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0. Introduction. Let x be an irrational number. We will denote
by [ao(x),...,an(x),...] its regular continued fraction expansion and by
Pn(2)/qn(z) = [ap(x),...,an(x)] the nth convergent. The famous Theorem
of P. Lévy [12] states that for almost all # € R (in the sense of Lebesgue)

we have
1 2
lim —1 = .
oo 71 08 4n () 121log 2

One can prove that for a quadratic number z, the above sequence
n~!log g, () is always convergent (see Section 2). Its limit is denoted here
by B(x) and called the Lévy constant of . We also define the length of x
as o(x) = 2logep(x) (the terminology will be explained in the course of the
paper) where £o(z) = % (ug + V/Avp) is the fundamental solution of the Pell
equation
X? - AY? =4.
The number A is equal to B? —4AC where Az?+ Bz +C = 0 is the minimal
equation of z in Z, that is, A >0, A,B,C € Z and (4, B,C) = 1.
Our main results in this paper are:

THEOREM 1.

Z B(x) ~ iex (X — +00).

o(z)<X

THEOREM II.

3log2
> o1~ (X - 4o0).
o(z)<X

We sum over the quadratic numbers in ]0, 1] purely periodic called re-
duced in this paper. We will show later that for every X > 0, the set of
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reduced quadratic numbers of length < X is finite. Hence in Theorems I
and II the summation is finite.
As a corollary of these theorems we obtain:

L ew<x B@) ™
lim = ,
X—too 3 ,<x ] 12log 2

which corresponds to a conjecture of P. Liardet. This shows that in average,
according to the length, the Lévy constants tend toward the “general” con-
stant of P. Lévy’s Theorem. The method of proof of Theorem II stems from
works of Pollicott [14] and Mayer [13]. The first section of this paper deals
with the length of a quadratic number. In the second we define for every
quadratic number x the Lévy constant of x and give some of its properties.
Finally, the third part of the paper is devoted to the proof of Theorems I
and II.

Acknowledgement. I should like to thank P. Liardet for his advice
during the preparation of this paper. I thank also the referee for his helpful
remarks.

Notations

e If z is a quadratic number, its conjugate will be denoted by z*.

e A quadratic number z € ]0,1[ is said to be reduced if its continued
fraction expansion is such that = = [0,ay,...,an|.

e T :]0,1] — [0,1] is the transformation of continued fractions, that
is, T(0) = 0 and T'(x) = 1/x — [1/z] for = # 0. It is well-known that T’
preserves Gauss’s measure dy = dx/log 2(1 + x) and that T is ergodic with
respect to this measure [1].

e We identify the linear fractional transformation g(z) = (az+0b)(cz+d)~*
where a,b,c,d € R and ad — bc = 1 with the matrix

d

and we denote by R(g) the spectral radius of A. The transformation g is
said to be hyperbolic if |a + d| > 2 (it is equivalent to say that there are two
fixed points in R U {oc0}).

e An element f € PSL(2,Z) is said to be primitive if f = h"™ (with
h € PSL(2,Z) and n > 1) implies that n = 1.

e GL(2,Z) acts on the set of quadratic numbers by

ar +b a b

— pP= .

cx+d’ ( c d)

Two quadratic numbers in the same orbit are said to be GL(2, Z)-equivalent.
If we can choose P in SL(2,7Z) we will say simply that they are equivalent.

A= (‘CL b) € PSL(2,R),

€r =
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1. The length of a quadratic number. In the introduction we have
defined for every quadratic number x the length of = denoted by o(z). In
this section we shall justify the use of the word length.

Let H = {(z,y) ; y > 0} be the hyperbolic plane with its classical
complete metric ds? = y~2(dz? + dy?). For this metric the curvature of H
is constant and equal to —1. Elements of PSL(2, R) are isometries of H. The
geodesics v : R — H for the hyperbolic metric are supported by vertical half-
lines and the half-circles centered on the real axis. Let M = H/PSL(2,Z)
be the modular surface. It is a Riemann surface, the geodesics of M are by
definition the p o~y where v: R — H is a geodesic of H and p: H — M the
canonical projection. The following theorem is known (see [16]) and gives
the closed geodesics (i.e. periodic geodesics) on the modular surface. For
the reader’s convenience we will give a complete proof of this theorem.

THEOREM 1.1. (i) Let 7 be a geodesic of H joining a quadratic number
x and its conjugate x*. Then p oy is a closed geodesic of M and all the
closed geodesics on M arise in this way.

(ii) The length of p o~y is given by po(x) = 2logep(x).

Remark. The assertion (ii) justifies the use of the word length for o(z).
For the proof of Theorem 1.1 we will need the following lemmas.

LEMMA 1.1 [11]. Let = be a quadratic number. Then {g € PSL(2,7Z) ;
g(x) = x} is an infinite cyclic subgroup of PSL(2,Z) and a generator is
ug — B'U()

9 —CUO
Ulz) = up + Bvg
AUO 9

It will be noticed that the spectral radius of U(x) is precisely eq(z). The
quantities A, B, C, ug, vo and £o(x) have been defined in the introduction.

LEMMA 1.2. Let 71,72 : R — H be two geodesics such that poy; = po~ys.
Then there exists a g € PSL(2,7Z) such that g o~y = 2.

