomena. The

latter fact was one of our chief motivators to use it for RT

fitting. In a network model, the half width, the modal PDF

and the power-law exponent are expressed in terms of the

network connectivity, connection strength and degree of

randomness (stochasticity) [10]. Relating these quantities

to the empirical RT data would be of great interest.

6. SUMMARY
In conclusion, we confirmed that the tails of RT distri-

butions exhibit power law behavior. We argued that,

among closed-form distributions, GIGa is a natural candi-

date for fitting of measured RT as it is characterized by

power law tails and motivated from a dynamical network

model. While competing well in terms of goodness of fit,

GIGa has an important infinitely differentiable property

relative to mixture distributions and its power-law tail

exponent is not limited from above, unlike alpha-stable

distributions [22], and thus better describes directly fitted

tails. Furthermore, since GIGa a steady-state solution of a

general stochastic ‘‘birth-death’’ model, RT may fall into a

larger class of natural, economic and social phenomena.

We proposed that the task difficulty and/or subject’s atten-

tion may be related to the half-width and modal PDF of

the distribution and to the exponent of its power-law

tail—a hypothesis that can be dissociated from a specific

form of the distribution.

In future work, we hope to substantially improve on

methodology of our RT measurements to have a more pre-

cise description of the distribution and its tails. We will

perform a more thorough analysis of the time series and

its power spectrum apropos 1/f noise and compare those

with the simulations of stochastic differential equations

and network models. One of the more intriguing possibil-

ities is to improve the network model with actual connec-

tivity and connection strength data obtained from fMRI.

Finally, we will configure a number of measurements

to look for a more definitive relationship between the task

difficulty and the parameters of the distribution. We will

also attempt to interpret those quantities in terms of the

parameters of a dynamical network, such as connectivity

and connection strength. Insofar as the subject attention,

this would open up an intriguing possibility of quantita-

tively describing ADHD drug efficacies in a control group

experiment.
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