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Abstract

In this paper, we study the distribution of orders of bounded discriminants in number
fields. We use the zeta functions introduced by Grunewald, Segal, and Smith. In order
to carry out our study, we use p-adic and motivic integration techniques to analyze the
zeta function. We give an asymptotic formula for the number of orders contained in
the ring of integers of a quintic number field. We also obtain non-trivial bounds for
higher degree number fields.
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Introduction
Let K/Q be an extension of degree n with ring of integers Og. An order O is a subring of
O with identity that is a Z-module of rank 7. Set

Ng(B) := |{O C Ok; O an order, |disc O| < B}|.

In this paper, we study the asymptotic growth of N (B) as B grows.

Results
Our first theorem, which is a consequence of the motivic framework used here, is the
following result:

Theorem 1. There is ax € Q-0, Bx € N, Cx € R. such that

N (B) ~ CxB* (log B)Px—1

as B — oo.

Let E/Q be the normal closure of K with Galois group G = Gal (E/Q). Then G has a
natural embedding in S, as a transitive subgroup. Let V; be the vector space whose basis
is the set of 2-element subsets of {1, - - - , n}. The group G has a natural action on V5. Let

ry be the dimension of the space of G fixed vectors in V3. Then, we have the following
theorem:

Theorem 2. Let K /Q number field of degree n.
1. Forn <5, there is a constant Cx > 0 such that
Nk (B) ~ CxB'/*(log B) ™!
as B — oo;
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Table 1 Transitive subgroups up to conjugation

n Order Group name Generators ry
3 3 YAEYA (123) 1
3 6 S3 (12),013) 1
4 4 Z]AZ (1234 2
4 4 Z/27 x Z]2Z (12)34),04(23) 3
4 8 Dy (1234),03) 2
4 12 As (124),234) 1
4 24 S4 (12),03),04 1
5 5 Z/5Z (12345) 2
5 10 Ds (12345),0423) 2
5 20 AGL(1, 5) (12345),2354 2
5 60 As (124),(345),235) 1
5 120 Ss (12),013),04,05) 1

2. Foranyn>5,

B2(log B)"> ! « Ni(B) < Bi~12te,

Table 1 lists the transitive subgroups of S, for small # and the corresponding r, values.

The reference for the list of subgroups up to conjugation is ([9], section 2.9). For the

computation of ry, see section ‘Some remarks on ry’.

In order to study the behavior of Nx (B), we form the counting zeta function

1
nk(s) = Z M,

Oorder

where Ok is the ring of integers of K and O is an order. This series converges absolutely

for Ns large, and in its domain of absolute convergence we have
Nk (s) = |disc Ok| 7k (2s)

where

- 1
O = D 1o op

O order

The zeta function 7jg has an Euler product of the form
fix(s) = [ [ fix.p(®)
P
where

~ 1
09 =2 1087, OF

and the summation in the last expression is over full rank sublattices of Ox ®z Z, that

are subrings with identity. We define the coefficients a;(p) by

o0
N ai(p)
kp(s) =14 ==
i=1 p

The number a;(p) is what in section ‘Our method’ is denoted by ag; (p‘)

The proof of Theorem 2 has two main steps. The first step which is arithmetic is the

following theorem:
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Theorem 3 (Arithmetic Step). The Euler product

f&= I Q+a@pr™)
punramified
converges absolutely for Ns large, and it has an analytic continuation to a meromorphic
function on an open set containing Ns > 1 with a unique pole at s = 1 of order r».

Remark 1. 1t is reasonable to conjecture that for n small the function 7k (s) is holomor-
phic for s > 1, and has an analytic continuation to a domain containing fis > 1 with a
unique pole of order rp at s = 1. If this is true, then there is a nonzero constant Cx such
that

Ni(B) = CiB"*(log B)> (1 + 0(1))

as B — o0o. The conjecture is true for n < 5 by Theorem 2. The results of Brakenhoff
[3], summarized in section ‘Comparison with previous results’ below, show that for n > 8
there is a pole to the right of 9is = 1.

The second step of the proof of the main theorem is geometric. Since by Lemma 4.15 of
[10] the finitely many bad primes do not contribute to the main pole, part 1 of Theorem 2

is a consequence of the following theorem:

Theorem 4 (Geometric Step for small n). Let n < 5. There is a finite set S of primes such

that the series

>\ ai(p)
ZZ pio

pésS i=2

converges for any real o > 19/20.

We give heuristic reasoning for why this result should hold in the case n» = 5. Let
bi(p) be the number of subrings with identity of Zg, i.e., orders, whose index is p'. It is
reasonable to expect that

ai(p) < b;(p) 1

for all i and p. It is then a consequence of Theorem 14 that the series

0]

DRI

i
podd prime i=2 p

converges for o > 19/20. Alas, we have not been able to prove (1) - even though we are
confident it is true. Here, we employ an alternative method based on p-adic integration.
Part 2 of Theorem 2 is a consequence of the following theorem and Lemma 4.15 of [10]:

Theorem 5 (Geometric step for large n). Let n > 5. There is a finite set S of primes such

that the series

o ai(p)
ZZ pia

pesS i=2

[e)] AN

converges for any real o > 5 —
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Remark 2. Note that by Theorem 1.5 of [10], the zeta function nx(s) has an analytic
continuation to a domain of the form s > o — € with ¢ > 0 the abscissa of convergence
and € > 0.

Remark 3. A byproduct of our methods, stated as Corollary 4 and Corollary 5 in
section “The proof of Theorems 1 and 2’, is an improvement of the upper bounds obtained
by Brakenhoff [3], Theorem 5.1 and Theorem 8.1.

Remark 4. It would be interesting to obtain information about the constant Cx. For
the cubic case, the results of [6] stated below give precise values for Cg. Corollary 1 of
Nakagawa [24] gives the value of Ck in terms of certain Euler products, but it is not clear
if these Euler products have any conceptual meaning. For higher degree extensions, we
know nothing about the constants Cg.

More generally if L = [, K; is an étale Q-algebra with K;’s number fields, we define
Op = [1]; Ok;. Clearly, Oy is Z-algebra which is free as a Z-module of rank d = ) [ K; :
Q]. We define an order O in Oy, to be a subring with identity of Oy, which is of Z-rank d.
Again, we set

~ 1
o= 2. o o

O order

As usual, knowing the analytic properties of 7j7(s) via Tauberian arguments, e.g.,
Theorem 9, gives us information about the function

NL(B) := |{O C Op;Oan order, [Of : O] < B}].

Our methods give an asymptotic formula for K[L (B) whenever [L : Q] < 5.

Let us explain the simplest possible case. For d € N, we set Ny(B) := K[Qd (B). Given
k € N, we define f;(k) to be the number of orders in Z¢ of index equal to k. Clearly,
Ny(B) = ) i .pfa(k). It is easy to see that the function f;(k) is multiplicative, i.e., if k1, k>
are coprime i;ltegers then f;(ki1ka) = f;(k1)fa(ka).

This is the prototype of the problem that we study in this paper:

Problem 1.1. Let d € N. Study the function N;y(B) as B — oo.

Despite its innocent appearance, this is a very difficult problem, and prior to our work,
the only cases for which an asymptotic formula is known for Ny (B) are d = 2,3,4 [19].
Here, we obtain an asymptotic formula for N5(B), and give non-trivial bounds for N;(B)
when d > 5.

Definition 1. Let d,k € N. We define a_, (k) to be number of subrings S of 74, not
necessarily with identity, such that [ Z% : §] = k.

A subring S in Z? which is of finite index as an additive group will necessarily be a
free Z-module of rank d. Such subrings are called multiplicative sublattices in [19]. An
elementary proposition in [19] states that for any d, k € N, d > 2, we have

Jak) = ﬂZd—l (k).
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As a result, with the notation of section ‘Our method’

Tiga () = 501 (9)-
Determining the asymptotic behavior of Nj (B) and N, (B) is trivial. In this paper, we will

use the method of p-adic integration as in section ‘Our method’ to prove the following
theorem:

Theorem 6. 1. Letd < 5. There is a positive real number C; such that
d
Ny(B) ~ CzB(log B)D !

as B — oo.
2. Suppose d > 6. Then for any € > 0 we have

B(logB)® ! « Ny(B) <. BS~&+¢

as B — oo.

We actually prove a more precise statement and give error estimates; see Theorems 12,
13, and 14. We include the d = 3 case to illustrate our method in a simple case. Our
results for d > 5 are new.

Theorem 6 is more than just a prototype of the type of result we can prove. The com-
putations in section ‘Orders of Z°” form the backbone of the proof of Theorem 2. In fact,
Theorem 8 shows that, essentially, whatever estimate we obtain for the volumes of the
sets considered in section ‘Orders of Z>” works in general.

We expect the asymptotic formula in Part 1 of Theorem 6 to be valid for d < 8. The
formalism of p-adic integration shows that N;(B) has an asymptotic formula of the form
CB*(log B)’~1, for a rational number & and a natural number b, but for d > 8 it is not
clear what the numbers 4, b should be.

We finish this introduction with the following conjecture:

Conjecture 1. Let K/Q be a number field of degree d. Then with the notation of
Theorem 1, we have

1 . logNy(B)
o = = lim ———.
2 B> logB

In particular, ax only depends on the extension degree of K over Q.

Comparison with previous results

If we write

1
Lzn(s) == Z W:

ACZ”
where A is a sublattice of Z”, it can be seen that for 9i(s) > n, we have

Czn(8) =L (8)¢(s—1)---Z(s—n+1).

As a result, {7a(s) has a pole of order 1 at s = # with residue ¢(m)¢(n — 1) --- £(2).
Consequently,

¢ (n— 1)"'((2)3,,
d
as B — 00. The book [20] contains five distinct proofs of this fact.

[{A < Z" | Asublattice, [Z" : A] < B}| ~
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Since in this work we are counting sublattices with additional structure, we expect
slower asymptotic growth. Theorem 2 is trivial for a quadratic field as the counting zeta
function is simply the Riemann zeta function ¢(s). For K a cubic or quartic extension of
Q, Theorem 2 is due to Datsovsky-Wright [6] for the cubic case, and Nakagawa [24] for
the quartic case.

In the cubic setting, there is a bijection between the set of equivalence classes of integral
binary cubic forms and the set of orders of cubic fields. Then it follows from Shintani’s
theory of zeta functions associated to the prehomogeneous vector space of binary cubic
forms combined with a theorem of [6] that
_&x(s)
k(29)
In the quartic setting, Nakagawa explicitly computes the local factors of the zeta func-

Nk (s) $(25)¢(3s — 1).

tion 7x using an intricate combinatorial argument involving counting the number of
solutions of some very complicated congruences. Due to computational difficulties at the
prime 2, Nakagawa’s theorem assumes some mild ramification conditions. Under these
conditions, he shows that the zeta function 7k (s) has an analytic continuation to s >
2/3. Nakagawa’s explicit local computations can also be used to prove Theorem 6 for d =
4. The paper [19] contains a different approach to Theorem 6 using combinatorial argu-
ments. Here, too, the local Euler factors of the counting zeta function are explicitly com-
puted, though the proof follows from elegant recursive formulas, c.f. Propositions 6.2 and
6.3 of [19].

In a series of spectacular papers, Bhargava studies orders in quintic fields. In [1], he
shows that there is a canonical bijection between the set of orbits of GL4(Z) x SL5(Z) on
the space Z* ® A2Z° and the set of isomorphism classes of pairs (R, S) with R a quintic
ring and S a sextic resolvent ring of R. An impressive theorem of Bhargava [2] which is
proved using the above bijection says that

> Ng(B) ~cB
Kquintic

as B — oo. Bhargava’s methods do not identify the contribution of each N (B) to the sum.

The thesis [3] contains an array of interesting results on the distribution of orders in
number fields. In keeping with our notation below, for a number field K, we let

aé’;(m) = |{O Cc Ok; O anorder, [ O : O] = m}]|.
We then let

1,
ab<(n,m) = max ag- (m).
K/Qextension of degreen  ~ K

Theorem 5.1 of [3] is the statement that

1 1,< ,
¢7 () < lim sup loga™=(n, m) < cg(n)

m— 00 lo

d(n—1-d)

w—17 and cs(n) given by the following Table 2:

with ¢7 (1) = maxg<g<y—1

Table 2 Values of cg(n)

n 2 3 4 7 9 10 N 12 13 > 14
1 20 29 186 49 119 70 388 440 492 8
@ 0 3 1 il i = i yr il 53 53 5 N—3
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Furthermore,
1 log a®=(n,
lim inf — lim sup M >3- 272
H—>00 M p1—so00 log m
and

1 loga'=(n,
lim sup — lim sup loga™=(n, m) <1

n—soo M m—o0 log m

One can compute the values of ¢7(n) explicitly as follows:

k(2k—1) e,
] n = 3k;
c7(n) = % n=3k+1;
k(k+1) _
oTan n=23k-+2.

In particular, for n > 8, cy(n) > 1.
Theorem 8.1 of [3], which is used in [2], is the following result: If K/Q is a quintic field,

then for any prime p
oo ﬂ1’< k
>4 o).
p
k=1
We improve the upper bounds in these theorems in section “The proof of Theorems 1
and 2’, Corollary 4 and Corollary 5.
Our method
Given a ring R whose additive group is isomorphic to Z¢ for some d € N, we define
ag (k) := |{Ssubring of R | [R: S]= k}|.
Forany k € N, ay (k) is finite. We define the subring zeta function of R by

- a5 (k) 1
W= N = L RSy

k=1 S<R

We view {5 (s) not just as a formal series, but as a series converging on some non-trivial
subset of the complex numbers. The idea is that the analytic properties of the resulting
complex function have consequences for the distribution of subrings of finite index in R.
In particular, by various Tauberian theorems, e.g., Theorem 9, the location of poles and
their orders gives information about the function s3 (B) defined by

sg(B) =Y _ag (k) = |{Ssubring of R | [R: S] < B}|.
k=B
Similar constructions can be made for subgroups of finitely generated groups and ideals
in rings, but in this introduction, we only consider subring zeta functions. We have the

following theorem which is a summary of results from [10,14]

Theorem 7. 1. The series £ (s) converges in some right half plane of C. The abscissa
of convergence ag of {5 (s) is a rational number. There is a$ > 0 such that {5 (s)
can be meromorphically continued to the domain {s € C|%(s) > ag — &}.
Furthermore, the line 0 (s) = ag contains at most one pole of {5 (s) at the point

_ <
s=oap.
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1. There is an Euler product decomposition
i) =[]2z,®
p

with the local Euler factor given by

o] as A
Sp®) =D~ Sf)
=0

p

This local factor is a rational function of p~*; there are polynomials Py, Q, € Z[ x]
such that 5 (s) = Py (p_s) /Qp (p_s). The polynomials Py, Q, can be chosen to
have bounded degree as p varies. The local Euler factors satisfy functional equations.