Proof. This lemma is not entirely obvious since p is not a cover-
ing. Since PSL(2,Z) is countable and its every element (different from
the identity) has at most one fixed point in H, there exists ¢y € R such
that 71 (t9) is fixed by no element of PSL(2,7Z) different from the identity.
Let g € PSL(2,Z) such that v2(tg) = g o y1(to). As every Fuchsian group,
PSL(2,Z) acts on H properly and discontinuously [17]. Hence from the
choice of 71 (tg) there is an open set U C H such that vi(tgp) € U and
g(U)NU = 0 for every g € PSL(2,Z) with g # I. Consider € > 0 such that
m(Jto—e, to+e]) C U and 2 (Jto—e,to+e]) C g(U). Forall ty—e <t < to+e
we can write v (t) = groy1 (t) with g, € PSL(2,7Z). Thus y2(t) € ¢:(U)Ng(U)
and g; = g from the choice of U. The two geodesics 2 and g o 7 coincide
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on the open interval |ty — ¢, %o + €[ and consequently v2(t) = g o1 (¢) for all
teR. n

LEMMA 1.3. Let g(z) = (az+b)(cz+d)~! be a hyperbolic transformation
from PSL(2,7Z) and x,x* its two fized points. For all z € H in the half circle
of H having x and x* as endpoints, we have d(z,g(z)) = 2log R(g).

Proof. Use the expression of the hyperbolic distance with the cross-
ratio. m

Proof of Theorem 1.1. We may suppose ||7/(t)]| = 1 relative to
the hyperbolic metric. Let g # I be an element of PSL(2,7Z) such that
g(x) = z (thus g(z*) = 2*) (Lemma 1.1). From Lemma 1.3 we have
go(t) = y(t £ 2logR(g)), hence p o v is periodic and 2log R(g) is a
period. Let now L > 0 be another period of p o v and h a generator of
{g € PSL(2,Z) ; g(x) = x}. From the above 2log R(h) is also a period and
there exists k € PSL(2,Z),k # I such that ko~(t) = y(t + L) (Lemma
1.2). By letting ¢ — +00 or —oo we notice that k(z) = x, thus &k = A" for
some n € Z —{0}. We deduce ko~ (t) =~v(t +2nlog R(h)) = v(t + L), thus
L = 2|n|log R(h) since 7 is injective. Hence 2log R(h) is the smallest period
> 0 of po~y. Since |7/ (t)]] = 1, the length of p o~y is precisely 2log R(h),
and (ii) follows from Lemma 1.1.

It remains to prove the last assertion of (i). Let poy be a closed geodesic
with period L # 0. By Lemma 1.2, there exists g € PSL(2,7Z), g # I, such
that go~v(t) = v(t+ L). By letting t — +00 and —oo we have g(y) = y and
g(z) = z where y, z (y # z) are the endpoints of . This proves that y, z are
conjugate quadratic numbers and completes the proof of the theorem. m

2. The Lévy constant of a quadratic number. Let x € ]0,1[ be
an irrational number. The following formula is fundamental in continued
fraction theory:

(1)
As in the introduction, p,, /¢, is the nth convergent of x and we put as usual
p-1=1,q-1 =0and py =0, go = 1. From (1) we obtain immediately

T4n — Pn
T4n—1 — Pn—-1

o Pn—1T"x + pp
rp=""—"" - “n

>0).
Qn—lTnx + qn (n )

Ty = —

This gives the useful lemma:
LEMMA 2.1. For alln >0, 2Tz ... T"x = (—=1)"(xq, — Dn)-
Applying again (1), we deduce for n > 0

an

TQn—1 — ==
Qn‘ dn—1 Pn 1’ qn71T"x+qn



Distribution of Lévy constants 17

So
(2) 1/2 < Qnm(Jnfl _pn71| <1.

Thus Lemma 2.1 and Birkhoff’s ergodic theorem show that for almost all
z € 10,1]
1 2

1 -
nh_)n;oﬁlog\fv%—l —Pn-1| = 6[ logx dp(z) = 12log2 "

From the inequalities (2) we obtain the well-known Theorem of P. Lévy.

THEOREM 2.1 [12]. For almost all z € R
2

. loggn(x) ™
lim = .
n—00 n 12 log 2

From previous arguments, we notice that for an irrational number T €
10, 1], the sequence n~! log g, () is convergent if and only if n =1y """ og Tz
is convergent and in this case the two limits are opposite. From this, for a
reduced quadratic number z = [0, m] we will have

hm — log qn(x) = Z log Tz

Furthermore if y, z are two GL(2,Z)—equ1valent quadratic numbers, there
exist integers a, b, j with (a,b) # (0,0) such that ¢,4;(y) = ap,(z) + bgn(2)
for all sufficiently large n. Thus n=!logq,(y) — n tlogg.(z) = o(1). As
every quadratic number is GL(2,Z)-equivalent to a reduced one we get:

ProposITION 2.1. (i) For every quadratic number x, the sequence
n~tlog q, () is convergent. Its limit is denoted by B(x) and called the Lévy
constant of x.

(ii) If z = [0,a1,---,an] then B(z) = —N~! va;ol logT"x.

(iii) If z,y are two GL(2,Z)-equivalent quadratic numbers, then (3(x) =
B(y)-

(iv) For every quadratic number x one has B(x) = B(x*).

