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Abstract: Millimeter wave (mmWave), reconfigurable intelligent surface (RIS), and unmanned aerial
vehicles (UAVs) are considered vital technologies of future six-generation (6G) communication
networks. In this paper, various UAV mounted RIS are distributed to support mmWave coverage
over several hotspots where numerous users exist in harsh blockage environment. UAVs should
be spread among the hotspots to maximize their average achievable data rates while minimizing
their hovering and flying energy consumptions. To efficiently address this non-polynomial time (NP)
problem, it will be formulated as a centralized budget constraint multi-player multi-armed bandit
(BCMP-MAB) game. In this formulation, UAVs will act as the players, the hotspots as the arms,
and the achievable sum rates of the hotspots as the profit of the MAB game. This formulated MAB
problem is different from the traditional one due to the added constraints of the limited budget of
UAVs batteries as well as collision avoidance among UAVs, i.e., a hotspot should be covered by only
one UAV at a time. Numerical analysis of different scenarios confirm the superior performance of the
proposed BCMP-MAB algorithm over other benchmark schemes in terms of average sum rate and
energy efficiency with comparable computational complexity and convergence rate.

Keywords: UAV mounted RIS; MP-MAB; Millimeter wave; hotspot

1. Introduction

Millimeter wave (mmWave), i.e., 30 ∼ 300 GHz band, constitutes the corner millstone
of the current fifth generation (5G) and the upcoming six generation (6G) networks [1]. This
comes from its sizeable available spectrum. However, its high operating frequency causes
mmWave signal to be weak and subject to bad channel conditions [2]. This makes it prone
to path blockage and human shadowing. Nevertheless, Oxygen absorption highly degrades
the quality of the mmWave link [3]. Therefore, antenna beamforming is recommended as an
effective solution for overwhelming mmWave channel impairments. This can be conducted
using beamforming training (BT) by means of steering antenna elements utilizing structured
codebooks [4].

In dense hotspot scenarios containing numerous numbers of mmWave users, mmWave
coverage should be extended and strengthened to fully cover hotspot users and overcome
their mutual path blockage. In this regard, reconfigurable intelligent surface (RIS) [5] can
provide an effective solution. It is a talented 6G approach that can smartly reconfigure the
wireless communication channel [5]. This means that an RIS board can effectively control
the mmWave channel by reinforcing the received signal in some directions and weakening
it in other directions [6]. Thus, it can provide additional non-line of sight (NLoS) paths to
mmWave users inside their hotspots. This can be conducted by passively controlling the
incident Electromagnetic wave (EM) on the RIS board by adjusting the phase shifts (PSs) of
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its antenna array [6]. By this way, the complicated RF chains in the conventional relaying
systems are highly relaxed [7]. Due to its cheapness and ease of installation, researchers
investigated the application of RIS in numerous wireless communications systems [8–12].
These applications extend and strengthen the mmWave coverage, as presented in this
paper [13,14]. However, in the case of numerous hotspots scenario, it will be challenging to
install RIS boards nearby each hotspot, especially in the case of momentarily hotspots such
as stadiums, theaters, markets, etc. In these scenarios, unmanned aerial vehicles (UAVs)
will provide a practical and cost-effective solution, where the RIS boards will be attached to
the UAVs. Then, these multi UAV mounted RIS will be distributed in the region of hotspots,
and each UAV will serve a particular hotspot area. Recently, UAVs received significant
attention in wireless communication due to their flying and maneuvering capabilities. For
example, UAVs can be used as airborne base stations (BSs) to provide wireless connectivity
in remote and post-disaster/stricken areas [15]. In addition, they can be used as relays to
extend the coverage of mobile base stations (BSs) [16]. Moreover, data collection such as
aerial photography, traffic, and environmental monitoring can be conducted quickly by
UAVs [17,18].

Herein, the distribution of the UAVs mounted RIS among the hotspots becomes chal-
lenging due to their limited battery capacity. Therefore, each UAV should cover a hotspot,
maximizing its achievable data rate while minimizing its flying and hovering energy con-
sumptions. This problem is a non-polynomial (NP) time problem as its complexity increases
in an NP behavior by increasing the number of UAVs and hotspots. In addition, the con-
straint of limited UAV battery capacity should be maintained while solving the problem.
Furthermore, collision among UAVs should be avoided, i.e., no more than one UAV is
permitted to cover a particular hotspot at a time. These constraints further complicate the
optimization problem.

In this paper, online learning is used to efficiently address the problem of multi
UAV mounted RIS distribution by considering it as a centralized budget constraint multi-
player multi-armed bandit (BCMP-MAB) game. As a robust online learning tool, MAB
can efficiently handle the fundamental exploitation-exploration learning trade off. In this
context, a MAB player challenges the maximization of his profit via consistently exploiting
the highest reward arm or exploring the less selected ones [19,20]. This should be conducted
while the player only observes the achievable rewards of the played arms [19]. Thus, the
main contributions of this paper can be summarized as follows:

• UAVs mounted RIS are used to extend and strengthen the coverage of mmWave in
highly dense hotspot areas containing considerable numbers of users. The distribution
of the UAVs among the hotspots is formulated as an optimization problem to maximize
the sum data rates of the hotspots while minimizing the flying and hovering energy
consumptions of the UAVs.