The functional equation mentioned in the theorem is proved in [27]; also see Chapter 4
of [13]. A corollary of this theorem is that the asymptotic behavior of the function sy (B) is
of the form CEB“E (logB)hJ?_1 as B — oo. Here, by is the order of pole of £z (s) at s = a.
It is known that bz > 1. It is a fundamental problem in the subject to relate the numbers
ag,bg,cy € Rto structure of R.

The paper [14] introduced a p-adic formalism to study the local Euler factors ¢z (s). Fix
a Z-basis for R and identify R with Z%. The multiplication in R is given by a bi-additive
map

B:7% x7% > 7°
which extends to a bi-additive map

. rd d d

By : Ly x L, — L,

giving R, = R ®z Zj the structure of a Z,-algebra.

Definition 2. Let M, (B) be the subset of the set of d x d lower triangular matrices M
with entries in Z,, such that if the rows of M = (x;})1<;j<q are denoted by vy, ..., vy, then

for for all i, j satisfying 1 < i,j < d, there are p-adic integers cili, ces cg« such that

d
k
Biv) = chvi.
k=1

Let dM be the normalized additive Haar measure on T;(Z,), the set of n x n lower
triangular matrices with entries in Z,. Proposition 3.1 of [14] says:

_1\—d _ _ _
Gy =(1-p7") f 1 [ o T g ML 2)
Mp(B)

Most of the statements of Theorem 7 are proved using this p-adic formulation. The
integral appearing in (2) is an example of a cone integral. The beauty of Equation (2) is
that it allows us to express the number of subrings of a given index in terms of volumes of

certain p-adic domains.

Let D = (fo,g0,/1,£1,- - - »f1, &) be polynomials in the variables x;, . . ., x;, with rational
coefficients. We call D the cone integral data. For a prime number p, we define

MyD) :={x e ZZ’ [vp(fi(x)) < vp(gi(x)), foralll <i <},
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and we define the cone integral associated to the cone integral data D by

Zp(s,p) = /

[fo ()1 1g0(x)|p dx

Mp(D)

with dx is the normalized additive Haar measure. The study of such integrals in special
cases was started by Igusa [16,17]. Igusa’s original method was based on the resolution of
singularities. Igusa’s approach was generalized by Denef [7] and du Sautoy and Grunewald
[10]. Denef [7] also introduced the use of elimination of quantifiers in QQ, as an alternative
approach. For surveys on cone integrals and their applications to zeta functions of groups
and rings, as well as references and examples, see [11,13,28]. In general, calculating cone
integrals is difficult and requires explicit desingularizations of highly singular varieties.
For a ‘simple’ example, see [12].

There is a modification of this formalism to treat subrings with identity. Again, let R be
a ring with identity whose additive group is isomorphic to Z% and for simplicity assume

that the identity of R is sent to (1,1, ..., 1) under this isomorphism. For k € N, let
ag™ (k) := |{S subring with identity of R| [R : §] = k}|.

Now define the unitary subring zeta function of R by

o) 1,< k
o=y T
k=1

As before, we have an Euler product expansion
=6 =[]y ©-
P
We let

s}f(B) = Za}f(k) = |{S unitary subring of R | [R: §] < B}| .
k<B
Again suppose after identifying R with Z¢, the multiplication on R is given by a
bi-additive map
B:7%x 7% > 7
which extends to a bi-linear map

d d d
ﬂp:prZpeZp.

Definition 3. Let M},(f}) be the subset of M, (8) whose rows generate a unitary
subring.

Then it is not hard to see that

_1\—4d _ _ _
Gy =(1-p" / et I oo [ - gl M 3)
My(B)

14
This integral too is a cone integral as we will see in section “The proof of Theorems 1
and 2’. As a result, the asymptotic behavior of s3 (B) is of the form CEBO[E (log B)Px—1 a5
B — o0. Again, we use the expression (3) to write the number of unitary subrings of a
given index in terms of volumes of certain p-adic sets.
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In our problems of interest, the ring R is a product of rings of integers of number fields.
The two usual methods to study the cone integrals coming from subring zeta functions
are resolution of singularities and elimination of quantifiers. Neither of these methods,
however, can be applied in any obvious fashion to the problem of counting subrings of
such R. This is due to the fact that our cone integrals are too complicated (see sections
‘Orders of Z* and ‘Orders of Z*’). In general, there is no effective algorithm to eliminate
quantifiers for a complicated p-adic domain, and resolution of singularities, while in prin-
ciple computationally tractable, is dreadful for domains of the type considered here. For
example, the domain needed to study Z? would involve about d* inequalities of the form
p(f (%)) < vp(g(x)) with x a vector of variables of length about d?, and f, g ranging over
polynomials with integer coefficients of degrees 2 to d.

In this paper, inspired by [26], we propose a different approach. So far as the deter-
mination of the fundamental quantities a5, b; is concerned, we do not need explicit
computations of the local integrals. Instead, in favorable circumstances such as those
under consideration here, we can accomplish this by computing the first two terms of the
Euler factors and estimating the rest of the terms. It is precisely for this reason that our
method can be applied to more cases that what was treated in the earlier papers [6,19,24].
Here, the difficulty lies in estimating volumes of certain p-adic sets that arise in the split
situation of Z, see section ‘Orders of Z¥, ‘Orders of Z*’, and ‘Orders of Z¢ for d > 5.
Once this has been accomplished, we will use the results of section ‘Application to some
volume computations’ to show that the volume estimates obtained for the Z" setting
automatically extend to an arbitrary R of the sort considered here.

Organization of the paper

The rest of the paper is organized as follows. In section ‘Geometry and p-adic integrals’,
we recall results by Denef [8], and use them to prove Theorem 8. We prove Theorem 3
in section “The proof of Theorem 3’, using the outline explained in section ‘Outline
of the proof of Theorem 3’. Section ‘Tauberian theorem’ contains the statements of
the Tauberian theorems we use in this work. We discuss the values of ry in section
‘Some remarks on ry’. The proof of Theorem 6 is presented in section “The proof of
Theorem 6’. The outline of the proof is sketched in section ‘Outline of the proof of
Theorem 6’ and details are postponed to later sections. In section ‘General facts about
volumes’, we collect several lemmas used in estimating volumes. Section ‘Orders of 7>
contains the treatment of the simple case of Z3. We include this simple case to illustrate
the method. In sections ‘Orders of Z* and ‘Orders of Z>’, we give bounds for the vol-
umes of our domains for n = 4 and n = 5, respectively. These bounds are then used in
Sections ‘Counting orders of Z* and‘ Counting orders of Z>’ to establish Theorems 12,
13, and 14 which imply the first part of Theorem 6. The proof of the second part of
Theorem 6 is presented in section ‘Orders of Z? for d > 5. The paper ends with the proof
of Theorem 2 in section ‘The proof of Theorems 1 and 2’.

Notation

In this paper, a ring R is an additive group with a bi-additive multiplication such that the
underlying additive group is finitely generated. We write S < R if S is a subring of R. The
number [R : S] is defined to be the index of S in R as an additive subgroup. Throughout
this paper, p is a prime number. When p is used as the index of a sum or product, we will
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always understand that it ranges through the primes. The symbols Q, and Zj, are the field
of p-adic numbers and its ring of integers, respectively. We let L/, denote the group of
units of Z,. We normalize the additive Haar measure on QQ, such that vol (Z,) = 1, and
the volume of a subset of Q,, is always with respect to this measure. For example, if P(x)
is a statement about a p-adic number x, the volume of x € Q, such that P(x) means the
normalized Haar measure of the set {x € Q; P(x)}. The measure on Q; foranyr > O is
normalized similarly. The function v, : Q, — ZU{oo} is the p-adic valuation. If f : § — C
and g : S — R, are functions defined on a set S to the set of positive real numbers R and
C, respectively, the notation f () = O(g(x)) means there is a constant C > 0 such that for
allx € S we have |f(x)| < Cg(x); this is also sometimes denoted by f (x) <« g(x).If S, T are
sets,and f : S — Cand g : S x T — R, are functions, the notation f(x) = Oy(g(x,y))
means that for every y € T, there is a constant C(y) > 0 such that for every x € S we have
f®)| < Cgx,y).

Iff(x),g(x) : R — R4, we say that f(x) ~ g(x) asx — +oo if limy_, {0 f(x)/g(x) = 1.
For a complex number s, R (s), usually denoted by o, is the real part of s. We will, with-

out explicit mention, repeatedly use the fact that > @=bs_ with a, b real numbers,

rime P
converges for N (s) > (a + 1)/b. The collection of n ipn matrices with entries in a ring R
is denoted by M, (R). The set of lower triangular matrices in M,,(R) is written T, (R). A
finite extension K/Q is called a number field, and its absolute discriminant is denoted by
disc k. The ring of integers of K is written Ok. A subring with identity of Og which is a
Z-module of rank equal to the Z-rank of O is called an order. We write ¢ (s) for the Rie-
mann zeta function. If v is a property of integers, and f an arithmetic function, Zp v @)
means the sum of the values of f over all prime numbers p which satisfy v; for example,
if S is a set of integers, Zpgzs f (p) means the sum is over all those prime numbers which
are notin S.

Geometry and p-adic integrals
In this section, we study a multivariable version of the Igusa zeta integral following the
method of [8] and [10]. We start with some geometric preparation.

Resolutions with good reduction

We recall the the material of Section 2 of [8]. In this section, K is an arbitrary field of
characteristic zero, R a discrete valuation subring of K with field of fractions K, P unique
maximal ideal, and residue field K which we assume to be perfect. Let f(X) € K[X],
X = (X1, -+ ,Xin) be a nonzero polynomial. Let X = Spec K[ X], X = SpecR[X], X =
Spec K[ X], and

D = Spec (K[X]/(f)) C X.

A resolution (), h) for f over K consists of a closed integral subscheme ) of ]P’/fY for
some k, and the morphism / : ) — X which is the restriction of the projective morphism
Plj( — X such that:

1. Y issmooth over SpecK;
2. The restriction : Y \ i~ 1(D) — X \ D is an isomorphism;
3. The reduced scheme (4~ 1(D)),.q associated to #~1(D) has only normal crossings.
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Let &, i € T, be the irreducible components of (4~ 1(D)),eq. For i € T, we define N; to
be the multiplicity of &; in the divisor of div (f o 1) on Y, and let v; — 1 be the multiplicity
of &; in the divisor of #*(dx1 A - -+ A dx,,). We have N;,v; > 1foralli e T.

We think of IP’/;( as an open subscheme of IP’;? . If Z is a closed subscheme of ]P’/fy, we
define Z to be the scheme theoretic closure of Z in ]P’]/‘? . We also set Z = Z xp SpecK,
and we call it the reduction of Z mod P.

Let 7 : Y — X be the restriction to ) of the projective morphism IE”’:Q — X, and
b Y — X be obtained from h by base extension. We say (), &) has good reduction mod
P if the following two conditions are satisfied:

1. )Y issmooth over SpecK;
2. & is smooth over SpecT( foralli € T, and U;&; has only normal crossings; and
3. fori#j, & and 5_’, have no common irreducible components.

Let K’ be a field containing K, R’ a discrete valuation subring of K’ who fraction field
is K, and which contains R, with maximal ideal P’ containing P, and with perfect residue
field. Suppose (), k) be a resolution of f over K as above. Let ) = ) xx Spec K’ and
WY — X' = SpecK'[ X] be obtained from % by base extension. Proposition 2.3 of [8]
says that then (), /') is a resolution of f over K’. Moreover, if (), k) is a resolution with
good reduction mod P, (), i) has good reduction mod P'.

In the arithmetic case, let F be a number field, and Or its ring of integers. Let f(X) €
F[X], X = (X1,---,Xm). Let (), h) be a resolution for f. For any maximal ideal p, we
consider the discrete valuation ring OF,, with maximal ideal pOF,;,. Note that the field
of fractions of Of,, is F. Theorem 2.4 of [8] then states that for almost all p, (Y, ) is a
resolution with good reduction mod pOF,,. As a corollary, if Fy, is the p-adic completion
of F, and O, its ring of integers, and by abuse of notation p its unique prime ideal, then

(V, h) is a resolution of f over Fy, with good reduction mod p for almost all p.

Multivariable cone integral
For a finite extension F of Q,, we let be OF its ring of integers, p the maximal ideal, |.|F its
normalized absolute value, and vr the corresponding discrete valuation. Let g be the size
of F, the residue field of F.

Let f1,--- ,f; and g1,-- - ,g be polynomials in the variables X = (Xi,---,X,,) with
rational coefficients. We denote by ¥r(X) the first order formula

ve(fi(X) < vr(@ X)), i=1,...,L

As before we call the formula ¥r(X) a cone condition, and the polynomials f;,g;, 1 <
i < [, the cone data.
We define

Vi = {x € OF; v (0}

If ho, h1, ..., h are polynomials in X with rational coefficients, we define the cone
integral in k complex variables s = (s, - - - , sx) € CX with respect to ¥ by

Zy($F) = / lho@)| - I @ - @ - |dx].
VEy
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Our first goal here is to find an explicit formula for Zy, for p outside a finite set of primes.
In this section, following the method of [10] closely, we will find an explicit formula for our
multivariable cone integral which depends on the numerical invariants of a resolution.

Let (Mg, hg) be a resolution of the polynomial & = []; &;. ]_[j figi over Q, and assume
that the prime p is such that (Jg, hg) has good reduction mod p, and ® # 0 mod p.
Let (), h) be the resolution of ® over F obtained by base extension. Then (), %) has good
reduction mod p.

Let a € Y(F). Since ) is a closed subscheme of )N), a is a closed point of )NJ Let
T,={icT,ac&}={icTacé&).

Letr = |T,| and write T, = {i1,- - - , ir}. Then in the local ring O3 ,, we write

~ N N
DPoh=uc;"...c"

where ¢; € O3, generates the ideal of c‘?ij and # a unit in O3 . Since f;, g;, h; divide ®, we
can also write
= Niy (fi) N, (f)
fioh=u(f)e, " ...cr ¢

7 Niy (@) Ni, (gi
gioh=u(gec '™ .. .c @

> Niy (h; i (hi
hioh = Lt(hi)cl 1( )”'ci\[,(h)'

We define vectors W, 1<j<rby
w; = (N (), ..., Ny () € N,

Define an integral J, y (s, F) by the following expression:
s = [ o o B - Uy o ISy % - 1K (dxy A - A ).
6= (@nh=1(VEy)

Here, the function @ is defined as follows: Let H = {b € Y(F), h(b) € OF}. A point b €
H C Y(F) can be represented by its coordinates (x1, - , %, Y0, -+ »¥x) € F"™ x Plﬁ( (F)
where (x1,- -+ ,%,) € OF and (yo, .. .,yx) are homogeneous coordinates that are chosen
to satisfy min; vp(y;) = 0. We define 0(b) = (X1, ,Xm> Y0, »Vk) € Y(F). The next
step is to calculate each integral J, .. We have
Jau (s;F) = / |Cl|m'§+Ni1 (ho)+vi; —1 | |Cr|ﬂ,~§+Ni,(ho)+vi,—1 ldci A+ Adcy.