Remark. (i) and (ii) are results of H. Jager and P. Liardet [9]. The
previous arguments give a new proof of these.

Proof. The only point which remains to prove is (iv). We can suppose

that x is reduced, = = [0,ar, ..., an]. From Galois’s Theorem [4], —1/z* =
[0,an, -, a1]. Weputy = —1/x* and write y = [0, by, b, .. .]. By a classical
result

an—1(y)

qn(y) :[O,bn,...,bl] (n21)
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Writing v, = [0,by,,...,b1] we have for all 1 <r < N and k > 1

UNk+r = [O,aN_T+1,...,aN,a1...aN,...jal...aN],

with k blocks a; ...an. Hence the sequence vyg4+, converges to TN_”(JU)
as k — oo. Thus
1 1< 1=
] — = 1 _— s = — i =
nhﬂngo - log ¢, (y) nlLrgO - z;log Vi = Z% logT'x = ((x).

From (iii) it follows that 5(y) = B(z*) and this completes the proof. m

PropPoOSITION 2.2. Let x be a reduced quadratic number, x =
[0,a1,---,an]|, where N is the minimal period length. Then the following
assertions hold:

(i) o(z) =2logeo(x) = —2an Zi]\:ol log Tz with an = 1 if N is even,

2 otherwise.

(i) B(z) = —N~1 SN Flog Tha.

Proof. (ii) is already known. The assertion (i) follows from the follow-
ing formula known as Smith’s formula [19] (see also [3] for another proof):

eo(x) = (xTz... TN=1z)~! if N is even,
N7\ @Tz... TN 12)=2 if N is odd. =

Let x be a reduced quadratic number and let ¢ — 7(t) be a geodesic in
H parametrized by arc length joining x to * (< —1) and oriented from x
to z*. Such a geodesic will be called associated with x. All other geodesics
that have this property are of the form ¢ — ~(t + k) with & € R. There
exists a unique primitive hyperbolic transformation g such that

V(t+2log R(g)) = g(7(t)) (t€R).

More precisely, g is one of the two primitive transformations leaving x fixed.
We will say that ¢ is the transformation associated with x. If y is another
reduced quadratic number with y = h(z) (h € PSL(2,Z)) then the trans-
formation associated with y is hgh™!. Hence we have a map between the
classes of equivalent reduced quadratic numbers and the conjugacy classes
of hyperbolic primitive transformations. We denote it by A.

PROPOSITION 2.3. The map A is bijective. To the class determined by
a reduced quadratic number x corresponds a conjugacy class {g) such that
o(x) = 2log R(g).

Proof. Consider x,y whose associated transformations are precisely g
and hgh™!. Let 71 (resp. 72) be a geodesic of H associated with x (resp. y).
We put L = 2logR(g). We have v1(t + L) = g7 (¢t) and y(t + L) =
hgh~'72(t). By letting t — —o0, the second equality yields g(h~ty) = h™1y.
Thus h~ly = z or z*. Suppose that h~ly = 2* and put y3(t) = h~1ye(—1).



Distribution of Lévy constants 19

We have y3(t + L) = g~ '4y3(t) and ~3 is associated with x; this implies
g = g~ ', hence ¢g? = I, which is impossible since g is hyperbolic. Hence A
is injective.

To prove the surjectivity of A, let (g) be a conjugacy class of primitive
hyperbolic transformations. We can suppose that one of the fixed points of ¢
is a reduced quadratic number, say z. Let v be a geodesic associated with x.
We have for all t € R, either v(t + 2log R(g)) = gy(t) or v(t +2log R(g)) =
g~ ty(t). If the first equality occurs the proof is finished. If the second does,
let y be a reduced quadratic number equivalent to z*, y = h(z*) (where
h € PSL(2,Z)). We put v1(t) = hy(—t); then v; is associated with y and
y1(t + 2log R(g)) = hgh~'71(t), thus A is onto. =

3. Proofs of Theorems I and II. First we introduce some defi-
nitions. For a quadratic number x we denote by per(x) the least period
length in its continued fraction expansion. It is convenient to define also
the length of a finite word m = a; ...ay built on the alphabet N — {0} as
o(m) = —2ay Z?’;OI log T'x where x = [0,a7,...,an]. Notice that we do
not necessarily have per(z) = N. We also put |m| = N for short. From now
on m denotes a word. We show that there exist a finite number of words
(and therefore of reduced quadratic numbers) of length < X.

PROPOSITION 3.1. For all X > 0 the set of words m such that o(m) < X
1s finite.

Proof. Let m = ay...any be a word with go(m) < X and put z =
[0,a1,---,an]|. We have

Tz = [0,ai41, airo + T"7%2] < [0, 0541, aigo + 1],
hence

N-—1 1
> 1 i S—
om) > 3 °g<“+l+ai+2+1>

i=0
sothat 1 < a; < eX fori =1,2,...,N and Nlog(l + (eX +1)71) < X,
which proves the proposition. m

Now we introduce the following functions:

mX)= > 1, m@X)= Y 1, mX)= Y 1,

o(x)<X o(m)<X o(z)<X
per(z) odd
m(X)= > 1, 6X)= > 2logR(g).
2log R(g)<X 2log R(g)<X

Let us remember that for mo(X) the sum concerns all the reduced quadratic
numbers whose length is < X. For 7(X) the sum concerns all the conjugacy
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classes of primitive hyperbolic transformations of PSL(2,Z). We recall that
R(g) means the spectral radius of g. The behaviour of 7(X) as X — oo is
given by the following theorem.