• The aforementioned optimization problem is reformulated as a centralized budget
constraint MP-MAB game, where the players are the UAVs, the arms of the bandit are
the hotspots, and the rewards are the achievable hotspots’ data rates. The proposed
BCMP-MAB differs from the conventional MP-MAB game due to the added battery
budget and UAVs collision-free constraints. The centralized nature of the proposed
BCMP-MAB is used to avoid collisions among UAVs, and the budget constraint is
used to take into account the limited battery capacity of UAVs when selecting the best
hotspots at a time. To avoid such collisions, the UAV-hotspot selection process is made
autonomously and sequentially by UAVs during the bandit game through centralized
orchestration and information about the currently uncovered hotspots provided by
the mmWave BS.

• The proposed BCMP-MAB algorithm shows greater performance than other bench-
mark schemes via extensive numerical simulations under different scenarios.

The remainder of this paper is organized as follows: the literature review is given in
Section 2. The proposed system model is presented in Section 3. The proposed BCMP-
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MAB algorithm is introduced in Section 4, and Section 5 gives the concluding remarks of
this paper.

2. Related Works

Recently, few research works investigated the applications of RIS in mmWave com-
munications. In [6,14], the coauthors of this paper proposed two-stage MAB schemes
to find the optimal mmWave link from BS to RIS and from RIS to user equipment (UE),
which maximizes the achievable data rate at the UE. Static and adaptively mixed relay
RIS topologies were studied in [11], and they outperformed traditional benchmarking
RIS architectures. Amplify and forward (AF) relay employing RIS-aided mmWave was
investigated in [13], and a precise expression of signal-to-noise power ratio (SNR) was
given. Moreover, the authors developed the AF relay’s optimal power allocation approach
to acquire the ideal PSs for optimizing the end-to-end SNR. In [21], a dual methodology
is proposed for active precoders at the mmWave BS and passive precoders at the RIS to
maximize the achievable spectrum efficiency of the RIS-aided mmWave system. In [22], a
mathematical framework was proposed to analyze the coverage of RIS enabled mmWave
system. Moreover, Federated learning (FL) was used in [23] to optimize the performance
of RIS-assisted mmWave. In [24,25], channel estimation of RIS-enabled mmWave was
considered, whereas in [24], the cascaded nature of the mmWave RIS channel was utilized,
while in [25], atomic norm minimization was adopted. In [26], hybrid precoding approach
was proposed to adjust the analog/digital precoders of the mmWave BS as well as the PSs
of the RIS board. A deep learning-empowered compressive sensing approach was pro-
posed in [27] to adjust the precoders and the PSs of both mmWave BS and RIS. The authors
of [28] investigated machine learning (ML) based beam management of RIS aided mmWave
communication. In [29], passive precoding, power allocation as well as user association of
RIS-aided mmWave are jointly optimized using sequential fractional programming (SFP)
and forward-reverse auction (FRA) techniques. In [30], the best proper beams and reflection
coefficients of RIS-assisted mmWave were investigated. Despite the existing literature on
RIS aided mmWave communications, few investigated the RIS-enabled UAV for mmWave
communications. In [31], the coauthors of this work studied the trajectory planning of
UAV-mounted RIS over multiple hotspot areas via single-player MABs to maximize its
achievable data rate while minimizing its energy consumption over its path from one
hotspot to another. However, this work considered only one UAV setting, plus the problem
of optimal UAVs distribution was not inspected. In [32], the authors showed the superior
advantage of UAV-mounted RIS over that based on fixed RIS in enhancing the coverage of
mmWave users. In addition, they used deep reinforcement learning (DRL) to model the
environment and optimize the performance of mmWave UAV-mounted RIS system. In [33],
the authors extended the work to jointly optimize the precoding matrix at the BS, the PSs at
the RIS, and the location of the UAV-mounted RIS to maximize the total sum rate. However,
in these two papers, only one UAV scenario was studied, and the optimal distribution of
UAVs was not deemed. In [34], fixed RIS attached to a building is used to enhance the se-
crecy rate of the mmWave UAV communication. However, in this paper, no UAV-mounted
RIS was proposed, and only fixed RIS was used to assist the UAV flying BS. In [35], fixed
multiple RIS boards were used to aid UAV-enabled mmWave cellular communications. In
this regard, the RIS deployment, user scheduling, beamforming vectors, and RIS phases
were jointly optimized to maximize the system’s sum rate. In [36], fixed RIS board was used
as an auxiliary to enhance the performance of UAV-enabled mmWave communications. In
this regard, the power-delivering capability as well as the fading characteristics of RIS were
studied. Again, no UAV-mounted RIS was implemented in [35,36].

Table 1 summarizes the research work conducted in RIS assisted mmWave UAV
communications. Thus, to the best of our knowledge, no current research work considered
the optimal distribution of multi UAV mounted RIS over hotspot areas such as the work
presented in this paper.
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Table 1. Literature review comparison in RIS assisted mmWave UAV communications.

Reference Objective Single/Multi-UAV Fixed/Mounted
Mohamed, E. M. et al. 2022

[31]
Optimizing the trajectory of

UAV mounted RIS Single Mounted

Zhang, Q. et al. 2019 [32] Optimizing the performance
of UAV mounted RIS Single Mounted

Zhang, Q. et al. 2019 [33]
Optimize the precoding

matrix at the BS, the PSs at the
RIS

Single Mounted

Guo, X. et al. 2019 [34]
Enhance the secrecy rate of

the mmWave UAV
communication.

Single Fixed

Jiang, L. et al. 2019 [35]

Multiple RIS boards were
used to aid UAV-enabled

mmWave cellular
communications

Single Fixed

Xiong, B. et al. 2019 [36]

An RIS board was used as an
auxiliary to enhance the

performance of UAV-enabled
mmWave communications

Single Fixed

3. System Model and Optimization Problem Formulation

This section will detail the proposed system model, the utilized channel models, and
the optimization problem formulation of multi UAV distribution among hotspots.