0~ @nh= (Vi)

Since ¢y, . . ., C;; are in the maximal ideal of Oyﬂ, we have that ¢; (D), ..., cu(b) € p for
allb € 671(a), and the map c : 0 Na) — p™ given by

b (c1(b),...,c;u(b)).

is a bijection. Consequently,

Jaw (s F) = / |eq |[PastNig (o)tvig =1y o s Ny (o) +vir =1 g Ao A deyy|
V/
Fy

where VI’:'w isthesetofally = (y1,...,ym) € p’” such that for each i satisfying 1 <i </

NGO < Y Niy(@)viG)).
j=1

j=1
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LetA;, =w; and Bj,; = Nj;(ho) + v; for 1 <j < rand Ajﬂ =0and Bj, = 1forj > r.

Then
— > k(4 ,.5+Bja—1 _ ke — _ ko —
JP = Y q Dbl >(q bogh ) ()
(k1,..km)EN
— (1 _qfl)m Z 72} lkl( /as+B/a)
(kl,...,km)EA
where

A=k, m)eN’"ZN,I(f)k,EZ i@k, 1<i<lI

j=1 j=1
The set A is the intersection of N with a rational polyhedral cone C in R™. Write this

cone as a disjoint union of simplicial cones Cy, .. ., C¢ with
Ci=A{avit + - + A Vim o € Roo, 1 < j < my}

where {v;1,. .., Vim,} is a linearly independent set of vectors in R”.
Then A is the disjoint union of the following sets

Ap={hva+ - 4+ LpVims [ e N, 1 <j <}
Now vjx = (qjk1, - - -» Gjkm) € R for 1 < k < m;. Hence
tuas Bluﬂ

Jay (s F) = (1 — ‘1>’"Zl_[ q—é_Bi,u,a

i=1 u=1

with A””Z = Z;il qiujéj,a and Bi,u,a = Z;il q;'uij,w
For each I C T define

CEI = ’{a € Y(F);a € E;ifand only ifi € I}’ ,

andputA;,;=A;, ,and B, = B;y, foranya € {x € Y(F);x € &;if and onlyifi e I}.
Clearly,

Zy ($F)= Y Jay (SF).
aeY(F)
Putting everything together
Ay 15— Bl u,l

Zy (s F) = ZCHZH%

IcT i=1 u=1

The absolute convergence of the integral is guaranteed if
A; 1 Ns+ Biys >0
forall I C T,1 <i<tand1 < u < m;, where
Rs = (Ns1, ..., Rsp).

We note that the domain of the absolute convergence depends only on the geometry of

our data, and not on the particular choice of the field F.

Page 14 of 57
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As in [10], we derive another expression for the integral. Set

t t
Dr={(@1...,x) € RLG Y Ni(foxj < > Nj(gxj 1 <i <1

j=1 j=1

where ¢ = |T'|. This is a closed cone. This cone is a disjoint union of open simplicial pieces
called Ry, 0 < k < w. We assume that the fundamental region for the lattice points of Ry
has no lattice points in its interior. We will assume that Ry = (0,...,0) and that Ry, ..., R,
are all the open one-dimensional edges of the cone Dr. Write

Ry = {O‘Qk =a(qk1s- - qGre)s o > O}‘

For any 0 < k < w, there is a subset My C {1,..., g} such that

Re=1{>" aje,Vje M
JEM

Let my := |My| < t. ForeachI C T set

= {(ky,..., k) € Dr;ki > 0,Vi € Lk; = 0,Vi € T\ I}

Ar=DinN N,
We also set D = A7. For each I C T, there is a subset W; C {0, ..., w} such that

D; = U Ry.

keWr

Suppose a € Y(F) is such that @ € &; if and only if i € I. Then we have
Jaw (S; ) =p —(m— \1\)/ 1_[ |zi |N i (h1)s14++-+N; () sg+N; (ho) +vi—1 1_[ |dz]
Ve iel iel
with V. the set of all (z;)es € pl!! satisfying for 1 <j <[
> Ni(f)vr(z) < Y Nilg)vr(z).
iel iel
Then
Jay (s F) = p~ 71D (@ — p=hlll Z g~ D=1 ki@i)siNisicNitho)-+vi)

(ki,...k)eA]
— Z p*(m*m)(l _pfl)\f\ Z q ;:1 kj(Nj(h1)s1++-+Nj(hg)sg+Nj(ho)+vy)
keW; (kl,.A.,kt)ERkﬁNt

as Dy = Ugew, Ry As

RN N = Z ajej; ) € N, Vj € My

JEM
we have
(A S+B))
. —(m—|I) —1\]
Jay ($F) = Z p Q-p) H —(A,s+B,)
keWp JEM 1=

with

Page 15 of 57
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t
A=) giN,
i=1

t
B =" qii(Ni(ho) + v,
i=1
and
N; = (Nij(h1), ..., Ni(hy)).

So if we set crx = cry and [y = I if k € W, for every non-archimedean local field F
where the resolution has good reduction, we have
—(4j.s+B))

w
1,
Zy(sF) =) (g = D"g"epy H (A, StB) "

jem 1
In the situation where the resolution is not necessarily of good reduction, following the
argument of Proposition 3.3 of [10], one proves that there exists a finite set Br such that
for every b € Br there is an associated subset [, C T and an integer e, such that

—eb (A .s+Bj )

ZysH =Y Y (q- g ] 2

beBr ke Wy, jeMi 1 — g (A 2

(4)

Application to some volume computations

Let F be a finite extension of Q, with ring of integers O and |.|r its normalized absolute
value. We fix a uniformizer @ for F. Let g be the size of the residue field of F. For x =
x1, -+ ,x) € (F)", and o = (a1, ,a,) € R”, we define vp(x) = (Vex1,...,VEX),),
and Igcl% =TI Ixilg". We define volr and volg», to be the normalized Haar measure on
F, and on F”, respectively. If k = (ky,...,k,) € Z”, and « € F is nonzero, we set ok =

. . k
(akl, ces ak”); in particular, w; = (wlffl, ce wlf”

Let X = (X1, -+, Xy) and Y = (Y1,---,Yp), and let f;, g € Z[X;Y], 1 < i < k, be
polynomials. For each x € OF, define a set
Vi@ = {y € OF s ve(fi(x; ) < ve(gi(x ), 1 < i < k}.

We will assume that Vg (x) is F-round in that it is invariant under the action of units of
the local field, i.e., Vr(x) = Ve (') if ve(x) = vp(x'). With abuse of language, when we say
V, we mean the assignment that takes an extension F of Q, and an element x € OF, and
returns the set Vr(x). We will call V' round if for all F, Vr(x) is F-round.

Definition 4. Let @ = (a1, -+ ,a,) € R", £ € N,and P € R[ X}, ..., X,,] with positive
coefficients. We say V is (¢, &, P, F)-narrow, if for all x € (Or \ {0})” we have

volpm (VF(x)) < P(ve(®))q ™ ‘|alF.
Now, here is the theorem:
Theorem 8. Suppose there is ¢ = (a1, -+ ,0,) € R", £ € N, P € R[Xy,...,X,,] with

positive coefficients, and an infinite set of primes P such that for all p € P the set V is
(¢, a, P,Qp)-narrow. Then V is (£, a, P, Qp)-narrow for almost all primes p.
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In the statement of the theorem ‘almost all’ means all but possibly finitely many.

Proof. Let F = Qp for p € P. In order to prove the theorem, we consider the following
integral:

Zy(s) =/On volpm (Vi (x))|x|* dx

F
= (1 —p_l)n Z volpm <VF( ))p_lklp_ks
keZZ,

On the other hand, we write

Zy(s) = f el ol L] |dyl.

OF " w(fi(x9)) F<v(gi(wy)) 1 <i<k

This is a multivariable cone integral.

Since the set P is infinite, we may assume that p is good in the sense of section
‘Resolutions with good reduction’. By section ‘Multivariable cone integral’, we have

—(4j5+B))

w
Zv(® =Y (p—D"p"epy [] [ @By
=0 -p =

jeMy
with non-negative integer vectors A; and non-negative integers B;. Regrouping terms
gives

w +00
ZV(§) = Zpiké Z(p — l)llilpimincl:,i 1_[ Z pial'Bi
k i=0

JEM; aj=1 T
2 odi=k
where the notation
“+o00
jeEM; aj=1 L
L Z,‘%A,‘—K

means we have only considered those a;’s that satisfy Zj ojA; = k. Comparing the two
expressions for Zy gives

voln (VF (g%)) (1- P Z(l” plilp=m=rep,; l_[ io p B

jeM; aj=1 T
Zj a/éj—K

w +o0
=Y el AR NI DY pP.

=0 JEMie=1) 5 oy =k

We note that if |[;| > m + n, then cr; = 0. As a result, we may write

volpn (Vi (%)) = ZCFL (1=p )" pMp — 1)lilpmp, (p71)

with P; 1 (X) a polynomial with positive integral coefficients which depends only on i and
k, and not on the choice of the field F. Furthermore, the number of terms of P;; depends
on k in a polynomial fashion. In particular, there are no cancellations between the terms.
These observations imply that V' is («, F)-narrow if and only if for eachi = 0,...,w, we
have some polynomial with positive coefficients P such that

CE (1 _p—l)—np‘]g(p _ 1)\Ii\p—m—npi,]£ (p—l) < P(kl, Lk )p—f —0!1/(1—~-~—Olnkn

Page 17 of 57
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This is true if and only if
cF,ip‘K'p”""’"‘"P,«,K (p_l) < P(ky,. .. ,kn)p—fp—alkl—...—ankn.
Proposition 4.9 combined with Proposition 4.13 of [10] implies that, after letting P
become larger in p, this inequality is true if and only if
prripKplti=mnp (p71) < Piky, . kg)ptqm ek,
which is equivalent to
PMP (p71) < Pk, k)p p ki,

Since p is infinite, we can let p — 00, and as a result, an inequality of this nature is valid
if and only if it is true for degree reasons. The theorem now follows. O

Remark 5. Here is a variation of the above theorem which may be useful in other con-
texts. There is a finite set S of primes such that every p ¢ S has the following property: If
thereisa € R”, £ € N,and P € R[X},...,X,] such V is (¢,«, P, F)-narrow for every F
finite extension of Q,, then for allg ¢ S, V is (¢, &, E)-narrow for every E finite extension
of Qg.

The proof of Theorem 3
Tauberian theorem

We will use the Tauberian theorem of [5], Appendix A, in the following form:

Theorem 9. Let

o0

F(s) = ZZ—’S’

n=1

be a Dirichlet series with an Euler product

F(s) = [ [ Bp(s).
p

Suppose each Euler factor is of the form

_ a;(p)
Fp(s) =1+ Z pls
I>1
where ai(p) = k, a positive integer independent of p, and a;(p) are non-negative real

numbers. Suppose there is a 8¢ satisfying % < 8o < 1 such that for o > 8o, we have

VY AP

plzzp

Then there is a polynomial P of degree k — 1 such that for all ¢ > 0

> " a, = BP(log B) + O, (B®*°)

n<B

as B — oo.

Outline of the proof of Theorem 3
If p is unramified in K, we write

pOrx =pipa2... 9y

Page 18 of 57
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where each p; is a prime ideal in O, and let

fi=fi/p)

denote the residue degree of the prime p;.
Then

Ok @z Zy = l_[op,-

where Oy, is the ring of integers of the completion of K at the prime p;, and the isomor-
phism class of O ®7 Z,, is determined by the multi-set f, = {f1, - - , f}, called the type of
p- The type of a prime is always a partition of n. We typically write the type of an unrami-
fied prime p in the form f, = 1V2¥r" - - -rzk, where 1 <2 < r] < --- < ry are the distinct
residue degrees, and v, w, e, - - - , ¢ are the number of times each of these appears.

The starting point of the proof of the theorem is the following proposition:

Proposition 1. If p is an unramified prime of type f, = 1'2¥ry* - - - r,i", then

a1(p) =w+ (;),

in particular, a1 (p) depends only on the type f,.

We will present the proof of this proposition in section ‘Proof of Proposition 1’. Given

a partition f as above, we let

alf) = w+ (;)

Then we observe that the condition that p has type 142"77" - - - rz" is Chebotarev condi-
tion in G = Gal (E/Q) in the sense that there are a number of conjugacy classes C; C G,
1 <i < t, such that p has type 1#2"7r7" - - - r,ik if and only if

(59)-¢
p

for some i. Here, (E/ Q

7) is the Frobenius conjugacy class of p in G. Next, we use the

following fact:

Proposition 2. Let L/K be a Galois extension of number fields with Galois group H =
Gal (L/K). Let C C H be a conjugacy class and define

Fes)= ] a-N@™™
e
J3
Then F¢(s) converges absolutely for Rs > 1. Furthermore, F¢ O has an analytic con-
tinuation to a meromorphic function on an open set containing s > 1 with a unique pole
of order |C| ats = 1.

We will present the proof of this proposition in section ‘Proof of Proposition 2’. Now,
suppose a partition f of # is given. On the one hand, f can be type of a prime p, and on
the other hand, p determines a conjugacy class in S,. It is a well-known fact that if p has
type f in K/Q, then (%) has cycle type f. Given a type f, we define b(f) be the number
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of elements of G of cycle type f in S,,. Combining everything done so far, one concludes
that the function f (s) in the statement of Theorem 3 has a pole at s = 1 of order

ri= % > a(hHb(h). (5)

ftype

We finally have the following statement:
Lemma 1 (B. Srinivasan). We have r = rs.

Proof of Lemma. We define a function o on G as follows. If g is of cycle decomposition
type f, we set «(g) = a(f). We note that the expression on the right is equal to («, V)
where 1 is the trivial character of G, and (,) is the inner product on the space of class
functions of G. The function « is character of the permutation representation = of G on
the set of 2-element subsets of {1,2,...,n}. In fact, if g is of type f as above, then it is
clear that it fixes (”2‘) + w 2-element sets. Then the expression on the right-hand side of
(5) is equal to the multiplicity of the trivial representation in 7. For every orbit of G on
the set of 2-element subsets of {1,2, ..., n}, we get a copy of the trivial representation in
7, and these are the only copies of the trivial representation in . It is easily seen that if G
is transitive the number of such orbits is equal to 7. O

Theorem 3 now follows from a standard Tauberian argument.

Proof of Proposition 1

We first give an overview of the proof of Proposition 1. A result of [14] shows that deter-
mining a; (p) is equivalent to a counting problem about certain lower-triangular matrices.
By Lemma 5.18 of [3] O, := Ok ®gz Zj is a Zy-module of rank n. By choosing a special
type of basis for O, and then applying elementary row operations, the lower-triangular
matrices we consider will be of a relatively simple form. We then break up the overall com-
putation of a; (p) into a few parts depending on the type of p. The proof of Proposition 1
depends on the following lemmas.