THEOREM 3.1. 7(X) ~eX /X (X — +00).

For a proof using Selberg’s trace formula see [8] (Theorem 3.5, p. 475).
For another proof see [10].

PROPOSITION 3.2. §(X) ~ eX (X — 4o0).

Proof. Let a = a(X) < X be a function which will be specified later.
We have

0(X) = > 2logR(g) > a(n(X) —(a)),

a<2log R(g9)<X
0(X) S Xr(X) aﬂ'(a)ea_X
eX T X X e '

By taking a = X — log X, we have from Theorem 3.1
liminf §(X)e ™™ > 1.

—400
On the other hand, from the inequality 8(X) < X7 (X) we deduce

limsup #(X)e ™ <1,
X —+4o00

which completes the proof. m
THEOREM 3.2. 3, x B(2) ~ e (X — +o0).

Proof. Let x = [0,a1,...,an] be a reduced quadratic number with
N = per(z). Notice that

(i) If N is odd then x and T'x are equivalent.
(ii) If N is even, x and Tx are not equivalent.

For (i) it is enough to remark that Tz = [0,a9,...,an + ] = T,, ©
..0oT,(z) where T,(z) = (z + a)~!. The assertion (ii) follows from the
following result (see [7]) : [bo,b1,...] and [co,c1,...] are equivalent if and

only if there exist p,q € N of the same parity such that b,4; = c44; for
all i > 0. The set of reduced quadratic numbers equivalent to x will be
denoted by 7. We have T C {z,Tz,...,T™ "1z} and furthermore every Tz
for ¢ > 0 is equivalent to x or Txz. Thus if NV is odd cardZ = N, otherwise
cardZT = N/2. Since o(T'z) = o(z) for all i > 0 we may define the length
of the class Z. Now consider the function

FX) = Y o),

o(T)<X
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where 7 runs through the set of classes. From Proposition 2.2 we deduce

00 ’ N-1
F(X) = O‘WN Y —2ay Y logT'x,
N=1 x reduced =0
per(z)=N
o(z)<X

where o)y = 1if N is odd, 2 otherwise. Hence F(X) =43, <x 8().
From Proposition 2.3, we have F(X) = 0(X), and the proof follows from
Proposition 3.2. =

COROLLARY 3.1. mo(X) = O(e¥).

Proof. For all quadratic numbers x, we have the inequality [(z) >
log G where G = £(v/5 + 1). Indeed, g,(z) > ¢, with ¢f = ¢/ = 1 and
Ghio = hiq + ¢, for n > 0. Since the sequence n~'logg], converges to
log G the corollary is proved. m

PROPOSITION 3.3. 71(X) = m(X) + m2(X) + o(eX). In particular,
1 (X) = O(eX).

Proof. For k > 1, we put

20 = n(E) o 25 )

We have mo(X/r) = 0 if ro > X where o denotes the smallest length for
quadratic numbers. It can be seen that o = 4log G where G' = %(\/5 +1).
From mo(X) = O(e™) we deduce easily Zj(X) = O(eX/*). We have

Y o1= > 1

o(m)<X (an/op)k-0o(x) <X
k>1;p=per(z)
N=k-p
= mo(X) + E 1+ E 1+ § 1.
o(z)<X 20(z)<X (an/ap)k-o(z)<X
podd peven £>3

In the second and the last sum the summation is extended over the couples

(k,z) with & > 1. Since the last two sums are respectively dominated by

70(X/2) = O(e*X/?) and 53(2X) = O(e*X/3) the proposition is proved. m
For Re(s) > 1, we define

F(s) = f e Stdm (t) = Ze*sé’(m) .

0

Since m1(X) = O(eX) (Proposition 3.3), the integral and the series are
absolutely convergent and F' is holomorphic for Re(s) > 1. By definition of
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the length of a word we have another expression for F':

F(s) = Z Z (xTx... T tx)?oms.

n=1lay,..., a
The second sum is extended over all ay,...,a, € N—{0}and 2 = 24, . 4, =
[0,a1,---,ay] for short. We will show that F' extends meromorphically to

the half plane Re(s) > 1 with only one pole on the line Re(s) = 1 which is
simple, located at s = 1, with a residue equal to (3log2)/72. The proof uses
functional analysis and especially Fredholm’s theory. Let 1 < a < b < 3/2.
For A > 0, we write Dy = {z ; |z — 1| < A}. Let E be the Banach space of
functions continuous on D, and holomorphic in the interior. F is endowed
with the supremum norm. If v is a Fredholm kernel, we denote as usual by
||v||1 its trace norm and by v its associated operator. We refer to [6] and [5]
for Fredholm’s theory. For Re(s) > %, we consider the transfer operator of
FE given by

L(s)=> Ln(s),

where

L0E =1 (=) (5 ) (n=1).

Z+n Z+n

Remark 1. We write T,,(z) = (z +n)~!. For all n > 1 we see easily
that T,(Ds/2) is contained in {2z ; z #0, [z — 1] < 1}.