3.1. Proposed System Model

Figure 1 shows the proposed system model of mmWave UAV-mounted RIS for hotspot
area coverage. In this model, multiple RIS boards attached to UAVs are used to strengthen
the coverage of mmWave BS at hotspots containing different numbers of UEs, such as
stadiums, markets, etc. Every hotspot has a varied traffic demand based on the traffic needs
of its associated users. The UAV-mounted RIS will provide an additional mmWave path
from the mmWave BS to the mmWave users inside the hotspot, as shown by the dashed
red lines in Figure 1, where the green lines indicates the direct path from the mmWave BS
to the stadium hotspot area. Typically, the number of hotspots is higher than the number
of UAVs. Thus, each hotspot should be served by only one UAV at a time. Based on the
information of the uncovered hotspots provided by the mmWave BS, a free UAV should
autonomously decide which hotspot from the uncovered ones it should fly towards and
cover. Herein, we do not consider a fully centralized network, where the mmWave BS fully
controls the UAV-hotspot selection, in order to prevent the high backhauling overhead,
especially when using high number of UAVs. However, a fully centralized network will be
the subject of our future investigations. The UAV-hotspot selection should maximize the
achievable sum rate of the hotspots based on the specification of the attached RIS board
while minimizing the flying and hovering energy consumptions of the UAV. After selecting
a specific hotspot, the UAV informs the mmWave BS of its selection, and the mmWave BS
controls the PSs of its attached RIS towards the chosen hotspot location, then considers
this hotspot as covered. In this paper, we will focus on the optimal distribution of UAVs
mounted RIS over the hotspots, while issues related to mmWave RIS channel estimation,
joint BS active beamforming and RIS passive beamforming adjustment, and the effect of
UAV turbulence on mmWave RIS channels are out of scope of this paper. These issues
are already addressed in some of the research works as given in [24,26]. In the following
two sub-sections, we will give the used mmWave channel models and the optimization
problem formulation of the UAV-hotspot distributions, respectively.
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Stadium Hotspot

mmWave BS

UAV mounted RIS

mmWave BS Coverage Area

BS-UE Link
BS-UAV-UE Link

Figure 1. Proposed system model of multi mmWave UAV mounted RIS hotspot area coverage.

3.2. MmWave Channel Models

The received (RX) power Pr,nkm at UE k in hotspot, m consists of two components.
One component directly comes from the LoS path from the mmWave BS (B), and the other
comes from the NLoS provided by UAV n. This can be represented mathematically through
(1) as follows:

Pr,nkm = Pr,Bkm + Pr,Bnkm (1)

where Pr,Bkm indicates the direct LoS power component received by UE km from BS, and
Pr,Bnkm indicates the NLoS one traced through UAV n. For Pr,Bkm , the mmWave terrestrial
link model given in [37] is utilized, where Pr,Bkm can be expressed as follows:

Pr,Bkm = Pt At,Bkm(θt,Bkm , θ−3dB)Ar,kmB(φr,kmB, φ−3dB)

(
η(PLoS(dBkm))

LLoS(dBkm)
+

χ(PNLoS(dBkm))

LNLoS(dBkm)

)
(2)

In (2), Pt is the transmit (TX) power of the mmWave BS. η(PLoS(dBkm)) and
χ(PNLoS(dBkm)) are two Bernoulli random variables with probabilities PLoS(dBkm) and
PNLoS(dBkm) = 1− PLoS(dBkm) indicating the LoS and NLoS probabilities as functions of
the separation distance dBkm between mmWave BS and UE km as shown in Figure 2, respec-
tively. At,Bkm(θt,Bkm , θ−3dB) and Ar,kmB(φr,kmB, φ−3dB) indicate the TX and RX beamforming
gains of mmWave BS and UE km, respectively. Herein, θt,Bkm and φr,kmB indicate the bore-
sight angles of the TX and RX beams, while θ−3dB and φ−3dB are their −3dB beamwidths.
By utilizing the 2D steerable antenna model with Gaussian’s main loop profile given in [37],
At,Bkm(θt,Bkm , θ−3dB) can be expressed as follows:

At,Bkm(θt,Bkm , θ−3dB) = A0exp

(
−4ln(2)

(
θ − θt,Bkm

θ−3dB

)2
)

, A0 =

 1.6162

sin
(

θ−3dB
2

)
2

(3)

where A0 is the maximum antenna gain. For Ar,kmB(φr,kmB, φ−3dB), the same equation given
in (3) can be used except that θt,Bkm and θ−3dB are replaced by φr,kmB and φ−3dB, respectively.



Electronics 2023, 12, 12 6 of 18

UAV-RIS 

mmWave BS (B) UE ( )

Figure 2. Schematic diagram of the mmWave BS, UAV mounted RIS, UE communication links.

In (2), LLoS(dBkm) and LNLoS(dBkm) are the path losses of the LoS and NLoS paths as
functions of the separation distance dBkm . They can be expressed as follows:

10 log10 (Lv(dBkm)) = βv + 10αv log10 (dBkm) + εv, (4)

where v ∈ {LOS, NLOS}, βv = 82.02 − 10αv log10(d0) is the path loss at a reference
distance d0. αv is path loss exponent, and εv v N (0, δv) is the log-normal shadowing with
zero mean and standard deviation of δv. Readers are advised to refer to [37] for the details
behind these equations as well as their associated parameters.