Lemma 2. Let L/Q, be an extension of degree n. If n > 2, the ring of integers Oy of L does
not have any multiplicatively closed sublattices of index p that are Z, modules of rank n.

This result shows that in order to determine a; (p) in general, we need only determine
primes of a restricted type.

Lemma 3. Let p be a prime of type f, = 1"2"r{" - r,ik, and let q be a prime of type
fq =12". Then a1 (p) = a1(g).

We will determine a; (p) for primes of this type by considering primes of type 1" and
primes of type 2" separately. The next lemma follows directly from [19] Proposition 1.1.

Lemma 4. Let p be a prime of type f, = 1". Then a1(p) = (;)

Lemma 5. Let p be a prime of type f, = 2". Then a(p) = w.
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The proof of Proposition 1 will follow from combining these results in the following
way.

Lemma 6. Let p be a prime of type f, = 12", Then a1(p) = (;) + w.

We now explain how to interpret a;(p) in terms of a counting problem about lower-
triangular matrices. The first observation is that a1 (p) depends only on O, and not on
K. We choose any ordered basis of this ring, {v1,...,v,} and represent a subring L of O,
by a matrix M where the ith column corresponds to v; and L is generated by the rows of
M. The entries of this matrix are in Z,. By elementary linear algebra, a version of Gauss-
Jordan elimination over Zj,, we are free to suppose that M is lower triangular. Multiplying
a row of M by a unit in Z, does not change the subring generated by M. Therefore, we
may suppose that the (i, i) entry of M is equal to pi for some k; > 0.

Let M (p) denote the set of all lower triangular matrices whose rows generate a subring
of O, with respect to this ordered basis. We can now present a slight modification of a
proposition of Grunewald, Segal and Smith [14].

Proposition 3. For every prime p,
—1\—# — —(n— —
nicp(s) = (1=p7") / e[ o2 D - ),
MeM(p)
where |dv| is the additive Haar measure of the p-adic lower triangular matrices.

The index of a subring L € O, is the determinant of any matrix M € M (p) generating
L. By definition, a1 (p) is equal to the p~* coefficient of the integral in this proposition. We
therefore need only consider matrices M € M (p) where exactly one x;; is equal to p and
all others are equal to 1.

Suppose the rows of M generate a subring of O, of index p and suppose that xj; = 1
for some j. By adding multiples of the jth row of M to its other rows, we can set each of
the nondiagonal entries in column j to 0 without changing the subring generated by this
matrix. In fact, by applying a version of Gauss-Jordan elimination, we can simultaneously
accomplish this for each column which has its diagonal entry equal to 1. This gives a
matrix that is diagonal except for a single column that may have nonzero entries below
the diagonal. We give an example below:

10000
01000
00p00
00a; 10
00ay 01

Suppose the rows of M generate a subring of O, of index p, x; = p for some j,
and every other column of M has a single 1 on the diagonal and is 0 otherwise. Let
{ao0,a1,a2,...,a,_1} be some choice of representatives for Z,/pZ, with ap = 0 and
a; = 1. By adding multiples of row j to the rows below it, we may suppose that the
entries xjy1,%j12, . . .,%y; are all elements of {ao,...,a, 1}. These representatives are
uniquely defined by the subring, but the elements of a matrix generating this subring can
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be changed by an arbitrary element of pZ,. We note that the normalized volume of pZ,
isp~L.

This reduction gives a map from subrings of O, of index p given by a matrix M with
xj; = p and all other diagonal entries equal to 1 to tuples (le,j,tz,j, . ,xn,j) where each
xij € {ao,...,ap1}. Let a1(p,)) be the size of the image of this map. In the case j = , if
the matrix M with diagonal entries all equal to 1 except for x;,,, = p and all other entries
equal to 0 generates a subring of O, of index p, then we define a1 (p, n) = 1. Otherwise,
a1 (p,n) = 0. This description along with Proposition 3 shows the following.

Lemma 7. We have ai(p) = 31 a1(p,)).

The particular basis that we choose for O, has a major effect on the multiplication of
rows of the matrix generating a subring. Our next goal is to pick a convenient basis for
this module.

Suppose that p is an unramified prime of type f, = 1"2"r" - - rzk where the r; are dis-
tinct and greater than 2. Each residue degree r; that occurs contributes r; basis elements.
We choose these basis elements for O, /fO, tobe 1,y,5?,...,y" "1, where f(y) is an irre-
ducible polynomial of degree r; over Z,. We get e; such groups of r; basis elements for
each 7, including w blocks of two basis elements {1,y} coming from primes of residue
degree 2, and v basis elements {1} corresponding to primes of residue degree 1. We choose
these basis elements to be orthogonal to each other unless they correspond to the same
irreducible polynomial.

The ordering of the basis elements has a large effect on the form of the lower trian-
gular matrices in M (p). We order this basis so that elements corresponding to a single
irreducible polynomial are given left to right by increasing powers of y. The e; sets of r;
columns corresponding to the primes of residue degree r; are ordered so that they occur
in adjacent blocks. We order these groups of e; blocks of r; columns from left to right
by decreasing values of r;, except that we switch the positions of the block of v columns
corresponding to primes of residue degree 1, and the w pairs of columns corresponding
to primes of residue degree 2. We give an example for a lower triangular matrix corre-
sponding to a prime of type 122!3!. The first three columns correspond to basis elements
corresponding to an irreducible cubic, followed by two columns corresponding to linear
polynomials, and finally by a pair of columns from an irreducible quadratic. In the picture
below, variable names are chosen to emphasize the grouping of columns:

ai,1 0 0 0 0
a1 azp 0 0 O
asy asp asz 0 0
aq1 asp as3 byga 0
as) asp as3 bsg bss 0

oS © © O
S O © © O

o

ae,1 ae2 a63 bey bes co

az1 azp a3 bya b7s c76 c77

We now briefly explain how to take the product of two rows of such a matrix. A row
vector corresponds to a linear combination of basis elements. We can take two vectors,
take the product of the corresponding elements in O, and then express the result as a
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linear combination of our chosen basis. We denote the product corresponding to rows v
and w by v o w.

We now give the proof of Lemma 2 on the non-existence of certain kinds of multiplica-
tively closed sublattices.

Proof of Lemma 2. Let R be a multiplicatively closed sublattice of Oy, of index p. Then
clearly pO; C R, and consequently

pOr CRC Oy.

This means (R/pOr) C (Or/pOr). Now, O /pOy is a field of order p”, and R/pOy is
a subring, not necessarily with a multiplicative identity, of Oy /pO;. It is also clear that
R/pOy is multiplicatively closed. Any multiplicatively closed subset of a finite field does
contain the identity element because the multiplicative group of the field is cyclic, so
R/pOy is also a field.

Since the index is of R in Oy is p the number of elements of R/p(y is p"~1. Thus, if I
is the finite field with p* elements, we have F -1 C Fpr. This implies either n — 1 = 0 or
n — 1 divides #. In the first case, we get # = 1 and in the second case, we get n = 2. Any
larger value of n gives a contradiction. O

Corollary 1. Let p be a prime of typef, = r withr > 3. Then a1(p) = 0.

These previous two lemmas allow us to compute a; (p) by considering a much smaller
class of lower triangular matrices.

Proof of Lemma 3. We choose the ordered basis of O, described above. Suppose that
column j corresponds to a basis element coming from a prime of residue degree k > 2.
We claim that the diagonal element of this column must be equal to 1.

We argue by contradiction. Suppose that xj; = p. By row-reducing, we may suppose that
the only nonzero elements of this matrix off the diagonal are in column j. Basis elements
that do not correspond to the same irreducible polynomial are orthogonal. Suppose that
the columns corresponding to the same irreducible polynomial as the basis element of
column j are labeled by ¢, ..., ci and let vy, ..., vx be the rows containing the diagonal
entries of these columns. The only nonzero entries of the vector v; o v; are in positions
corresponding to the columns cy, . .., cx. Therefore, v; o v; is a linear combination of the
rows vi,. .., vk. Taking the span of these rows and projecting onto the coordinates cor-
responding to the columns ¢y, ..., ¢, gives a multiplicatively closed sublattice of a ring
corresponding to a degree k extension of Q,, which is impossible by the argument of
Lemma 2.

Therefore, every column corresponding to a basis element coming from a prime of
residue degree greater than 2 has its diagonal entry equal to 1 and does not contribute to

ai(p). O

Proof of Lemma 5. A subring of O, of index p is generated by a lower triangular matrix
M with exactly one diagonal element equal to p and all others equal to 0. We choose the
basis of O, so that columns occur in pairs with each pair corresponding to two basis
elements {1, y} of O,/fO, where f(y) is an irreducible quadratic polynomial over I, and
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the column corresponding to 1 occurs first. When p # 2, we can choose f(y) = y> — b
with b a positive integer which is not a square modulo p. We focus on this case but note
that for p = 2, we can take f(y) = y> +y + 1 and the rest of the argument is similar. Basis
elements occurring in distinct pairs are orthogonal to each other.

We will first show that it is not possible that the column with diagonal entry p cor-
responds to a basis element 1 for some quadratic polynomial. Suppose that it is and let
the row which contains this diagonal element be v;. Let vy be the row which has diago-
nal element in the column corresponding to the basis element y for the same polynomial.
Suppose the entry in row v in the column with diagonal entry p is a € Zj.

We will now give a first example of an argument that will be important throughout the
rest of this section. Suppose M spans a sublattice of index p and has diagonal entries equal
to 1 except for a single column in which the corresponding entry is p. We note that all
vectors in the lattice spanned by M that are zero except in this entry must lie in pZ, since
otherwise we could row reduce M and see that the index of this lattice is actually 1. We
will use this fact to show that certain columns cannot have the single diagonal entry equal
to p.

We see that v, o v has two nonzero entries: 24 in the column corresponding to y and a
b + a? corresponding to 1, since y? is b modulo f(y). Since M generates a multiplicatively
closed sublattice, and all other entries in the column with diagonal entry in the row v, are
0, and so v3 o v3 — 2avy must be in the row span of v1. So there must exist some a1 € Z,
such that

pa1=b+a2—2a2=b—a2.

This implies that b — a®> € pZ,, contradicting the fact that b is a nonsquare modulo
p. Therefore, we may suppose that for each column corresponding to 1 for a quadratic
polynomial, the diagonal entry is 1.

There are w columns which correspond to basis elements y for distinct irreducible
quadratic polynomials. We will show that if the diagonal element of such a column is equal
to p then all other entries of this column are in pZ,. Applying elementary row operations
together with Lemma 7 completes the proof.

We suppose that row v; has its diagonal entry equal to p and that this column corre-
sponds to a basis element y for some irreducible quadratic polynomial. Let v denote the
row with diagonal entry corresponding to the basis element 1 for the same quadratic poly-
nomial. Note that v, is above v; in this matrix and has a single nonzero entry equal to 1.
We will show that it is not possible for there to be a row u# with an entry that is a unit in
the column with diagonal entry p.

Suppose that there is such a row with an entry a € U, in this column and consider zov;.
This has a single nonzero entry equal to a in the column corresponding to the diagonal
entry p. The argument above shows that such a matrix actually generates O, and not a
subring of index p, which is a contradiction. We have shown that there are no units in the
column with diagonal entry p, completing the proof. O

Proof of Lemma 6. We continue with the notation of the previous proof. Again, we con-
sider p # 2 and note that when p = 2 we choose f(y) = y*> + y + 1 for our irreducible
quadratic polynomials and the argument is very similar.
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We choose the basis elements of O, so that the first v columns correspond to primes
of residue degree 1 and the last 2w columns occur in pairs and correspond to primes of
residue degree 2. The proof of the previous lemma shows that matrices with diagonal
entry equal to p in a column corresponding to a prime of residue degree 2 contribute w to
ai(p). We now focus only on the entries of the columns of this matrix which correspond
to primes of residue degree 1.

Suppose xj; = p and that this column corresponds to a prime of residue degree 1. Since
L is a subring and not just a multiplicative sublattice, it must contain the identity element
of O,, and we see that there must be some entry in this column that is a unit. In fact, we
will show that there must be a unique entry in this column that is a unit. Each of the v —
rows directly below this diagonal entry can contain any unit in 14 pZ,, but no other units
can occur. Applying Lemma 7 shows that a; (p) = w+ Z}“/:l =) =w+ (;), completing
the proof.

We first note that we cannot have two units in rows corresponding to primes of degree
1 in the column with diagonal entry equal to p. If we did, taking v; o v, for these two
rows would give a vector with a single nonzero entry which is a unit in the column with
diagonal entry p. This is a contradiction.

Suppose there is a row with diagonal entry corresponding to an irreducible quadratic
polynomial which has a unit entry in the column with diagonal entry p. Let v; be the row
corresponding to the basis element 1 for this polynomial and v, be the row corresponding
to the basis element y. Suppose the entry in the column with diagonal entry p is a in row
v1 and ¢ in row v,. By assumption, at least one of 4, c is a unit. We show that this is a
contradiction.

We see that v; o v; — v1 has an entry of 2> — a in the column with diagonal entry p and
every other entry of this vector is zero. So either a € pZ, or a € 1 + pZ,. We see that
V3 o vo — bv; has an entry ¢ — ab in the column with diagonal entry p and every other
entry is zero. If 2 € 1 4 pZ, then since b is not a square modulo p, we get a contradiction.
If a € pZ,, then we have 2e PZy, which is also a contradiction. O

Combining Lemma 3 and Lemma 6 completes the proof of Proposition 1.

Proof of Proposition 2

To fix notation, we give a quick review of basic class field theory [25]. Let K be a number
field, and let /i be the free group generated by the finite primes of K. There is a natural
map ¢ : K* — Jx. A modulus, called a cycle in [25], is a finite formal product of primes
of K with non-negative exponents [ [, p”#. If m = [ p"* is a modulus, and x € K, we
writex =1 mod m to mean:

e For each finite plm,x =1 mod p"»;

e for each real prime v|m, we have x,, > 0.

If S is a finite set of primes, we let ]IS< be the subgroup of J generated by the primes not

in S. For a modulus m, we let ]I‘?

be ]}i where S is the set of finite primes that divide m. Set
K™=t ()
and

K":={xeK™x=1 modm}.
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Let PR = ¢ (K") and define
Cx =JK/PE-
This class group is finite. A congruence subgroup modulo m is a subgroup H™ of J¢

which contains P'. We recall the following two main theorems of class field theory:

Theorem 10 (Artin Reciprocity Law). For L/K an Abelian extension of number fields,
there is a modulus m divisible by all the ramified primes of L/K such that the sequence

1— PRNyk (") <= J& — Gal (L/K) — 1

is exact.

Theorem 11. For any congruence subgroup H™, there is a unique Abelian extension L/K
such that L is the class field of K of the congruence class group J¢' /H™.