In the definition of L,,, we choose the principal branch of the logarithm.
We also define, for Re(s) > %, the Fredholm kernels

o0

un(s) =) A j(s)®e;, wv(s)= Z vn(8),
§=0 n=1
where e; € E is given by e;(z) = (2 — 1)? and A\, ; € E* by A\, ;(s)(f) =
(D=1 (1) with gn(2) = f(T(2))(T(2))%. Let us show that v,(s) and
v(s) are well defined. From Remark 1, the function g, is holomorphic in
D3 /5. Hence, from Cauchy’s inequalities

A6 < 35 Max lon(:)| (F € B).

But for all z € Djs,

—Im(2s) Arg(1/(z+n)) €7T|Im(25)\

(&
< <
|gn(z)| - HfHOO ‘Z n|20- — Hf”

*(n— 1)

2
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Hence by setting k(s) = e™ITm2s)l
k(s)
o)l < G %)% ,
Z s (5)1 el < ¢ ; 3 (a/b) < +oc.
2 j=0
Hence, v,(s) is well defined. Since
G 1 > ,
Z [on(s)]ls < k(s )Z_:l(n_é)zgzw/b)] < +o00,
n= =0

the Fredholm kernel v(s) is also well defined.

Remark 2. We have v(s) = L(s) and v,,(s) = L, (s) from the Taylor
development. For the following theorem recall that there is a product on
Fredholm kernels which is defined by

A@z) (oY) =My)p®w,
forall \,p € E* and z,y € E.
THEOREM 3.3. (i) For every s with Re(s) > L, v(s) is a Fredholm kernel

27
of order 0.
(ii) For every n > 1, the trace of v™(s) is given by

"o — (1%, Ta)™
Tr(v"(s)) = Z 11— (_1)HO(H?;01 T'x)?

with © = x,, = [0,a1,---,ay). The sum is extended over all ay, ..., a, €

N — {0}.

Proof. () o(s) = X%, va(s) = Sgm(s) ® e with py(s) =
>0 An(s). We have

n=1
k(s) 1
s (s ||<§jum <52 S —r

n=1 (7’1, 2

-----

Hence for all € > 0, ijo H,uj(s)HE llejl|° < oo. This proves (i).
(i) Since Y07, [lun(s)|l1 < oo, we get for all n > 1
v"(s) = Z Va, (8) .. vq,(8).
Al,...,Qn
Let aq,...,a, be fixed and put
R=T, 0...07T,,,
S =Ty, 0...0Ty )% (Tuy0...0T, ) ... (Ta,)*,

x=[0,a1,..-,an) -
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We recall that T,,(z) = (2 + n)~!. For g € E we have L, (s)o...0
Lo (s)(g) =(goR)-S. Let A € C be an eigenvalue of L, (s)o...0 Ly, (s)
and let g # 0 be an eigenfunction. For all z € D,, g(R(2))S(z) = Ag(2).
Let p > 0 be the smallest integer such that ¢(P)(2) # 0. Then the pth
derivative of the previous equality at z = x yields (taking into account that
R(z)=1x) :

S(@)(R ()P g (z) = AW (x) = A= (R'(2))"S(x).
But we have
tpn—l + Dn

R(t) =[0,a1,...,an, +t] = .

thus

—1)n
R/ r) = ( ,
( ) (‘Tanl + Qn)2
which implies 0 < |R/(z)| < 1. Thus the spectrum of L,, (s) o ... 0 Lg,(s)
is contained in {(R'(x))?S(z) ; p=0,1,...} U{0}. We claim that there is
equality. If A\, = (R'(x))PS(z) is not an eigenvalue of the compact operator
L, (s)o...0Lg, (s) there exists h € E such that

hR(2))S(z) — A\ph(z) = (z —x)P  (Vz€ D,).
If k > 0 is the smallest integer such that h(®)(z) # 0 we have

B () (R (2))*S () — Aph®) () = pl .

The two cases k = p and k # p both lead to a contradiction. We will now
show that all the eigenvalues A\, = (R'(z))?S(z) of L, (s) o ...0 Lg, (s) are
simple (i.e. the associated spectral subspace is one-dimensional). We put
0 =L, (s)o...0Lg(s),
Ey, =Ker(0 — \,1)*  (k>1),
Rk:RO...OR, Sk:(SORk_l)(SORk_2)...S.

k

If f belongs to Ej, then

o

k
D et (f) = ci(foR)S; =0,
7=0

J=0

where ¢; = (?) (=Ap)*~J. By differentiating m times the previous equality

we obtain
k
0="> ¢;(R'()™ f(2)(S(x)) + ...
=0

= [T @)[(R'(x))™S (@) = Al 4
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where + ... denotes a sum which depends only on f(z),..., f(™ 1 (z). We
may deduce from this that x is a zero of order p for f (if f # 0) and that
if g # 0 is another function of Fj then g has the same derivatives at = as
(9% (x)/f#)(x))f, hence g = (9 (x)/f®(x))f and dim Ey =1. We now
finish the proof. From the above we have

Tr(va,, (5) .- va, (s)) = Y _ S(x) (R (z))"
p=0

S (I T
TR 1= ()T T

Since v"(s) = 32, 4 Va,(8)...Va,(s) we deduce (ii). m

The following theorem gives some information on the localisation of
eigenvalues of L(s) and will be used later.

PROPOSITION 3.4. (i) If u > 1, there exists a number R,, 0 < R, < 1,
such that all eigenvalues of L(s) for Re(s) > u have modulus < R,,.