The authors in [38] investigated the mmWave RX power received at UE from mmWave
BS through far-field RIS board, like the case of UAV-mounted RIS deemed in this paper.
They considered that all antenna elements of the RIS board will experience the same gain
towards its center due to the far-field effect. Thus, Pr,Bnkm can be expressed as:

Pr,Bnkm = Pt

((
λ

4π

)4
(QnΓ)2 At,Bn(θt,Bn, θ−3dB)Gr,nB(φr,nB)Gt,nkm

(
θt,nkm

)
Ar,kmn

(
φr,kmn, φ−3dB

)(
dBndnkm

)−α

)
(5)

where Pt and λ are the TX power and the wavelength of the mmWave BS signal. Qn
indicates the number of antenna elements of the RIS board attached to UAV n, and Γ is
the amplitude reflection coefficient of the RIS elements. α is the path loss exponent, and
dBn and dnkm are the separation distances between BS and UAV n, and between UAV n
and UE km, as shown in Figure 2, where the schematic diagram of the UAV-mounted RIS
communications links is presented. At,Bn(θt,Bn, θ−3dB) and Ar,kmn(φr,kmn, φ−3dB) are the
TX and RX beamforming gains from mmWave BS to UAV n, and from UE km to UAV n,
respectively. Whereas θt,Bn and φr,kmn are the boresight angles of the beams, as shown in
Figure 2, and θ−3dB and φ−3dB are their−3dB beamwidths. The values of At,Bn(θt,Bn, θ−3dB)
and Ar,kmn(φr,kmn, φ−3dB) can be calculated using (3) employing their parameters. In (5),
Gt,nkm(θt,nkm) and Gr,nB(φr,nB) are TX and RX beamforming gains from UAV n to UE km
and at UAV n from mmWave BS, respectively. Whereas θt,nkm and φr,nB are the boresight
angles of the beams as shown in Figure 2. Gt,nkm(θt,nkm) can be expressed as [38]:

Gt,nkm(θt,nkm) = 4 cos (θt,nkm), (6)

The same equation can be applied to calculate Gr,nB(φr,nB), but θt,nkm should be replaced
by φr,nB. The equation given in (6) matches field measurements well, as stated in [38]. For
the detailed derivation of (5), including its associated parameters, readers are advised to
check [38] along with its cited references. Thus, the spectral efficiency of UE km served by
UV n can be expressed as:

ψnkm = log2
(
1 + Pr,nkm /σ0

)
, (7)

where σ0 indicates the AWGN noise power.
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3.3. Optimization Problem Formulation of UAV-Hotspot Distribution

Assume that there is a set of ∅M hotspots with a total number of M hotspots are
distributed in mmWave BS area. In addition, there is a set of ∅N UAVs with a total
number of N UAVs, where N ≤ M, are flying to cover some of these hotspots by providing
additional mmWave links to their associated UEs. These UAVs should be distributed
among the hotspots for maximizing their achievable data rates while minimizing UAVs’
flying and hovering energy consumptions. This should be conducted under the constraint
that each uncovered hotspot should be covered by only one UAV at a time. Mathematically
speaking, this optimization problem can be formulated as follows:

I∗MN = arg max
∀IMN∈IMN

(
W

N

∑
n=1

M

∑
m=1

ImnΨmn

)
, (8a)

s.t.

IMN ∈ {0, 1}M×N (8b)
M

∑
m=1

Imn = 1, ∀n ∈ ∅N (8c)

N

∑
n=1

Imn < 2, ∀m ∈ ∅M (8d)

Enm ≤ Eb (8e)

where I∗MN is the optimal UAV-hotspot assignment matrix, and IMN ∈ {0, 1}M×N is the
space of all available assigned matrices. W is the available bandwidth, and Ψmn is the
total spectral efficiency in bps/Hz of hotspot m when covered by UAV n, which can be
expressed as:

Ψmn =
Km

∑
km=1

ψnkm , (9)

where Km is the total number of users contained in hotspot m. The constraints (8c) and
(8d) are used to guarantee that each hotspot is covered by only one UAV if it is accessible.
The fourth constraint means that the available energy of UAV n, i.e., Enm, needed to cover
hotspot m is bounded by its battery capacity Eb, where Enm equals:

Enm = Pf Tfn + PhThn , Tfn =
dnm

Vf
, Thn =

Rm

WΨmn
(10)

where Pf and Ph are the flying and hovering UAV powers while Tfn and Thn are the flying
and hovering periods. Tfn is equal to the separation distance between the current position
of UAV n and the location of its chosen hotspot m, i.e., dnm, divided by its flying speed Vf .
Thn is equal to the traffic needs of hotspot m, i.e., Rm in bits, divided by the available data
rate in bps when covered by UAV n, i.e., WΨmn. Herein, Rm = ∑Km

km=1 Rkm , where Rkm is
the traffic need of UE km in bits. The complexity of the optimization problem given in (8) is
of order O

(
M!

(M−N)!

)
, i.e., the number of permutations of N over M. Thus, this problem is

an NP time problem, and the budget constraint in (8e) further complicates it.