We have the following lemma:

Lemma 8. Let K be a number field, m a modulus, and H™ a congruence subgroup. If C
is a coset of Jg' /H™, we set

fe@ =]]a-N@™™"

peC

Then fc(s) is holomorphic for Rs > 1. Furthermore, then gc(s) = fc(s)", r = |Jg/H™|,
has an analytic continuation to an open set containing s = 1 with a unique pole at s = 1.
Assuming GRH, s = 1 is the only pole for s > 1/2.

We do not need the additional convergence provided but assuming GRH to prove
Proposition 2, but include this statement to give a better idea of the analytic behavior of
this function.

Proof. Let G = ]I‘}‘/Hm. Then

log gc(s) = |G|logfc(s)
= —IGI)_log(1 - N(») ™)

peC
_ 1 _
=IGIY _N@ ™ +IGIY_ > =N@p ™.
peC peCm=>2 m
Write
1
h(s) =161 Y —Np)™™.
peCm=>2

This is holomorphic for Rs > 1/2. We then write

loggs) —h(s)=Y_ > x@x(CHN@*

P xeHom(G,S")

= Y xCH)Y xeNp~

x €Hom(G,S1)
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Y e |1og[Ta - kNG = Y —x "N
p

x €Hom(G,S1) P m>2

=log| [] L0 |+HE
x €Hom(G,S1)
with H(s) a function that is holomorphic for Jis > 1/2. Hence

g =[] Lesxx e,
x €Hom(G,St)

The lemma now follows from results on zero free regions of L-functions, e.g., Ch. 2
of [23]. O

Next, we can prove Proposition 2:

Proof of Proposition 2. If L/K is Abelian, this follows from the above lemma and class
field theory. In general, let o € C, and let H = (o). Let M = L. Note that L/M is an
Abelian Galois extension. Let

Fu(s) =] [a = Nu@ ™™
PpeS
where S is the set of primes of L satisfying

[ ] 7L/M =0,

»
o flp/pNOK) =ep/pN0Ok) =1

We will also consider
Fyo) =[]0 -Nu@)™™"
pes
LM
p

before that F};(s)! has a simple pole at s = 1. By the computations of Ch. V, (section 6 of
[25]), we know that Fy,(s) /Fr (s) is holomorphic for 9ts > 1/2. Thus Fy(s) Il has a simple
pole at s = 1 and otherwise holomorphic in an open set containing %is > 1.

where S is the set of primes p of M such that < ) = 0. We know from what we proved

Next, it follows from the reduction step of the proof of the Chebotarev density theorem,
Theorem 6.4 of [25], that

G|
ICI1H]

Fus)=| [] a-N@™™!
T
= (Fe(s) @i,

The proposition is now immediate. O

Some remarks on r;
Suppose we have a finite group G acting on a finite set A. Let Oy, ..., O, be the distinct
orbits of the action of G. Then G has an induced representation on the vector space

V = @qu(C.
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We skip the proof of the following elementary lemma:

Lemma 9. We have
dim VY =r.
The lemma has the following consequence:

Proposition 4. We have

1. forn>3,1m(S,) =rd,) =1;
2. 1r(Cy) =ra(Dy) = |n/2].

Proof. For the first part, we show that A, acts transitively on the two element subsets of
{1,..., n}. For this, we notice that for three distinct elements a, , ¢, the even permutation
(a ¢)(b a) maps the set {a, b} to the set {b, c}.

For C, and D,, write n = 2k or n = 2k + 1, depending on the parity of n. Suppose
Cy,=((12 ... n).Itis easy to see that for each 1 < i <k, the set

Oi={{a,b};1 <a,b<mnb—-a=i modn}

is an orbit of the action of C, on the set of two element subsets of {1, ..., n}. Further-
more, these are all the possible orbits. To see the result for D,,, we consider the generators
12 ... n),o,with

c=1m@2n—1)...(kk+1).

We observe that each orbit O; is invariant under the action of . O
For the case where 7 is a prime number, we have the following proposition:

Proposition 5. Let G be a transitive subgroup of S,, p prime. Then one of the following
two possibilities occurs:

1. G is doubly transitive and r»(G) = 1;

2. G issolvable in which case p | |G| and r2(G) = ged (%, 1%)

Proof. A theorem of Burnside [4,22] says that a transitive subgroup of S, is either doubly
transitive or solvable. If the action of G is doubly transitive, then r,(G) = 1.If G is solvable,
a classical theorem of Galois ([15], p. 163)! asserts that G contains a unique normal sub-
group C of order p, and is contained in the normalizer of C. Furthermore, G/C is a cyclic
group of order dividing p — 1. Up to conjugation, we may assume that C = ((1 2 ... p)).
The normalizer of C is the split extension of the group C by the cyclic group Z of order
p — 1 consisting of the elements oy, 1 < k < p — 1 identified by

or(x) = kx mod p,

forx € {1, ..., n}; that the group Z is cyclic is the theorem of the primitive root in elemen-
tary number theory. Let o, be a generator of Z. Since G is transitive, G is equal to C x (oé)
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for some j|p — 1. By the description of orbits of C on the two element subsets of {1, .. ., p},
oot
we just need to know the number of orbits of (aé, og > ) on (Z/pZ)*. The latter is equal to

(Z/pZ)*|  p—1 _gcd(jp—l)
() 2 )
ooy 20T
O
The proof of Theorem 6

Outline of the proof of Theorem 6
Let d € N, and let R = Z? equipped with componentwise addition and multiplication.

Namely forv = (v1,...,vg),w = (W1,...,wy) € Z”, we set
Vvdw= W1+ Wi,...,Vg+wy),
Bv,w):=vow= (V1W1,...,VgWg).

To emphasize the dependence of M, (8) from Definition 2 on d, we write it as M;(p).
For d = 2,3,4, we will give an explicit description of M (p) in sections ‘Orders of Z?’,
‘Orders of Z¥, and ‘Orders of Z°".

Definition 5. If kK = (ki, ..., k) is a d-tuple of non-negative integers, we set
PFrro ...0
x91 pkz 0
Mu(p;k) = =| " € My(p)
. . i . 0
X ka
dl --- Xdd—1 P

We define , (k) to be the @—dimensional volume of M ;(p; k).

It is easy to see that

G, = Y pEEE Tk . ©)
K=Ky )
k;=0vi

Intuitively, what this means is that we have multiplied the rows by units to make the
diagonal entries a p-power. We note that this does not change the lattice generated by the
rOWS.

Warning. The volume of My (p; k) are used to count subrings of finite index in Z4, and
orders of finite index in Z4*+!. The reader should be careful about the distinction between
subrings and orders.

We have the following lemma which is equivalent to Lemma 4 given during the proof

of Proposition 1.

Lemma 10. We have

3 d+1
azd(p)=< 2 )
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For a proof, see [19] Proposition 1.1. The quantity “Zd (p) is equal to fz11(p) of that
reference. By Theorem 9, Theorem 6 is proved if we can show the following statement:
there is an € > 0 such that for R(s) = 0 > 1 — € we have

Y

P k=2

k
az,(p")
< 0
ko

p

Since by Equation (6)

aZd (pk) — Z pzi(dfi)k,' Hp(lg’
K=tk k)
i ki=k

in order to prove the lemma, we need to estimate (k). The relevant computations are
performed in sections ‘Orders of Z%’, ‘Orders of Z¥, and ‘Orders of Z>".

The results are stated in Theorems 12, 13, and 14. These theorems form part 1 of
Theorem 6.

The proof of part 2 of Theorem 6 appears in section ‘Orders of Z ford > 5.

General facts about volumes

We begin with some lemmas that allow us to bound the volumes of certain sets that arise
in our volume computations. Let U/, denote the set of units of Z, and v, (-) be the p-adic
valuation. Recall that for o, 8 € Z, if v, (@) # vp(B) then vy (o — ) = min{v,(a), vp(B)}.

Proposition 6. For fixed y,z € Zy,, k > O, the volume of x € Z, such that v,(xy —z) > k
is at most p~ k=),

Proof. We first note that for y = 1, the volume of x such that v,(x — 2z) > kis pk, since
we are just fixing the first k digits in the p-adic expansion of x to coincide with those of z.
Similarly, for any unit # € U, the volume of x such that v, (ux — z) > k is p’k .

We see that if v,(z) < kand v,(y) > v,(2), then clearly v, (xy — z) = vp(2) < k for any
value of x. If v,(z) > k, then v,(xy — z) > k if and only if v, (xy) > k which holds if and
only if v,(x) > k — v,(y). This holds on a set of volume at most p’(k"’!’(y)) ifk > vy(y)
and on a set of volume 1 if v, (y) > k.

Now, if vp(2) < kand vp(y) < v,(z) then we can write y = p"?Pu for some unique unit
u € Uy, and z = p»Y7 for some unique z' € Z,. We have v,(xy — z) > k if and only if
vp(xu — 2') = k — v, (), which holds on a set of volume at most p’(k’vp(y)). O

Proposition 7. For fixed z € 7y, the combined volume of x,y € Z}, such that v,(xy—z) >
k is at most (k + 1)p~.

Proof. If vy(y) > k, then there are two cases. Either v,(z) > k in which case any x will
work or v,(2) < k in which case no x works. So assume 0 < v,(y) < k. Then given y with
I =v,(y), we need x such that x € p’l(kap + 2). So the total volume is

k—1

> ol (7 W' 2y + 2)) < kp7F.
=0
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Proposition 8. For any fixed z € Z, the combined volume of x,y € Zl% such that vy, (x(y—
2)) > k is at most (k + l)p_k.

Proof. This proposition is very similar to the previous one. We have v,(x) > k on a set
of volume p~*. Suppose that this does not hold and set vp(x) = m. We see that for any
fixed z, the volume of y such that v,(y —2) > k —m is p~* =" Summing over the k
possible values of m gives the result. O

Proposition 9. Suppose z € Zy, k,1 > 0 are given. Then the volume of x € Zy, such that

w (6(— 1) ~2) 2k

is bounded by 2p~K/21,

Proof. If there is no such x, then the volume is zero and there is nothing to prove.
Assume that the volume is nonzero. For simplicity of notation, let y = p’. If vp(t) > kand
Vp(x(x — y) — z) > k, then x + ¢ also satisfies the same inequality.

Given y and z modulo p*, we must determine the number of x modulo p* such that
x(x —y) —z = 0 mod pF. If this number is N, the volume of our domain is N - p~.
Suppose X, X + u are both solutions of the congruence

x(x —y) =z mod pk.
This implies that « satisfies the congruence
2 — k
u +uX—y)=0 modp".

We count the number of nonzero solutions u of this congruence equation.
If2X —y =0 mod p, then u> = 0 mod p*. This implies any solution  is of the form

k
“r%u”H tarpp ™+ aph

There are at most pX~%/21 choices for u. If not, then we write 2X — y = p’q¢ mod p¥
with s < kand (g,p) = 1.

We write u = p"m mod p*. By assumption, (m, p) = 1 and r < k. Since
u@Ww+2X—5)=0 mod p, 7)

we have # + (2X —y) =0 mod pk_’.

If 2r > k, then r > {%'l, and as above there are at most p*~¥/21 choices for u.

If 2r < k, then s = r and Equation 7 implies that # and 2X — y match up in the first
k—r> |'§"| digits of their p-adic expansions. This gives at most pk_%1 < Ij%? choices
for u. Multiplication by p~* gives the result. O

We point out that in the most general possible case, it is not possible to improve this
result by more than a factor of 2. Suppose / > [k/2]. Then v,(x) + v, (x - pl) > kifand
only if v,(x) > [k/21, which holds on a set of volume at most p_W 21, However, in some
cases, we can say something stronger.
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Proposition 10. Suppose z € Zyp, k,I > 0 are given. Then there is a constant C, which
for odd p may be taken to be 6, such that the volume of x € Z, satisfying

(s (v— ) =) = &

is bounded by Cp~*=D except when p = 2 and v2(z) = 21 — 2 < k. In this exceptional
situation:

1. Ifvy(z+ 221_2) > k, the volume is bounded by 2~T%/21, and this is the best bound
possible.

2. Ifvy(z+ 221_2) < k is odd, the volume is zero.

3. Ifw, (z + 221_2) < k, the volume is bounded by

—-1/2

8 ‘z + 221_2‘2 27k,

where | .| is the 2-adic absolute value on Q5.

Proof. The proposition will have no content unless / < k. First, we consider the case
where p is odd. We recognize two basic cases:

1.If vy(2) > k, then we have v, (x (x - pl)) > k. We consider two cases, when v, (x) =/
and when v, (x) # [. In the first case v, (x - pl) > k — [, and in the second case, we have
Vp(®) > k — L. In either case, the volume is bounded by p’(k’l).

2.1f v, (2) < k, then our inequality can be valid only when v, (x (x — p')) = v, (). Since
vp(2) < k, we write z = {p” with u < k. We are looking for solutions to

Vp (x (x—pl) — cp”) > k

that satisfy v, (x) + v, (x — p') = u.

o Ifv,(x) > [, then we must have v, (x) + | = u, and as a result # — [ > [ which means
u > 21. Write x = ep*~!. Then we need

Vp <5Pu_l <€P”_l —Pl) - CP”) > k.

This implies v, (e (ep* 2% —1)—¢) > k—u. Thisisa quadratic equation in € with at
most two solutions modulo p. Hensel’s lemma says that the volume of € satisfying this
last inequality is at most 2p~*~%)_ The volume for «x is then at most 2p~*=0 . p=k=1)
— op kD,

e (*)Ifvy(x) < then 2v,(x) = u, which means u is even and u < 2/. Write x = ept/?.
Then we need v, (ep"/? (ep*/? — p') — ¢p*) > k which gives
Vp (e (e —pl_”/z) — g“) > k — u. By Hensel’s lemma, the volume of such € is at most
2p~ %% The volume of x is then bounded by
2p~ k=) L =2 — gp—ktu/2 o 9=kt Which is what we want.

o Ifvy,(x) =/ thenx = epl, and we have 2/ + v,(e — 1) = u. This means u > 2/. Then
we need v, (e (e—1)— {p”_zl) > k — 2l. An application of Hensel's lemma then
says that the volume of e satisfying this inequality is at most 2p~*=2)_ Since x = ple,
the volume of x is at most 2p~ %=,
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Now, we examine the situation for p = 2. Except for the step marked (*) every other step
of the proof works verbatim. The argument (*) can be adjusted as follows. We let r = [— &
and s = k — u. Then r > 1 and we are trying to determine the volume of € € U, such that

va(e(e =2) = ¢) = s.
for a given unit ¢. Rewrite this inequality as
n(le=27)" = (c+277) =

First, we consider the situation for » > 2. In this case, both ¢ — 2"~ and .+ 22r=2 are

still units, and without loss of generality, we may assume that our inequality has the form
vy(e? =) = s

with €, ¢ units. Fix an € that satisfies the inequality, and we determine for what values of
7, € + 7 also satisfies the inequality. The volume of such 7 is the volume of €. We have

va((e +17)% = ¢) = 1o ((€2 — ¢) + (T + 26)).
This implies that
w(t(t + 2¢€)) > s.