(ii) If s = 1 + it with t # 0, then all eigenvalues of L(s) have modulus
< 1.

(iii) 1 is the mazximal eigenvalue of L(1) (i.e. all other eigenvalues have
modulus < 1).

Proof. (i) Suppose Re(s) > u. Let A be an eigenvalue of L(s) and let
f # 0 be an associated eigenfunction. We have for all 0 <z <1

o= £ () (k)

Let A be the maximum over [0, 1] for the function (1 + z)|f(x)|. We have
|f(x)| < A(z+1)7! on [0, 1], and there is ¢ such that A = (1 + x¢)|f(z0)|-
Thus

() A 1 2u
A zo)| < ,
L (55

To+Mn

2u 2
e < — | (+55) - (553)

l‘o+2
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since the last expression is equal to

S ) e )
i1yt \wotn 14— \zo+2

n#2 To+n To+ 2
We have
2u 2 2u 2
1 1 1 1
— < Max - =nu <0,
Ty + 2 Ty + 2 0<z<1 [\ x + 2 T+ 2
hence,
A

2
A < AN+ ——,
N @)l < S Am+ —

AN < 2@+ +1<2n,+1=R, <1.
(ii) The following lemma is elementary, the proof is left to the reader:

LEMMA 3.1. Let (z,)n>1 be an absolutely convergent series of complex
numbers such that | > "7 zn| = >0~ 1 |2n|. Then there is an a € C, |af = 1,
such that z, = a|zy,| for all n > 1.

Now let us prove (ii). Let A be an eigenvalue of L(s) for s = 1 + it,
with |A| > 1. We stick to the notations of (i). If one of the following two

assertions:
(1) N )l < 3|7 (L Ly
0 — To+n x0+mn/) ’
1 A
(2) ‘f ( >‘ < for at least one n > 1
To+n 1 1
_|_ -
o+ N

holds then we will have

Aol < Y- 2 (55 ) =1l

11+ To+MNn

which implies || < 1. Hence by using Lemma 3.1, there exists an «, |a| = 1,
so that, for every n > 1

1 2it 1 1
(:Uo+n> / <l‘o+n) :a‘f <x0+n>

1 A
f<x0+n>‘:1+ 1

)

o+ N
The second equality shows that |f(0)] = A > 0. Then the first one shows
that the sequence (zg + n)~ 2% converges but this is impossible if ¢ # 0.
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(iii) 1 is an eigenvalue of L(1) and (z+1)~! is an associated eigenfunction.
Let A € C be an eigenvalue of L(1) with |[A\| > 1 and f an eigenfunction.
The proof of (ii) with the same notations shows that for all n > 1

1 aA
f = 1
o+ N 1+

o+ N

Since f is analytic we deduce f(z) = aA(1 + z)~! and finally A\ = 1, which
proves (iii). m

PROPOSITION 3.5. The map s + v(s) is holomorphic for Re(s) > 3.

Proof. Let z € C be given such that |z — 1| = b. We define ¢, (s) =
(z +n)~2* for Re(s) > 1. One has

[n(s +h) = n(s)] < |h] sup |¢,(w)],
[s,s+h]

[Yn(s + ) = ¥n(s) — by ()| < (I[?/2) sup ¢y (u)],

[s,s+h]

where [s, s + h] denotes the segment in C with endpoints s and s + h. Put
u=s+th,0<t<1,lh| <cwhere c will be specified later. Then

1 — 1lm S T z+n
|¢;(u)| = 2(log(n L b) + W) |n + Z|Re(25+2th) e ! (2s+2th) Arg(1/(z4n)) .

The argument of the exponential function is dominated by 27(|s| 4 ¢) =
M (s) and furthermore |n + z|~ ®¢(*") < (n 4 1 + b)?¢, hence
€M(S)

sup |¢'(u)] < 2—— 5 (n+1+ b)2(log(n 4+ 14 b) + ) = by (s, c).

[s,5+h] (n - %)
Similarly:
6M(s)
sup |9 (u)] < 4——5-(n+14b)*(log(n +14b) + m)* = cu(s,¢).
[5,5+h] (n—3)

By Cauchy’s inequalities we get

cn(s,c) |h|?
(s 4 1) = Ay () — iy )] < 2D
bn(s,c
sl 4 1) = Ay ()] < 25y,

where 6, ;(s) € E* is given by 6, ;(s)(f) = (j!)_lhglj)(l) and h,, by

=) (255) (k)
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Hence A, j(s) is holomorphic and X}, ;(s) (= 0, ;(s)) satisfies

bn(s,c)
/ n 9
X, 5] < 2t
Thus 37770 A, ;(s) ® e; is uniformly convergent on every bounded subset

of Re(s) > 1 since we may bound M (s). Hence v,(s) is holomorphic and
v (8) = 2252 Ay (s) @ ej. Moreover, we get [|vy,(s)lln < 3272, [IA5(s)] lles]
< bu(s,¢) 352 o(a/b)’. The series 372 | vy, (s) is also uniformly convergent
on every bounded subset K of Re(s) > 1 since we may bound M(s) uni-
formly and choose constants ¢, ¢’ such that 20 —2¢ > ¢ > 1 for all s in K.
Thus v(s) is holomorphic and v'(s) =Y~ , v/, (s). m

Now we claim that 1 is a simple eigenvalue of L(1). In fact, we will
establish a stronger result. Let P : L' — L! (where L' = L'[0,1]) be the

operator defined by

=31 (o4 ()

P is the Perron—Frobenius operator associated to the continued fraction
transformation T, that is, for all g € L> and f € L*

1

1
[(goT) fdz= [g-P(f)da.
0

0

1 is an eigenvalue of P, an eigenfunction being fo(z) = 1/log2(1 + z). The
following theorem specifies this statement.