4. Proposed BCMP-MAB Algorithm

In this section, to address the previous optimization problem, we will reformulate
it as a time sequential optimization problem with the aim of maximizing the sum rates
of the hotspots sequentially over time. Then, an online learning algorithm based on the
MAB hypothesis will be envisioned to address the formulated time sequential problem
efficiently.
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4.1. MAB Concept

In the MAB game, a player plays over a bandit’s arms to maximize his achievable
reward through his observations of the played arms [19]. The arms’ rewards may come
from identical and independent distribution (i.i.d), and the MAB game will be classified as
a stochastic MAB, or from random distributions and the MAB game will be classified as
an adversarial MAB [19]. Exploitation and exploration are two main phases conducted by
MAB players. In the exploitation phase, the best arm having the highest observed reward
is selected, while in the exploration phase, the less selected arms are utilized [20]. In some
cases, arms’ selection comes with paying cost, defined as budget constraint MAB. In this
MAB game, the player tries to maximize his achievable profit while minimizing the paying
cost of his selected arm [39]. In addition, the MAB games can be classified as single-player
MAB (SP-MAB) or MP-MAB based on the number of players involved in the game. In
the case of MP-MAB, collisions between players may happen, i.e., two or more players
select the same arm simultaneously. Based on the collision model, the arm’s reward may
be shared among the collided players or none of them gain a bonus. To prevent collisions
among the players, some information should be shared among the players in a centralized
manner. That is, if the current players’ selections are known beforehand, the new player
will try to avoid their selections and play the game with the free arms only.

4.2. UAV-Hotspot Distribution Optimization Problem Reformulation

Based on the previously explained MAB hypothesis, the optimization problem given
in (8) can be reformulated as a time-sequential BCMP-MAB game as follows:

I∗MN = arg max
∀IMN,t∈IMN

(
W
TH

TH

∑
t=1

N

∑
n=1

Mn,t

∑
m=1

Imn,tΨmn,t

)
, (11a)

s.t.

TH ∈ Z+ (11b)

∅Mn ,t ⊂ ∅M (11c)

IMN ∈ {0, 1}M×N (11d)
M

∑
m=1

Imn,t = 1, ∀n ∈ ∅N (11e)

N

∑
n=1

Imn,t < 2, ∀m ∈ ∅M (11f)

Enm ≤ Eb (11g)

where

Ψmn,t =
Km

∑
km=1

ψnkm ,t, ψnkm ,t = log2
(
1 + Pr,nkm ,t/σ0

)
, (12)

Herein, 1 ≤ t ≤ TH where TH ∈ Z+ indicates the total time horizon, and Z+ is the set of
positive integers. In (11), IMN,t indicates the UAV-hotspot assignment matrix at time t, and
Ψmn,t is the total spectral efficiency in bps of hotspot m when covered by UAV n at time t.
Constraint (11c), i.e., ∅Mn,t ⊂ ∅M means that the set of uncovered hotspots available for
UAV n at time t, with a total number of Mn,t, is a subset of ∅M. This information is sent to
UAVs from mmWave BS through the dedicated control link. The 4th and 5th constraints
(11e) and (11f) mean that only one UAV should cover one hotspot at time t. Thus, the
sequential optimization problem given in (11) suggests a time-by-time selection of Imn,t. At
every time t, UAVs select their corresponding hotspots sequentially based on the uncovered
hotspot information sent by BS. In other words, if UAV n selects hotspot m at time t, then
this hotspot will be removed from the set of uncovered hotspots available for UAV n + 1
selection, i.e., ∅Mn+1,t = ∅Mn,t /{m}.
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4.3. Proposed BCMP-MAB Algorithm

Algorithm 1 gives the proposed BCMP-MAB algorithm, which is inspired by the
cost-subsidy MAB algorithm given in [39]. This algorithm is a budget constraint version
of the famous upper confidence bound (UCB) MAB algorithm [40], where the cost of the
selected arm is considered while choosing the best bandit’s arm. In the original version of
cost-subsidy MAB algorithm given in [39], after several rounds of pure exploration, the
player calculates the UCB values, and the lower confidence bound (LCB) values of the
candidate arms. Then, the arms with UCB values greater than or equal (1− ρ) multiplied
by the maximum LCB value are enumerated. Herein, ρ ∈ {0, 1} is a design parameter of
the cost-subsidy algorithm. Among these enumerated candidate arms, the arm with the
lowest cost is selected to played.

Algorithm 1: Proposed BCMP-MAB Algorithm
Output: I∗MN,t.
Input: ∅M, ∅N , ρ.
Initialization: At t = 0, set Xmn,t = 0, Ψ̄mn,t = 0, Imn,t = 0, ∀∅M and ∀∅N

1 Pure Exploration Phase:
2 Explore all available hotspots m ∈ ∅M and obtain their achievable data

rates.
3 for t=1, 2,...,(M+N) τ do
4 Temp=mod (t− 1, M + N)+1
5 for n=1:Temp do
6 1.m∗n,t = mod(Temp− n, M)+1
7 2.UAV n flies towards hotspot m∗n,t.
8 3.Obtain its achievable data rate Ψm∗nn,t and traffic need Rm∗nn,t.
9 4.Xm∗nn,t = Xm∗nn,t−1+1.

10 5.Ψ̄m∗nn,t = 1
Xm∗n n,t

∑
Xm∗nn,t

r=1 Ψm∗nn,r.