This immediately implies that vo(7)

v

s —1orvy(r 4+ 2¢) > s — 1. Consequently, the
volume of € is bounded by 2 - 27¢~D = 4. 2=*=#)_The rest of the argument works as
before.

Now, we consider the case where r = 1. In this case, the inequality becomes

(e =12 = (¢ + 1) >s.

There are two cases to consider:

Case I v2(¢ + 1) > s. In this case, we see that vo(e — 1) > [s/2] and as a result, the
volume is 27/%/21, The volume of x is then seen to be bounded by 2~ /21,

Case Il vo(¢ + 1) < 5. We have 2vy(e — 1) = v5(¢ + 1), so we can write £ + 1 = y2%,
with y a unit. Then we have vo(e — 1) = ¢, and write € — 1 = w2, This implies

V2(a)2 —y)>s—2L

As above, the volume of such w is bounded by 4-27572¢, The volume of ¢ then is bounded
by 4 - 275, The volume of x is then bounded by 4 - 2%+ . 2¢, O

Orders of 73
Volume estimates for 7.3
First, we give a description of M (p).

Lemma 11. The set My (p) is the collection of matrices
x11 0
M= [ ’
%21 %22
with entries in Z, such that

Vp(x21 (021 — X22)) = Vp(x11)-
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Proof. Let vi and v, be the first and the second rows of M, respectively. Then since
entries are in Zj, it is clear that v; ov; and vy ov; are integral linear combinations of v1, v.
Now we need v3 o v = a1v1 + azvp with ay,ay € Z,. So x%z = %92, which implies
ay = x22. Then a1x11 + x0001 = x%l, and o] = xl_ll (x%l — x21x22). Therefore, o is in Z,
if and only if v, (x11) < v (83, — %21%22). O

We note that the sublattice corresponding to a matrix M as above has finite index if and
only if det M # 0.

Counting orders of 73
We now prove the following theorem:

Theorem 12. There is a polynomial P3 of degree 2 such that for all € > 0
1
A@(B)::BPgdogB)4—()(Bi+6)

as B — oc.

Proof. By Theorem 9 and Lemma 10, it suffices to prove the following statement: If

o > %, the series
DD AT () (8)
P k+1>2

converges. Here, 1, (k, /) is as in Definition 5.
We divide the series (8) into three subseries:
Casel k > 0,1 > 2. Then by Proposition 9

wy(k, 1) < 2p7/2,

Our subseries is then majorized by
DX S
P k=0 [>2

which converges for o > %

Case Il k > 2,1 = 0. Then by the proof of Proposition 9
up(k, 0) < 2p~%

and as a result, our subseries is majorized by

Z prko

p k>2

which converges for o > %

Case IIl. k = 1,1 = 1. By Proposition 9

wp(1,1) < 2p71

and our subseries is majorized by
—20
2.p
p

This converges for o > %
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For the second assertion in the statement of the theorem, we observe that

S3(k) = N3(k) — N3(k — 1).

Orders of Z*
Volume estimates for Z*
Lemma 12. The domain M3(p) is the collection of 3 x 3 lower triangular matrices

X1
X21 %22
X31 X32 X33
with entries in Zy such that the following inequalities hold:
[4-1] vp(x11) < vp (%5, — x21%22)
[4-2] vp(x11) < Vp(xo1(x31 — %32))
[4-3] vp(x22) < vp (33, — X30%33)

[4-4] vp(x11) + vp(x22) < vp (w22 (¥3; — x31%33) — w21 (43, — x32433)) -

Proof. We want to determine the conditions on matrices

X11 0 0
M=\ %1 %0 0 |,
X31 X32 X33
such that x11, %21, %22, ¥31, %32, %33 € Zp and for 1 < i,j < 3, there exist a1, 23,03 € Zp
with v; o vj = a1v1 + aava + a3v3, where v; is the ith row of the matrix M.
The condition that vy o vy = a1v1 + apvy gives the same condition that we had for the
case n = 3. That is, v, (¥11) < vp (x3; — x21522).
We have

vy 0 v3 = (X21X31,%22%32, 0) = a1v1 + v + a3vs.

Clearly, a3 = 0. We have aox32 = x33%92, S0 g = x32. So we have a1x11 + x32%01 =
x91%31. This implies

1
a1 = xq7 (X21%31 — X21%32).

Therefore, v,(x11) < vp(x21(¥31 — x32)).
Next, consider

2 .2 .2
V3 ovy = (xgl,xgz,x%) = w1V1 + ooV + a3Vv3.
We must have a3 = x33. So @ox29 + x33%30 = x%z. This implies
—1(.2
a2 =Xy (xsz - x32x33) .

2
Therefore, v,(x22) < v, (x32 — x32x33).
We also have o1x11 + x2_21 (x%z — x32x33) X21 + X33%31 = x%l. This implies

-1(,2 —1 2
o] = X1 <x31 — X31X33 — X9y X21 (x32 — x32x33)>
_ 1 -1 2 2
= X7 Xgy (X22(x37 — X31%33) — %21 (X3 — X32%33)).

S0 Vp(¥11) + Vp(x22) < vp (w22 (%3] — ¥31%33) — %21 (%3, — X32%33)). O
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Suppose that v,(x11) = k, V,(x22) = [ and v,(x33) = r. By multiplying by appropriate
units, we can suppose that x1; = pk, Xyp = pl, and x33 = p’. Note that this does not
change the lattice generated by the rows. Then we can define p,(k; /; ) as in Definition 5.

Proposition 11. Suppose that k,l,r > 0. Then

y(k; r) < 8p~7K/6p1/6, 9)

Proof. We divide the proof into three steps. We give two different bounds on , (k; [;7)
and then take an average.
Step I By Proposition 9, the volume of x3; satisfying inequality [4-3] is at most 2p~"/2.

—k/2

By Proposition 9, the volume of x5 satisfying inequality [4-1] is at most 2p™*/%, and for

fixed x21, x32, Proposition 9 implies that the volume of x3; satisfying inequality [4-4] is at

—k/2

most 2p~*/<. Multiplication gives:

Wk r) < 8p_kp_l/2.

Step II. By one of the steps of the proof of Proposition 10 the volume of x3; satisfying

—k+1

inequality [4-1] is at most 2p~"™". By Proposition 9 the volume of x3; satisfying inequality

[4-3] is at most 2p~'/2. By Proposition 9 the volume of x3; satisfying inequality [4-4] is at

—k/2

most 2p~*/<. Multiplication gives

,le(k; l; 7') < Sp—Bk/Zpl/Z.

Step III. We now consider an appropriate average. The idea is thatif p < A and p < B,
with @, 4, B > 0, then for all m, n positive integers

W < (A™B"y e,

The bounds from steps I and II give

K, —1/2\? skz |
W, < {(819_ I’E /2) (819_ 12p /2)}

— 8y TK/6,U/S,

O

Remark 6. This is not the best possible bound one can prove. In fact, using a more
complicated argument similar to the proof of step I of Theorem 15, we can prove a bound
of Cp~/8p=l/2 in step I of the above theorem. This leads to the bound Wy < Cp~ok/4p=1/2
after averaging. This, however, will not improve the bound in Theorem 13 unless one has
an analogue of Theorem 17 for r = 1. Such a theorem is easy to prove, but the resulting
estimate would still not be as good as the one obtained in [19]. For this reason, we decided
to include only the simplest non-trivial estimate.

Proposition 12. Let p be odd. If r = 0 and k, | > 1, then

wy(k; ,0) < 24p=3K/27L,

Proof. Proposition 9 implies that inequality [4-1] holds on a set of x2; of volume at most
2p~TK/21, Proposition 10 implies that inequality [4-3] holds on a set of x3; of volume at
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most Zp’l . For fixed x21, %33, Proposition 10 implies that inequality [4-4] holds on a set of
x31 of volume at most 6p_k .
We see that our total volume is bounded by 24p~—*—/=k/21, O
Proposition 13. Let p be odd. Then
y(0;5;0) < 2p7!
and
wy(k; 0;0) < 3p~2k,
Proof. If k = r = 0, then inequality [4-3] and Proposition 10 give the result. Now
suppose [ = r = 0. Then we have
Vp(x21) +Vp(wo1 — 1) > k

which determines two possibilities for x,;:

1. vp(x21) > k. In this case, inequality [4-4] says
Vp(x31) + vp(xz1 — 1) > k.

The volume of such x3; is 2p K. As a result, the whole volume is at most 2p~ 2.

2. vp(x21) = 0 and v, (%21 — 1) > k. Then inequality [4-2] gives
vp(x31 — x32) > k

and the two-dimensional volume of (x31,x32) satisfying this inequality is at most p‘k.
This gives a bound on the entire volume of p~2*.

Adding up gives the result.

Counting orders of Z.*
In this section, we prove the following theorem:

Theorem 13. There is a polynomial Py of degree 5 such that for all € > 0
Na(B) = BPy(log B) + O (B%+E)

as B — oc.

Proof. By Theorem 9, it suffices to prove the following statement: the expression

Z Z p2k+lfk<rfldfr0 . ) (10)

P k+l+r>2

converges whenever o > %

We write the sum (10) as

Z 22k+l—ka—la—ra HZ(k; L r) + Z Z p2k+l—kd—ld—ra Hp(k; Lr).
k+l+r>2 podd k+1+r>2
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By Proposition 11, the first piece is majorized by
Z o2ktl—ko—lo—r0 5 ~Tk[69—1/6
k,l,r>0
which converges for o > 5/6.
We now consider the second piece of the sum. We consider three cases.

Case I r > 2. By Proposition 11, the relevant sum is bounded by
Z Z Z pPiko—lo—ro =Tk[6 /6 _ Z Z Z p(%—cr)(k+l)—ra.
podd r>2 k,/>0 podd r>2 k,[>0
This sum is equal to
£ ¥ Yot vplé-oie,
podd r>2 m>0

This sum is converges for o > %.

Case Il r = 1. From the previous computation, the corresponding sum converges if the

sum
5
> Y gl
podd m=>1
converges. If o > %, the series converges if the series

Z p(%—a)—a

podd

converges. The latter converges for o > 11/12.

Case III. r = 0. We write the corresponding sum as

Z Z p2k+lfkofla P—p(k; L0) = Z ZPFZG Hp(O; 1;0)

podd k+1>2 podd [>2
+ Z Zp2k7ka Hp(k; 0;0) + Z Z p2k+lfkafla Hp(k; 1,0).
podd k>2 podd k,I>1

By Proposition 13, we have
> a0 « 3 Tt
podd [>2 podd [>2
and this is convergent for ¢ > 1/2. Again, by Proposition 13
podd k>2 k>2
which converges for ¢ > 1/2. Finally, by Proposition 12
1
Z Z PRIl 1 0) < Z Z pli=o)k—lo
podd k,/>1 poddk,/>1
Ifo > %, this last series converges if the series

Z p(%_a)_a

podd

converges. This last series converges for o > %. O
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Remark 7. The bounds obtained by Liu [19] for f3(k) and f3(k) are better than what we
have obtained here. Liu proves f3(k) = O (k/3) and f3(k) = O, (k/*>T€).

Orders of 75
Volume estimates for 7>
We will begin with the set of inequalities defining our region of integration.

Lemma 13. My(p) is the collection of matrices with entries in Z,

X11

X21 X22

X31 X32 X33

X41 X42 X43 X44.

whose entries satisfy:

[5-1] vp(x11) < vp (%3 — X21%22)
[5-2] vp(x11) < vp(x21(x31 — %32))
[5-3] vp(x22) < vp(x3y — x32%33)
[5-4] vp(x11) + Vp(x22) < Vp (%22 (x5, — x31433) — 221 (%5, — x32%33))
[5-5] vp(x11) < vp(xo1(x41 — x42))
[5-6] vp(x22) < vp(x32(x42 — x43))
[5-7] vp(x11) + vp(x22) < vp(®22%31 (¥a1 — %43) — X21%32 (Y42 — X43))
[5-8] vp(x33) < vp (%33 — Xa3xas)
[5-9] vp(x22) + vp(x33) < Vp(¥33%42 (Xa2 — X44) — X32%43 (43 — X44))
[5-10] vp(x11) + vp(x22) + Vp(x33) < Vp(x22%33%41 (K41 — X44) — X22X31%43 (¥43 — X44)

—X21%33%42 (X42 — X44) + X21%32%43 (X43 — X44)).

The proof of this lemma is very similar to the proof of Lemma 12.

By multiplying by appropriate units, we can suppose that x1; = p*, x20 = pl, x33 = p’,
and x44 = p'. We define w,(k; ; r; ¢) as in Definition 5.

We start with a lemma:

Lemma 14. Let p be a prime. Then there is a polynomial with positive coefficients R €
R[] such that

wy(k; rst) < Rk)p~ 2k,

Proof. In this proof, we will suppress the dependence of R(k) on k, and will simply write
R. The value of the polynomial R does not affect the convergence of the sum we consider,
so we do not compute it. The key to our argument will be that once our other variables
are fixed, there are several different bounds available to us for the volume of x3; such that
inequalities [5-4] and [5-10] hold.

More specifically, we use Proposition 9 to give a bound on the volume of the possible
set of x37, then give a bound on the set of possible x43. Once these two values are fixed,
we again use Proposition 9 to give a bound on the set of x4, which then bounds the set of
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possible xy;. Finally, we combine a few different possible bounds for the set of x3; so that
these inequalities simultaneously hold.
Proposition 9 implies that inequality [5-3] holds on a set of x35 of volume at most 2p~%/2.
Suppose that v, (x43(¥43 — %44)) = r + z. Inequality [5-8] implies that z > 0. This

—r/2—z/2

inequality holds on a set of 43 of volume at most 2p . Fix such an x43.

Now for fixed x32, x43, Proposition 9 implies that inequality [5-9] holds on a set of x4
of volume at most 2p~%/2.

We now consider inequality [5-5]. For fixed x42, Proposition 8 implies that the total
volume of x31, %41 such that this inequality holds is at most (k + l)p’k .

Finally, we consider x3;. We begin with inequality [5-10]. For fixed values of

X21,%32, %41, %42, X43, we can write this as
k+1+7r<vy(x31%00y — 7),

where y, 7 € Z, with v,(y) = r + z. We see that this holds on a set of x3; of volume at
most p~ k=2,

Consider inequality [5-4]. By Proposition 9, this holds on a set of x3; of volume at most
Zp_k/ 2,

Using 2p~*=? as our bound for the volume of x3; gives a bound on our total volume of

Rlp—Zk—l—(r—z)/Z,
for some polynomial R;. This is enough for our result if » > z. Suppose that this is not the
case.