THEOREM 3.4. The operator P admits 1 as a simple eigenvalue. More
precisely, the spectral subspace associated to 1 is generated by fo.

Proof. Let f € L' such that P(f) = f. For all g € L and k =
0,1,2,..., we have

1 1
[goTrfdu= [gfdx.
0 0

We put h(z) = f(z)(1 + x)log2. We can rewrite the previous equality as
1 1

fgoTkhd,u: fghdu.
0 0

We can deduce from this by using the strongly mixing property of T' that

f:(jfm)ﬁ a.e.
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The proof will be complete if we show that Ker(P — I) = Ker(P — I)2. Let
f € Ker(P — I)2. There is a complex number « such that (P —I)f = afp.

After integration over [0, 1] we obtain a = 0 since fol Pfdx = fol f dx. Hence
Pf = f and this concludes the proof. =
COROLLARY 3.2. The operator L(1) admits 1 as a simple eigenvalue.

By part (iii) of Proposition 3.4, there exists a number R, 0 < R < 1, such
that all the eigenvalues of L(1) different from 1 are contained in the open
disc D(0, R). Let W be the complement of D(0, R). From Corollary 3.2,
perturbation theory (see [2], p. 587) and the fact that L(s) is holomorphic

. . . o . . 1
(since v(s) is holomorphic by Proposition 3.5) there exists §, 0 < § < 3,

and a holomorphic function s — 6(s) € C defined for |s — 1] < J, such that
Sp(L(s)) N W = {6(s)} (Sp = spectrum). Thus:

COROLLARY 3.3. For |s — 1| < 4, 6(s) is the eigenvalue of maximal
modulus for L(s).

We now introduce
fi(z,s) = det(I — zv(s)), Fi(z,s) = fi(z,s)f1(—2,9),
fa(z,8) =det(I —zv(s+1)), Fi(z,s)= fa(z,5)f2(—2,5).
(
(

From the fact that v — det (I+v) is analytic [6] and s — v(s) is holomorphic,
f1, fa2, F1, F» are holomorphic functions for z € C and Re(s) > %

THEOREM 3.5. For Re(s) > 1 we have
—10F;/0z(1, )
2 Fi(1,s)

where G is a holomorphic function for Re(s) > 1.

F(s) = + G(s),

Remark. If Re(s) > 1, all the eigenvalues of L(s) have modulus < 1
from Proposition 3.4, hence Fi(1,s) # 0.

Proof. According to Fredholm’s theory [6] we have

(%) det(I — zv(s)) = exp < - f: = Tr(v”(s))) .

n=1

This equality holds for |z| sufficiently small (in fact for |z| < [Jv(s)||{ ).
We put for n > 1:

A,(s) = Z (xTx... T tg)2oms
A1 yeeeyQn

where as usual ¥ = x4, 4, = [0,a@1,---, an|. The series

[eo]

F(s) = ZA Z Z (xTx ... T" ta)2ons

n=1 n=1ay,...,
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is absolutely convergent for Re(s) > 1. Theorem 3.3 and relation (x) show
by analytic continuation that

Fo(z, ) = exp (2 3 Z;An(s)>F1(z,s),

n even

for |z| < 1 and Re(s) > 1. Thus
1 8FQ 1 aFl
2 Z An F2 Fy(1,5) 0z (1) = Fl(l,s)@(l’s)7

n even

for Re(s) > 1. Notice that F5(1,s) # 0 if Re(s) > 1. We now set for z € C
and Re(s) > 3

fo(=2,2s) Ni(z,25)

fa(2,2s8) ' fi(=z,2s)

Let % < d < 1. From Proposition 3.4, F3, F, are holomorphic and non-

vanishing for |z] < (Raq)”! and Re(s) > d (with the notations of this
proposition). With the previous argument we have for Re(s) > 1

_ 0F3/0z(1,5) 0F4/02(1,s)
2> An(s)= ;3(1,3)  Fi(l,s)

Fs(z,8) = Fy(z,s) =

n odd

The right member of this equality is holomorphic for Re(s) > d. Since
% < d < 1 is arbitrary we see that the left member can be extended holo-
morphically to Re(s) > %. Since

= > An(s)+ > An(s)
neven n odd

the theorem is proved. m

COROLLARY 3.4. (i) F extends meromorphically to Re(s) > L. More-
over, on the line Re(s) = 1, F' has only one pole which is simple and located
at s =1.

(ii) The residue is equal to —1/20'(1) (we will see later that 0'(1) # 0).

(iii) mo(X) = o(eX).