11 end
12 end
13 Selection Phase:
14 for t=(M+N) τ +1, . . .., TH do
15 ∅M1,t = ∅M,
16 for n=1, 2, . . .,N do
17 1.γUCB

mnn,t = Ψ̄mnn,t +
√

2 ln (t)/Xmnn,t ∀mn ∈ ∅Mn ,t

18 2.γLCB
mnn,t = Ψ̄mnn,t −

√
2 ln (t)/Xmnn,t ∀mn ∈ ∅Mn ,t

19 3.γLCB
max = maxmn γLCB

mnn,t
20 4.Fsn(t) = {mn : γUCB

mnn,t ≥ (1− ρ)γLCB
max , ρ ∈ {0, 1}

21 5.Emnn,t = PhThmnn,t−1
+ Pf Tfmn n,t , Thmn n,t−1

= Rmnn,t−1/(WΨmnn,t−1), ∀mn ∈ ∅Mn ,t

22 6.m∗n,t = arg minmn∈Fsn(t) (Emnn,t)

23 7.UAV n flies towards hotspot m∗n,t
24 8.Set Im∗nn,t=1
25 9.Xm∗nn,t = Xm∗nn,t−1 + 1

26 10.Ψ̄m∗nn,t =
1

Xm∗nn,t
∑

Xm∗nn,t

r=1 Ψm∗nn,r

27 11.∅Mn+1,t = ∅Mn ,t/m∗n,t
28 end
29 end

The inputs to the proposed BCMP-MAP algorithm are ∅M, ∅N and ρ, while the output
is I∗MN,t, i.e., the UAV-hotspot selection matrix at time t. For initialization, at t = 0 and
for ∀∅M and ∀∅N , the number of times hotspot m is selected by UAV n, Xmn,t, is set to
0. The average spectral efficiency of UAV n when covering hotspot m, Ψ̄mn,t, is set to 0,
and the element Imn,t is set to 0. The first phase of the BCMP-MAB algorithm is a pure
exploration, where each UAV n should visit every hotspot m and obtains its achievable
data rate and traffic need, which happens for τ rounds. That is for 1 ≤ t ≤ (M + N)τ,
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a temporary number Temp is selected as given in Algorithm 1, where mod indicates the
modulo operation, where M + N is used to assure the circulation of the N UAVs over
the M hotspots. Then, for 1 ≤ n ≤ Temp, a hotspot m∗n,t is selected for UAV n based on
the equation given in Algorithm 1. Afterwards, UAV n flies towards it and obtains its
achievable data rate Ψm∗nn,t and traffic need Rm∗nn,t. Then, the number of selections Xm∗nn,t,
and average spectral efficiency Ψ̄m∗nn,t are updated as given in Algorithm 1. UAVs visit the
hotspots in a circular shift manner by the means of the mod operations, where only one
UAV covers one hotspot at a time.

After the pure exploration phase, hotspots selection is accomplished in the second
phase of Algorithm 1. In this phase, for (M + N)τ + 1 ≤ t ≤ TH , the set of uncovered
hotspots available for the first UAV ∅M1,t is set to equal ∅M. This first UAV can be selected
at random by the mmWave BS. As we previously explained, the BS controls the sequential
UAV-hotspot selection to avoid collisions among UAVs and satisfy constraints 3 and 4 in
(8). Then, for 1 ≤ n ≤ N, UCB and LCB values for UAV n for ∀mn ∈ ∅Mn ,t are calculated
as follows:

γUCB
mnn,t = Ψ̄mnn,t +

√
2 ln (t)/Xmnn,t ∀mn ∈ ∅Mn ,t, (13)

γLCB
mnn,t = Ψ̄mnn,t −

√
2 ln (t)/Xmnn,t∀mn ∈ ∅Mn ,t, (14)

Then, the maximum of γLCB
mnn,t is determined as follows:

γLCB
max = max

mn
γLCB

mnn,t (15)

A feasibility group of candidate hotspots for UAV n is constructed as follows:

Fsn(t) = {mn : γUCB
mnn,t ≥ (1− ρ)γLCB

max }, (16)

From Fsn(t), the hotspot m∗n,t characterized with the minimum flying and hovering
energy consumptions is selected by UAV n at time t as given in Algorithm 1. This hotspot
selection is conducted autonomously by UAV n based on its corresponding ∅Mn ,t sent
by BS. In calculating the expected hovering time of hotspot mn, as the UAV has no prior
knowledge about the spectral efficiency and traffic needs of hotspots, it uses its previous
observations Ψmnn,t−1 and Rmnn,t−1 at time t− 1, as given in Algorithm 1. After selecting
m∗n,t, UAV n will fly towards it and cover it. Then, its corresponding element Im∗nn,t in the
UAV-hotspot selection matrix is set to 1, and its associated parameters Xm∗nn,t and Ψ̄m∗nn,t
are updated as given in Algorithm 1. Moreover, it will be removed from the set of available
hotspots ∅Mn+1,t for the next UAV n + 1 as given in Algorithm 1, which can be selected at
random by the BS. The set of ∅Mn+1,t will be collected and sent to the UAV n + 1 by BS to
schedule the UAV-hotspot selection process to be conducted one by one to prevent UAVs
collision, as previously explained.

5. Numerical Analysis

In this section, Monto Carlo (MC) numerical simulations are conducted to prove the
effectiveness of the proposed BCMP-MAB algorithm over other benchmarks in different
scenarios. In the undertaken simulations, a simulation area of 25 km2 is established, where
100 hotspots are uniformly distributed inside it. Different number of UAV mounted RIS are
used to cover these hotspots based on the conducted simulation scenario. Each attached RIS
board has a random number of antenna elements. The altitude of the UAVs is set to 6 m. In
addition, each UAV has two statuses, the flying status when it flies towards a hotspot with
a flying speed of Vf = 5 Km/h, and hovering status when it covers a hotspot. In addition,
each hotspot contains random number of UEs with spontaneous traffic needs, as given in
Table 2, which summarizes the simulation parameters used in the conducted numerical
simulations unless otherwise stated. For comparisons, random (Rand) selection, where
UAV n arbitrarily selects its associated hotspot is provided. In addition, the performance of
the nearest hotspot selection is given, where UAVs always choose their nearest hotspots.
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Moreover, the performance of naïve UCB is shown, where only γUCB
mnn,t is calculated as given

in Algorithm 1, and the hotspot corresponding to the maximum γUCB
mnn,t value is selected.