By the proof of Proposition 10, we see that the total volume of x3; such that
Vp(x31 (31 — X33) — 2) > Kk,

is at most 6p_(k_’) unless p = 2, v,(x31) =7 — land v,(2) = 2r — 2 < k. If we are not in
this exceptional situation, the total volume is at most Rop~2k—1=(2/2=7/2) Since r < z, this

is at most Rp’Zk’l

, completing the proof.
Suppose that we are in the situation where p = 2, v,(x31) = r—1landv,(z) = 2r—2 < k.
First, suppose that v, (¥31) # vp(x32). Then v, (x31 — ¥32) < vp(x31) = r — 1. Inequality
[5-2] now holds on a set of x5; of volume at most p’(k’r ), Using this bound for the volume

of %71, 2p_l/ 2 for the volume of x3; and Zp_k/ 2 for the volume of x31, gives the total bound

R3p72k717(zfr)/2
which is at most Ap~2~ for some polynomial A, since z > .

Now suppose vy (¥32) = Vp(¥31) = r — 1. Then v, (x32(x32 — x33)) = 2r — 2, and we must
have v,(x21) = I. Now consider inequality [5-7]. We write x31 = apl, x31 = Bp" 1, and
x37 = yp"~! for units a, B, y. Factoring out p*+"~1, the inequality is now

Vp(Bxa1 — ayxqn + (ay — Bxgz) > k—r+1.

For fixed values of x31,%31, %32, %42, %43, this holds on a set of x4; of volume at most
p~tk=n), Using 2p~*/2 as our bound for x5, and x31, this gives total bound

R4p—2k—l—(z—r)/2’

—2k—1

which is at most Rp , completing the proof. O
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Proposition 14. Let p be any prime. Suppose that k,l,r,t > 0. Then for a polynomial
A € R[] with positive coefficients, we have

lot

Wy (ks L3 8) < Akp~@rak=(rz)l=f 437

Proof. The value of the polynomial A does not affect the convergence of the sum we will
consider so we do not compute it. For example in the collection of Equations (11), (12),
and (13), the polynomials A will not be the same.

We have two steps:

Step I. Here, we show that the following three inequalities hold:

up(k; L £ < Ap—Bk/2—31/2+t (11)
ok Ly t) < Ap~2k—1=r+3t (12)
Hp(k’ l, r; t) < Ap75k/27l+r+3t. (13)

We proceed as follows. Inequality [5-1] holds on a set x3; of volume at most the min-
imum of Zp_k/2 and 2p_(k_1). Inequality [5-3] holds on a set x32 of volume at most the
minimum of 2p/? and 2p~!="). Inequality [5-8] holds on a set of x43 of volume at most
2p~ D),

When p # 2, we can use Proposition 10 for the remaining three variables (see the
proof of Theorem 15 for details). For p = 2, some care is required. By Proposition 9, we
always have the following. For any fixed x3; and x3;, inequality [5-4] holds on a set of x3;

—k/2

of volume at most 2p . For any fixed x33, x43, inequality [5-9] holds on a set of x4 of

volume at most Zp_l/z. For any fixed x31, ¥31, 32, X42, %43, inequality [5-10] holds on a set
of x4; of volume at most 2p*/2,

Inequality (11) follows from taking Zp’k/ 2 for the volume of %21, X31, %41, taking 2p’(l’r )
for the volume of x3;, taking Zp_l/ 2 for the volume of x4, and taking Zp_(’_t) for the
volume of x43.

—k/2 35 our bound for the volume of x5; and x31, 2p‘l/2

For inequality (12), we take 2p
as the bound for x3; and x42, and 2p’(’ ~%) as the bound for the volume of x43. We must
now show that when all other variables are fixed, the total volume of x4; satisfying our
inequalities is at most Ap_(k_w.

Suppose we are not in the special case in which we cannot apply Proposition 10. We
have that the volume of x4 satisfying inequality [5-10] is at most 6p~*~9, completing
this case.

We can write inequality [5-10] as
Vp(x11) + Vp(@22) + Vp(x33) < Vp(w2ox33%41 (K41 — X44) — (X22%31%43 (%43 — X44)
+x21 (¥33%42 (X42 — X44) — X32%43 (X43 — X44)))).

Inequality [5-8] implies that we can write x43(x43 — %44) = p"a, with o € Z,. Inequality
[5-9] implies that we can write

!
x33%42 (¥ap — Xa4) — X32%43(Xa3 — x4a) = p' 7B,

with 8 € Z,,.
Our inequality is now

k < vp(x41 (%41 — x44) — (x310 + %21 8)).
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We can apply Proposition 10, giving our bound, unless v, (x41) = £ — 1 and vp(x310 +
x218) =2t — 2.
First, suppose that v,,(x21) < 2t. Then for fixed x21, %42, inequality [5-5] holds on a set of

(k=20 '\which completes this case. Now suppose that Vp(x31) < 2t.

x41 of volume at most p~
Proposition 6 now implies that for fixed x21, X31, ¥32, %42, ¥43, inequality [ 5 — 7] holds on
a set of x47 of volume at most p_(k_"l’(x“)) < p_(k_m. This is enough for our bound, so
we suppose that v, (x21) > 2t and v, (x31) > 2¢. This implies that v, (x3100 + x218) > 2t >
2t — 2, so we can apply Proposition 10, completing this case.

Inequality (13) will be proved in a few steps. First, we suppose that we are in the case
where we can apply Proposition 10 to inequality [5-4] and conclude that the volume of x3;
satisfying this inequality is at most 6p~*~"). As above, we see that either one of x21,¥31
has valuation at most 2, giving a bound of p~*=29, or both have valuation at least 2¢, in
which case we can apply Proposition 10 and conclude that the total volume of x4; is at
most 6p_(k_t). Using 2p_k/2 as our bound for x;1, 2;7_1/2 as our bound for x3y and x4,
and 2p_(’_t) as our bound for x43, we get total volume

Ap~5K/2—13t,

completing this case.

Now suppose that we are in the case where we cannot apply Proposition 10 to inequality
[5-4]. Then vy (x31) = r — 1. We now consider two subcases. First, suppose that v, (x31) #
Vp(¥32). Then inequality [5-2] implies that v,(x21) > k — v, (x31) > k — r, which holds on

—k/2 35 the bound for the volume of x3;

a set of xo1 of volume at mostp’(k’r). We use 2p
satisfying inequality [5-4]. Now using the same argument given above, the volume of x4;
satisfying these inequalities is at most 6p~*~2, Combining these estimates gives total

volume bounded by

Ap~5K/2—13t,

completing this case.
Finally, suppose that v,(x31) = v,(x32) = r — 1. Now for fixed x32, %43, the total vol-
ume of x4 satisfying inequality [5-6] is at most p~ =", We use 2p~*~) as the bound

—k/2 a5 the bound on the volume of

on the volume of xy; satisfying inequality [5-1], 2p
X315 2p’(r =D as our bound on the volume of %32, and Zp*(’ —? as the bound on the volume
of x43. Using the same argument given above, we can use 6p~*~%) as our bound on the

volume of x4;. This gives total bound

Ap 5K/ lr3t

completing step I.

Step II. Here, we consider an appropriate average of the previous inequalities to prove
the theorem. The constants attached to these inequalities do not affect the convergence
of the sums we consider so we will suppress them. By Lemma 14 and step I, we have

—2k—1

Wy <p ,
Ly Ep—3k/2—31/2+t,
Wy 5[972k717r+3t’
and

—5k/2—1 3t
Wy <p [2—Il+r+ .
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This means forall n > 1

_ _ Cor 3 _ _ 2 or N\ 1/ (n+6)
™ S{ (p 3k/2 31/2+t) (p 2k—1 r+3t) (p 5k/2 l+r+3t> (p 2k 1) }

:p—(2+ﬁ)k—(1+ﬁ)z—ﬁ =

Setting n = 11 gives the result. O
We now state several results for odd primes p.

Proposition 15. Let p be odd. Suppose that k,l,r,t > 0. Then there is a polynomial
B e R[x] with positive coefficients such that

Wy (ks ;) < B(kyp~ )kt m)l= sy t35.

Proof. We have two steps:
Step I. Here, we show that the following three inequalities hold:

Hp(k; l; r; t) < Bp72k731/27r+3t’

Hp(k; Lt < Bp—3k—l+r+3t’
and
Hp(k; Lrt) < Bp—Sk/2_31/2+3t' .

We will use (14) in the proof of Theorem 17. We proceed as follows. Inequality [5-1]
holds on a set x»1 of volume at most the minimum of 2p~*/2 and 2p~*~), Inequality [5-3]
holds on a set x35 of volume at most the minimum of 2p~%2 and 2p~¢="). Inequality
[5-8] holds on a set of x43 of volume at most Zp_(r —9_ For any fixed x3; and x33, inequality
[5-4] holds on a set of x31 of volume at most the minimum of 2p—*/2 and 6p~*~—". For
any fixed x32,x43 inequality [5-9] holds on a set of x4 of volume at most 6p~ =9, For
any fixed x21, %31, %32, ¥42, %43, inequality [5-10] holds on a set of x4; of volume at most
6p~ =1, Hence the total volume is bounded by

Bp—(k—t) .p—(l—t) pD .p—k/2 .p—l/z .p—k/z,

by
Bp—(k—t) .p—(l—t) _p—(r—t) .p—(k—l) _p—(l—r) _p—(k—r),

and by
Bp~ k=0 U= == k)2 U2 =),

Simplification gives the result.
Step 1I. Here, we consider an appropriate average of the previous inequalities to prove
the theorem. As constants play no role, we ignore them. By Lemma 14 and step I, we have

—2k—1
Hp 5 p ’

—2k—31/2—r+3t
prp k—31/2—r+ ,

and

—3k—I+r+3t
Hp <p e
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This means foralln > 1

—ok—31/2— 2/ o\ 1/ 01+3)
w, < { <p 2k—31/2 r+3t) (p 3k l+r+3t> <p 2k 1) ]

—p~ A k-t E)l- s+t
Setting n = 17 gives the result. O

Proposition 16. Let p be odd. Then for any k, I, r, with k + | + r > 2, we have

r_8

wy(k; 5 0) < Cp7(2+%)k*(1+%)17777

for some constant C > 0.

Proof. We have two basic steps:

Step 1. Here, we will show that w, < Cp‘y‘_l_2 whenever k + [ 4+ r > 2. We first note
that Proposition 10 implies that inequality [5-8] holds on a set of x43 of volume at most
2p~ =8 = 2p~". Inequality [5-3] holds on a set of x35 of volume at most 2p~¥/21,

Proposition 9 implies that inequality [5-1] holds on a set of xy; of volume at most
Zp_rk/ 21, For fixed x91, %32, Proposition 9 implies that the total volume of x3; satisfying
inequality [5-4] is at most 2p~[%/21,

For fixed x21, X31, ¥32, %42, ¥43, inequality [5-10] can be written as

k+ 1+ 71 < vp(x22%33%41 (K41 — X44) — 2),

for some z € Z,. Proposition 10 implies that this holds on a set of x4; of volume at most
6p’k .
Therefore, our total volume is at most

Cp 2Tk =1= 1121,

for some C > 0.If r 4+ [I/2] > 2, we are done. Therefore, suppose r = 0 and / € {0, 1,2}
orr=1and/=0.

First, suppose r = 0. Then Proposition 10 implies that inequality [5-3] holds on a set of
x32 of volume at most Zp’l . For fixed %31, 32, Proposition 10 implies that inequality [5-4]
holds on a set of x3; of volume at most 6p_k . Using the above bounds for x4 and x41, our
total volume is now bounded by

Cp2k—Th/n-2,

Since k + [ > 2, we have [k/2] 4+ [ > 2 unless [ = 0 and k = 2. In this case, we use Zp_k
as a bound for the volume of xy; satisfying inequality [ 5 — 1], which completes this case.

Now suppose r = 1 and / = 0. Proposition 10 implies that the volume of x7; satisfying
inequality [5 — 1] is at most 2p—X. For fixed %21, %3, Proposition 9 implies that the total
volume of x3; satisfying inequality [ 5 — 4] is at most 2p~[¥/2], We use the same bounds
for the volume of x43 and x4;. Our total volume is now bounded by

Cp2k—Tk/21-1,

Since k + [+ r > 2, we have k > 1 and our bound is at most Cp~2~2, completing the
proof.
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Step II. This step is very similar to the last step of the proof of Theorem 15. We have by
the above and the second step of the proof of Theorem 15

—2k—1-2
Hp S P ’

My < p 2kl

and

—3k—1
Hy <p +r

This means forallz > 1

—2k—=31/2—r\2 ( —3k— g o\ 1/ (1+3)
™ S{ (p 2k—31/2 r) (p 3k l+r) (p 2k—1 2) }
:p—(2+n$3)k—(1+ﬂ$3)1—n—;3—%'
Setting n = 4 gives the result. O

We can similarly handle the case where ¢t = 1.

Proposition 17. Let p be odd. Then for any k, I, r with k + 1+ r > 1, we have

1

w (k1) < Dp7(2+%)k7(1+%)#%79 ,

for some constant D > 0.

Proof. We have two main steps:
Step I Here, we will show that the volume is bounded by

Dp—Zk—l—l .

We recall that inequality [5-1] holds on a set of xy; of volume at most the minimum of
2p~ k721 and 2p~*=D_ Similarly, inequality [5-3] holds on set x35 of volume at most the
minimum of 2p~ /21 and 2p~!="). We also have that inequality [5-8] holds on a set of x43
of volume at most the minimum of 2p~"/?1 and 2p=—9 = 2p=(—D,

For any fixed values of x3;,x37, we see that inequality [5-4] holds on a set of x3; of
volume at most the maximum of 2p~ [k/21 and 6p’(k” ). For any fixed values of x32, x43, we
see that inequality [5-9] holds on a set of x4 of volume at most the maximum of 2p~ /2
and 6p_(l_1). For any fixed values of x31, x31, X32, 42, X43, We can write inequality [5-10] as
k < vp(x41 (%41 — %44) — 2), for some z € Zj,. This holds on a set of x4; of volume at most
the maximum of 2p~%/21 and 6p~*-D,

We now combine these inequalities to get bounds on the total volume satisfying
inequalities [5-1] through [5-10]. Note that if k — [ > [k/2] and [ — r > [[/2], then
k —r > [k/2]. By using 2p’“‘/2] as the bound for the volume of x»; and x31, and 2p’(l”)

as the bound for x33, we see that our total volume is bounded by

Dpk2U=2MK/2143,

Therefore, we are done if [ > 4, orif/ > 3 and k is odd. Suppose that this is not the case.
Suppose that [ < 3. Using 2p~ /2 instead of 2p~¢~") as our bound for the volume of

x32, our total bound is now

Dp k=22 =1=11/21-r+3,
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Therefore, we are done if [[/2] 4+ r > 4, or [[/2] + r > 3 and k is odd. Suppose that
these conditions do not hold.