Proof. The first part of (i) is evident from Theorem 3.5. Put s = 1+t
with ¢ # 0. From Proposition 3.4 all eigenvalues of L(s) have modulus < 1,
which implies Fi(1,s) # 0. Hence s is not a pole for F. We show now that
1 is a simple pole. Let |01 > |f2] > ... be the eigenvalues (with 6(s) = 6;)
of L(s) for |s—1| < 4, each counted according to its multiplicity. Since v(s)
is of order 0 (Theorem 3.3) we have [5]

Z\Hi\<oo and fl(z,s):H(l—zHi).

i=1 i>1
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By putting G(z,s) = [[;5,(1 — 2267) we can write Fy(z,s) = (1 — 226%(s))
x G(z,s) and the function G is defined for |s — 1| < § and z € C. Further-
more, if s is fixed the map z — G(z,s) (z € C) is holomorphic. Take §' < §
such that 6(s) remains bounded if |s — 1| < ¢’. Then there is an £ > 0 such
that for |z] < e and |s — 1| < &', 1 —2262(s) # 0. Hence G is holomorphic in
this open set. It follows from Levi’s Theorem ([18], p. 8) that G is in fact
holomorphic for z € C and |s — 1| < ¢’. Hence

g —L11,1) = —2G(1,1), OF ZL(1,1) = —20/(1)G(1,1).
9z ds
But
OF, of1 of1
5, (LD =2~ 1DAL1) - AL D)= (-11)
= a1,

Since 1 is a simple eigenvalue of L(1) of maximal modulus we have
0f1/0z(1,1) # 0 and f1(—1,1) # 0. It follows that 0F;/0z(1,1) # 0 and
8F1/83(1, 1) # 0. This proves (ii).

or (iii), we have shown in the previous theorem that the function
Znodd A, (s), which is holomorphic for Re(s) > 1, can be extended to
Re(s) > 1. From Ikehara’s tauberian theorem we get immediately

Z 1=o(e).

o(m)<X
|m| odd

Thus 72(X) = o(e*) and this completes the proof of the corollary. m
PROPOSITION 3.6. If |s — 1| < § with s real we have §(s) > 0.

Proof. Fix s and denote by k the order of multiplicity of the eigenvalue
0(s). We have for all n > 1

o0
_ n
- E 91 7
i=1

where as in the proof of the previous corollary |61] > |02 > ... are the
eigenvalues of L(s). Since > i, |0;] < +oo (because v(s) is of order 0 from
Theorem 3.3) and (0;/6(s))™ — 0 for 0; # 6(s) and n — oo we obtain

lim Tr(v"(s))/0"(s) =k.
This implies #(s) > 0 since if s is real Tr(v™(s)) > 0 for all n > 1 from
Theorem 3.3. =

The following inequality is fundamental. It combines 6(s) and the ergodic
properties of T', the transformation of continued fractions. This inequality
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will allow us to explicitly compute 6’(1) and thus the residue of F(s) at
s =1

THEOREM 3.6. For |s—1| < § with s real we have log0(s) > (1—s)h,(T)
where h,(T') is the entropy of T with respect to Gauss’s measure p.

Proof. Let f € E. We have
L) ()= Y (foTwo..oTe)(Tu0...0Ts,)* . (Ts)>,

A1;,..-5an

n
>
127()]] = Max

>Max »  (Ty,0...0T,,)%...(T.,)* (s€R).

For z € [0,1] (Ty,0...0T,, )(2)... Ty, (v) = yTy... T" 'y, where y is given
by

ITPn—1 +pn
=10,a1,...,a, +t | = —""7".
Yy [ 1 n ] P +qn
Hence from Lemma 2.1
1
yTy...T"_ly: _—
Tdn—1 + dn
Thus
1
2s 2s
I}g’aﬁ(al a (Talou.OTa") (Tan) alza q7721$

From the previous equality, the spectral radius formula and Proposition 3.6
we obtain

1 1 1
logf(s) = lim —log||L™ > limsup — lo .
gf(s) = lim_ —log||L"(s)|| = limsup log &
A1,...,an
Let I, ... 4, be the fundamental interval corresponding to a,...,a,. Since

the fundamental intervals generate the Borel subsets of [0, 1] we deduce from
the Kolmogorov—Sinai Theorem

(8 - 1)hu(T) = lim — Z M(Ia17-~~7an)10gM(I¢11,-~-,an)871 .

From the convexity of the function — log we get

1
(1= 8)hy(T) <liminf ~log > p(la;,.a,)"-

If m denotes the Lebesgue measure, the inequality u(A) < (log?2)~tm(A)
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valid for all Borel subsets A of [0, 1] leads to

o1 s
(I—=9)h,(T) < lhnllgfglog Z m(la,. .. a,)

S
lim mf —lo _
n—oo 7N 8 .Z.,a <Qn Qn + @n— 1)>

o]
< liminf — log Z % <logf(s).

IN

n—oo N
Al,y...,Qn

This proves the desired inequality. =
The function logf(s) — (1 — s)h,(T) is > 0for 1 —6 < s < 146
and vanishes at s = 1, thus its derivative is zero at s = 1 and we get

¢'(1) = —h,(T). Hence applying Ikehara’s theorem for the function F(s) =
Jo~ e dmi(t) we obtain from Corollary 3.4

3log?2
Z 1~ — e (X — 0).
o(m)<X

From Proposition 3.3 and mo(X) = o(eX) (Corollary 3.4(iii)) we get the
desired theorem:

THEOREM II.

log 2
> 1~ TN (x o).
o(z)<X

Notice that in this theorem we can restrict ourselves to the reduced
quadratic numbers z such that per(x) is even.
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