In addition, the maximum rate-based (max rate) selection is given, where UAV always
selects the hotspot maximizing its achievable data rate in bps irrespective of its energy
consumption. In all compared schemes, i.e., Rand, nearest, naïve UCB and max rate, no
UAVs collision avoidance as well as UAV energy minimization are considered. This means
that two or more UAVs can cover the same hotspot, where the achievable hotspot data rate
is shared among them.

Table 2. Simulation Parameters.

Parameter Value

Pt, Pf , Ph 1, 4, 2 Watts [31]
Vf 5 Km/h [31]
W 2.16 GHz [41]
λ 0.005 [41]
Γ 0.9 [38]
M 100
Qn Uniformly random in the range [32, 512]
d0 5 m [41]

αLoS, αNLoS, α 2.2, 3.88, 2 [41]
δLoS, δNLoS 10.3, 14.6 [41]

θ−3dB, φ−3dB 30◦

ρ 0.6
TH 1000

σ0(dBm) −174 + 10log10(W) + 10 [31]
Rki

Uniformly random in the range [10, 70] Gbit [31]
τ (TH/M)2/3 [39]

5.1. Adjusting the Value of ρ

In this part of numerical analysis, we will adjust the value of ρ, where N is set
to 20 UAVs. Figures 3 and 4 give the average sum rate in Gbps and average energy
consumption in Joule of the UAVs using BCMP-MAB algorithm against the value of ρ.
When ρ is equal to 0, only candidate hotspots with high UCB values, i.e., high average
spectral efficiencies, are picked in Fsn(t) group of UAV n as given in Algorithm 1. This
results in high average sum rates but at the expense of high UAV energy consumption. On
the other hand, when ρ is equal to 1, all available hotspots are included in Fsn(t). This
results in low UAV energy consumption as the lowest energy consumption hotspot will
always be selected by UAV n, but the expense of low average sum rate. From both figures,
ρ = 0.6 is chosen as a sufficient value of ρ as given in Table 1. This is because, at ρ = 0.6, the
average sum rate is slightly reduced by 93.8% from its maximum value, while the average
energy consumption is highly reduced to 68% from its maximum value.



Electronics 2023, 12, 12 12 of 18

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

Av
er

ag
e 

Su
m

 R
at

e 
[G

bp
s]

ρ

Figure 3. Average sum rate against the value of ρ.
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Figure 4. Average energy consumption against the value of ρ.

5.2. Performance Against Number of UAVs

Figure 5 shows the average sum rate against the number of used UAV-mounted RIS.
It clearly appears that the proposed BCMP-MAB has the best performance among the
schemes involved in the comparison. This comes from compromising between maximizing
the achievable data rate while minimizing UAVs energy consumption. Nevertheless, the
proposed UAV scheduling mechanism orchestrated by mmWave BS eliminates collisions,
i.e., reward sharing among UAVs, hence maximizing the average sum rate compared to
other benchmarks. It is interesting to notice that the average sum rate performance of
naïve UCB matches that of max rate. This is because UAV always selects the hotspot
with the highest average data rate for both schemes. Moreover, both schemes show lower
average sum rate performances than the proposed BCMP-MAB because there is no col-
lision avoidance mechanism in these schemes. Thus, multiple UAVs can cover the same
hotspot and share its achievable data rate among them, while many other hotspots are left
uncovered. Rand and nearest show the worst performance, and Rand is slightly better than
the nearest due to randomness in selecting the associated hotspot. At N = 10, the proposed
BCMP-MAB shows a higher average sum rate than naïve UCB/max rate, Rand and nearest
by 1.36, 9.52 and 10.19 times, respectively. However, at N = 100, these values become 1.35,
2.12, and 2.54 times, respectively.
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Figure 5. Average sum rate against number of UAVs.

Figure 6 shows the energy efficiency performances in Gbps/J of the schemes involved
in the comparisons. As shown by this figure, the proposed BCMP-MAB has the best energy
efficiency due to compromising between maximizing the achievable data and minimizing
the energy efficiency, and maintaining collision free among UAVs. In addition, Nearest
shows better energy efficiency than naïve UCB, max rate, and Rand. This is because
it highly reduces the flying energy consumption of UAVs due to selecting the nearest
hotspot to them. Again, naïve UCB and max rate show almost the same energy efficiency
performance due to their identical objective. At N = 10, about 47 and 265, and 59.3 times
higher energy efficiency than naïve UCB/max rate, Rand and nearest are obtained by the
proposed BCMP-MAB algorithm, respectively. These values become 54.6, 71.5, and 18.76
times at N = 100, respectively.
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Figure 6. Average energy efficiency against number of UAVs.

5.3. Performance Against TX Power

In this part of numerical analysis, we will bound the performance of the schemes
involved in the comparisons against the TX power Pt dBm. Figure 7 shows the average
sum rate performances of the schemes involved in the comparisons against Pt dBm using
N = 20. From this figure, the proposed BCMP-MAB has the best performance, especially
for high Pt values due to its spectral efficiency maximization combined with UAVs collision
avoidance. Still, naïve UCB and max rate schemes show almost the same performance, and
rand-based selection outperforms the nearest based on their policies. At Pt = 10 dBm, the
proposed BCMP-MAB algorithm obtains average sum rate higher than naïve UCB/max
rate, Rand, and nearest by 1.44, 6.35, and 9.4 times, respectively. However, at Pt = 60 dBm,
about 2.52, 3.13, and 3.14 times higher average sum rate than naïve UCB/max rate, Rand
and nearest, are obtained, respectively.
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Figure 7. Average sum rate against Pt.

Figure 8 gives the average energy efficiency of the schemes involved in the comparison
against Pt. As explicitly shown, the proposed BCMP-MAB has the best performance for all
tested Pt values. In addition, naïve UCB and max rate almost have the same performance
due to the aforementioned reasons. Rand has the worst energy efficiency performance
especially for high values of Pt. It is interesting to notice that the nearest hotspot-based
selection has lower energy efficiency performance than naïve UCB, max rate, and even
Rand at low Pt values, while it shows better performance than those at high Pt values.
This is because at very low Pt values, the hovering time will be considerable. This makes
the hovering energy consumption larger than the flying energy consumption and has
the most dominant effect. Thus, all compared schemes, without energy minimization
features, will influence almost the same energy consumption values. Hence, the average
sum rate of these schemes will have the dominant effect in differentiating among their
energy efficiency performances. However, at high values of Pt the opposite happens, i.e.,
the flying energy consumption will be higher than the hovering energy consumption.
Consequently, the nearest scheme will have lower energy consumption than naïve UCB,
max rate, and Rand, which results in improving its energy efficiency over them, as shown
in Figure 8. At Pt = 10 dBm, the energy efficiency of the proposed BCMP-MAB is 52.36,
221.76, and 342.72 times higher than naïve UCB/max rate, Rand, and nearest, respectively.
At Pt = 60 dBm, these values become 6419.5, 4291.8, and 425.2 times, respectively.
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Figure 8. Average energy efficiency in bps/J against Pt.
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5.4. Convergence Analysis

Figures 9 and 10 show the convergence performances of the schemes involved in the
comparisons against the time horizon. In the conducted simulations, Pt is set to 1 Watt,
M = 100, N = 20 in Figure 9 while N = 100 in Figure 10. From both figures, the proposed
BCMP-MAB shows fast convergence comparable to the convergence rate of the naïve UCB.
For both cases, at t = 30, the average sum rate of the proposed BCMP-MAB and naïve
UCB reached about 96% of their maximum values at t = 1000. In addition, the average
sum rate of the naïve UCB converges to that belongs to the max rate scheme.
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Figure 9. Average sum rate convergence against the time horizon using M = 100, and N = 20.
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Figure 10. Average sum rate convergence against the time horizon using M = 100, and N = 50.

5.5. Computational Complexity Comparisons

In the naïve UCB algorithm, the computational complexity comes from calculating
the UCB values of hotspots for each UAV and updating their corresponding parameters
with computational complexity of O(N(M + 1)) [31,40]. The computational complexity
of the proposed BCMP-MAB consists of two parts. The first part comes from the pure
exploration phase, where each UAV should visit all available hotspots several times and
update their corresponding parameters with computational complexity of O(N). The
second part comes from the hotspot selection phase, which is like naïve UCB except that
both UCB and LCB values are calculated. Then, the parameters of the selected hotspots
are updated. For simplicity of computational complexity calculation, let us neglect the
elimination of the previously selected hotspots. Thus, the upper bound of the computational
complexity of the second BCMP-MAB phase can be approximated as O(N(2M + 1)) [39].
Consequently, the upper bound of the total computational complexity of the proposed
BCMP-MAB can be written as O(N) + O(N(2M + 1)). For the nearest and the maximum
rate hotspot-based selections, the distances between UAVs and hotspots and the expected
rates between them are calculated, respectively. Then, the selection decision is taken
individually for each UAV with total computational complexity of O(NM) for both schemes.
For random based selection, each UAV selects a random hotspot out of M total hotspots
with total computational complexity of O(N). Thus, the computational complexity of
the proposed BCMP-MAB is approximately double the naïve UCB, max rate, and nearest,
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while it is almost 2M times the random selection. Yet, the performance improvements
in energy efficiency using the proposed BCMP-MAB are larger than the degradations in
computational complexity, as given in the above simulation results.

6. Conclusions

In this paper, we proposed multi-UAV mounted RIS to cover dense hotspots using
mmWave links. The problem of distributing UAVs among the hotspots was formulated
as an optimization problem with the aim of maximizing the achievable hotspots sum rate
while minimizing both UAVs’ flying and hovering energy consumptions. To efficiently
address this problem within its constraints, it is reformulated as a time sequential budget
constraint MAB problem. Then, a BCMP-MAB algorithm was proposed to address it, where
UAVs functioned as the players, hotspots as the bandit’s arms and achievable rate as the
rewards. Moreover, collision avoidance among UAVs and UAVs budget constraint were
considered while maximizing the achievable sum rate. The proposed algorithm showed
superior average sum rate and energy efficiency compared to naïve UCB, max rate, random,
and nearest-based hotspot selection. For example, at N = 10 and Pt = 10 dbm, the proposed
BCMP-MAB shows a higher energy efficiency than naïve UCB/max rate, Rand and nearest
by 47 and 265, and 59.3 times, respectively. In addition, at N = 20 and Pt = 60 dbm, these
values become 6419.5, 4291.8, and 425.2, respectively. These significant enhancements
come with only double the computational complexity of the naïve UCB, max rate, and
nearest, while it is almost 2M times the computational complexity of the random selection.
Although we proposed the BCMP-MAB algorithm to address the multi-UAV mounted RIS
distribution problem, other solutions such as Q-learning and DRL are applicable as well.
However, more investigations are needed to study their realization as well as bounding
their performances against the proposed BCMP-MAB scheme. Moreover, the turbulence
effect of UAVs due to the rotation of the propellers in conjunction with RIS communication
will be one of our future research directions.
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