First, suppose that / = 3. Then r < 1. We can use 2p~"/?I as a bound for the total
volume of x43 satisfying inequality [5-8] instead of 2p~ 1. We use 2p~ =" as our bound
for the volume of x3 satisfying inequality [5-3]. We see that our total volume is bounded
by

Dp k2K =3=3+r—[r/2142 _ p,—k=27k/2~detr—[r/2]

Since r < 1, this is at most Dp‘zk—l_1

, completing this case.

Now suppose that [ < 2. For fixed x32,x43, Proposition 9 implies that the total volume
of x4 satisfying inequality [5-9] is at most 2p~ /2], We use this bound instead of 6p~¢~1,
Our total volume is now bounded by

Dp K2k A=2012-r+2,

and we are done unless » < 2. In this case [r/2] > r — 1, so we use 2p’W21 as our bound

for the volume of x43 satisfying inequality [5-8]. Now our bound is

Dpfkfz[k/zw —2[1/21~[r/21+1

First, suppose r = 2. Then if / is odd or k is odd, we are done. If [ = 0, then we can use
2p~ ¥ as our bound for the volume of x5; satisfying inequality [5-1], giving

Dpfzkf rk/21

as our bound. Therefore, we are done unless kK = 0. In this case, kK = [ = 0, we have that
the total volume is at most the total volume of x43 satisfying inequality [5-9], which is at
most 2p~ 1, which completes this case.

Now, suppose r = [ = 2. This is the most difficult case to consider. If k is odd then
2[k/2] = k + 1, and we are done. If k > 6, then we can use 2p~*~9 as our bound for x»1,
which is enough to complete this case. If kK = 0, then we use 1 as our bound for x4; instead
of 6p~*~1 and our total bound is Dp~'~1, completing this case. We now must consider
k=2and k = 4.

First, suppose k = 2. We need a bound of Dp~7. Using 2p~¥/21 as our bound for
X91,%31,%41, 20 [/2] as our bound for x32 and x4, and Zp’[rm as our bound for x43, we
get a bound of Dp~°. Since [ = k = 2 inequality [5-1] becomes 2vp(%21) > 2 and inequal-
ity [5-3] becomes 2v,(x33) > 2. If either of these variables has valuation greater than 1,
then we will have the upper bound that we need. Therefore, we need only consider the
case where v, (¥21) = vp(¥32) = 1. Inequality [5-2] now implies that v, (¥31 — x32) > 1.
Therefore, v,(x31) > 1, and we note that if v,(x32) > 2, we will have our bound.
Therefore, we suppose that v,(¥31) = 1. Finally, we consider inequality [5-4]. We have
Vp (xzz (x%1 - x31x33)) =4 =k+/butvy, (le (x%2 - x32x33)) = 3 < k + [, so this case
cannot occur.

When k = 4 we will argue similarly. We need a bound of Dp~!1. Using 2p~%/?1 as
our bound for x5 and x31, 6p‘<k—1) as our bound for x4, 2p_”/21 as our bound for x3,
and x4, and 2p~["/21 as our bound for x43, we get a bound of Dp~10. Since | = r = 2,
inequality [5-8] becomes 2v, (x43) > 2 and inequality [5-3] becomes 2v,,(x32) > 2. If either
of these variables has valuation greater than 1, then we will have the bound that we need.
Therefore, we need only consider the case where v,(x43) = v,(x32) = 1. Inequality [5-6]
now implies that v, (x42 —x43) > 1. Therefore, v,(x42) > 1, and we note that if v, (x42) > 2,
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we will have our bound. Therefore, we suppose that v,(x42) = 1. Finally, we consider
inequality [5-9]. We have v, (x33 (x3, — x42%43)) = 4 = [+r,but v, (x32 (x33 — ¥43%aa)) =
3 < [+ r, so this case cannot occur.

Next, suppose [ < 2 and r = 1. We have the bound

Dpk=2rk/21=211/21,

If | = 1, we are done. Suppose [ = 2. Then we can use 2p~" as our bound for the volume
of x35 satisfying inequality [5-3], and we are done. If [ = 0, then we can use 2p™* as the
bound for xy; satisfying inequality [5-1], and our bound is

Dy~ 2Tk,

which completes this case unless k = 0. If k = [ = 0 and r = ¢ = 1, then our total volume

1 and we are done.

is at most the volume of x43 satisfying inequality [5-8], which is 2p~

Finally, suppose r = 0 and / < 2. We can use 2p~ as our bound for the volume of x3;
satisfying inequality [5-3], and for fixed x21, x32, we use 6p’k as our bound for the volume
of x3; satisfying inequality [5-4]. We also use 2p~ [k/21 a5 our bound for the volume of x4;

satisfying inequality [5-10]. Our total volume is now bounded by
Dp~2k=Tk/21=1=11/21

Since k + [+ r > 1, we are done.
Step 1I. Again, we do an averaging. We have the inequalities

—2k—I1-1
Wy <p ,

1y < p 2kl

and

w, < p—sk/2—31/2+3.

The last two inequalities are from step II of the proof of Theorem 15 for £ = 1. This
means forall m > 1

Cop _ _ _ Cor_7_1\" 1/(n+2)
iy 5{(17 2k—31/2 r+3) <p 5k/2 31/2+3) (p 2k—1 1) }

(e Jo (17 )=+

We set n = 7 to get the result. O

Remark 8. The case by case analysis of the small values of parameters in the proofs
of Theorems 16 and 17 can be avoided if instead one uses the results of [19] for f; (pk)
for small k. In [19], these values are worked out for k up to 5. This is not sufficient for
our purposes, but computing the missing data is not difficult using the results of Liu.
Here, we chose instead to present the above elementary treatment to make the argument
self-contained.

Remark 9. The choices of the parameter # in the proofs of Theorems 14, 15, 16, and 17
are made to optimize the error estimate in Theorem 14.

Counting orders of 7
In this section, we prove the following theorem:
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Theorem 14. There is a polynomial Ps of degree 9 such that for all € > 0
33
Ns(B) = BPs(log B) + O (Bwé)
as B — oo.

Proof. By Theorem 9, it suffices to prove the following statement: for o > g—i the

expression
Yy e
p m>2

converges.
In our analysis, we will ignore all constants as they will have no bearing on convergence.

We write
(p ) a>,(2™) (Pm)
22, LDy SR I D =
p m>2 m>2 podd m=>2

If we use Proposition 14, we see very easily that the first piece converges for o > %. So
we concentrate on the sum corresponding to the odd primes. We will show that for m > 2

and p odd, we have
a5 (p") < A(mp~ TR (15)

for a polynomial A(m).
It is clear that this will be sufficient for the proof of the theorem. In order to prove (15),

we write

6l24 (pm) — Z p3k+2l+r iy (k; L £)
k+l+r+t=m

m
3k+21
Yo Pk
t=2 k+Il+r=m—t

+ p3k+21+r ™ (k, l; r; t)
k+l+r=m—1,t=1

+ Z p3k+21+rup(k; l; " t)

k+1+r=m,t=0
m
< Z Z p3k+21+rp7(2+1/20)/(7(1+1/20)lfr'/20+9t/20

t=2 k+l+r=m—

+ Z p3k+2[+rp—(2+1/18)k—(1+1/9)l—r/9—1/9
k+l+r=m—1

+ Z p3k+21+rp7(2+1/7)k7(1+1/7)17r/778/7
k+1+r=m,t=0

by Propositions 15, 16, 17, after ignoring some polynomials in terms of k,[,r,t as

coefficients. Next,
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m
az4(pm) < Zp9t/20p(1—1/20)(m—t) Z 1

t=2 k+l+r=m—t
4 p19,(-1/18)0n=1) Z 1+ p8/7p(=1/7m Z 1
k+l+r=m—1 k+1l+r=m
< p IHAS120m L S1918H 1118y )=8/7+(1=1/T)m

after ignoring some polynomials. Now, the result follows. O
The following statement is a consequence of the inequality (15):

Corollary 2. Foreach e > 0

fl) < ke ]]p
plk
Ifk is odd, then for each € > 0,

fk) < ke [[r"
plk

Remark 10. Using Proposition 14 for odd primes instead of Proposition 15 in the proof
of Theorem 14 would have produced a weaker error term.

Orders of Z9 ford > 5
In this section, we prove part 2 of Theorem 6. The idea is to find non-trivial volume
bounds for M;5(p), and then use an inductive argument to obtain bounds for M ;(p) for
d>>5.

We begin by defining M5 (p).

Lemma 15. M5(p) is the collection of 5 x 5 lower triangular matrices with entries in Z,

X11

X21 %22

X31 X32 X33

X41 X42 X43 X44
X51 X52 X53 X54 X55

whose entries satisfy:

[6-1]  vp(x11) < vp(¥21(¥21 — %22))
[6-2]  vp(x11) < vp(w21(x31 — x32))
[6-3]  vp(x22) < Vp(w32(x32 — ¥33))
[6-4]  vp(x11) + vp(®22) < Vp(x22%31(X31 — ¥33) — X21%32(X32 — ¥33))
[6-5]  vp(x11) < vp(¥21(Xa1 — X42))
[6-6]  vp(x22) < vp(x32(Xap — x43))
[6-7]  vp(x11) + Vp(®22) < Vp(x22%31 (%41 — X43) — X21%32 (K42 — X43))
[6-8]  vp(x33) < Vp(wa3(x43 — Xa4))
[6-9]  vp(x22) + Vp(¥33) < Vp(x33%42 (X4 — X4a) — X32%43(X43 — X44))
[6-10]  vp(x11) + vp(w22) + X33 < Vp(w22x33%41 (%41 — Xa4) — X22%31%43 (%43 — X44) —
X21%33%42 (¥42 — X44) + %21X32%43(X43 — X44))
[6-11]  vp(x11) < Vp(x21(¥51 — %52))
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[6-12]  vp(x22) < Vp(x32(x52 — X53))

[6-13]  vp(x11) + Vp(x22) < V(K231 (51 — ¥33) — X21%32 (X502 — X53))

[6-14]  vp(x33) < Vp(x43(x53 — X54))

[6-15]  vp(x22) + Vp(x33) < Vp(¥33%42 (X502 — X54) — ¥32%43 (¥53 — X54))

[6-16]  vp(x11) + vp(x22) + X33 < Vp(w22X33%41 (X51 — X54) — X22%31%43 (X53 — X54) —
%21%33%42 (X502 — X54) + X21%32%43 (X53 — X54))

[6-17]  vp(%aa) < Vp(X54(x54 — X55))

[6-15]  vp(x33) + Vp(x44) < Vp(X4a¥53(X53 — X5) — X43%54 (X54 — X55)

[6-19]  vp(x22) + vp(¥33) + x44 < Vp(¥33%44%52 (X52 — X55) — X33%42%54(X54 — X55) —
%32%44%53(X53 — X55) + X32%43%54 (X54 — X55))

[6-20]  vp(x11) + Vp(x22) + Vp(x33) + Vp(xaq) <
Vp(X22X33%44%51 (X51 — X55) — X22%33%41X54 (X¥54 — X55) — X22X31X44%53 (%53 —
%55) + X2231X43%54 (X54 — X55) — X21X33%44%52 (X52 — X55) — X21X33%42%54 (¥54 —
X55) — X21X32%44%53(X¥53 — X55) + X21X32%43%54 (¥54 — X55))

We omit the proof.

As usual, after multiplying by appropriate units, we can assume that x1; = pki, 137 =

PR, x33 = p’3, xas = pr4, and xss = plo.

We now give a bound for ,(ky, k2, k3, kg, ks).

Proposition 18. For odd prime p,
(k1 ko, k3, kg, ks) < - p=(BFali=(a+6)k—(38)ks—(3-5)hat Ghs
where c is a polynomial in ki, . . ., ks.

Proof. First, we show the following three inequalities:

—3ki1— 3 ko—ks+ks

Wy <c1-p =A (16)

Wy < cy - p-2kim 13k gk =B 17)

by < cg - p3RiT2emsks =C (18)
where ¢y, ¢3, c3 are polynomials in &y, . . ., k5.

To show (1), we see that inequality [6-1] holds on a set of x3; of volume at most Zp_kl/z

by Proposition 9. We see that [6-4] holds on a set of x3; of volume at most 2p_k1/2 by
Proposition 9. The combined volume of x41 and xs4 satisfying [6-16] is at most (k;+1)p X
by Proposition 8. The volume of x5 satisfying [6-20] is at most 6p~ %1% by Proposi-
tion 10. The volume of x3, satisfying [6-3] is at most 2p~*2/2 by Proposition 9. The volume
of x49 satisfying [6-9] is at most 2p‘k2/ 2 by Proposition 9. The volume of x5 satisfy-
ing [6-19] is at most 2p*2/2 by Proposition 9. The volume of x43 satisfying [6-8] is at
most 2p*3/2 by Proposition 9. The volume of xs3 satisfying [6-18] is at most 2p~%3/2 by
Proposition 9. Multiplication gives@

3
Wy < c1 .p—Skl—ikz—ks-H(s — A.

To show (2), we see that inequality [6-1] holds on a set of xp; of volume at most
Zp*kl/ 2 by Proposition 9. The combined volume of x3; and x43 satisfying [6-7] is at most
(k1 + 1)p~k by Proposition 7. The volume of x4; satisfying [6-10] is at most 2p*1/2 by
Proposition 9. The volume of xs5; satisfying [6-20] is at most 2p~%1/2 by Proposition 9.
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—ko /2

The volume of x3, satisfying [6-3] is at most 2p by Proposition 9. The volume of x4

satisfying [6-9] is at most 2p~%2/2 by Proposition 9. The volume of x5 satisfying [6-19] is
at most 2p~*2/2 by Proposition 9. The volume of xs3 satisfying [6-18] is at most 2p—*3/2
by Proposition 9. The volume of xs4 satisfying [6-17] is at most 2p~%4/2 by Proposition 9.
Multiplication gives

5

HP <c .p_zkl_%kz_%ke’_%]q = B.

To show (3), we see that inequality [6-1] holds on a set of x2; of volume at most 2p_k1/2
by Proposition 9. The volume of x3; satisfying [6-4] is at most 2p~%1/2 by Proposition 9.
The combined volume of x4; and x54 satisfying [6-16] is at most (k; + ph by Propo-
sition 8. The volume of x5, satisfying [6-20] is at most 2p—X1/2 by Proposition 9. The
combined volume of x3; and x43 satisfying [6-6] is at most (kz + l)p_k2 by Proposition 8.
The volume of x4 satisfying [6-9] is at most 2p_k2/ 2 by Proposition 9. The volume of x5,
satisfying [6-19] is at most 2p~%>/2 by Proposition 9. The volume of x53 satisfying [6-18]
is at most 2p%3/2 by Proposition 9. Multiplication gives

5

},Lp <c .p—2k1—2k2—%k3 =C.

Lastly, we note that y, < min {4, B, C} implies that

W, < (ABC)'3 =¢ GO =G+pl—(G+pk-G =Dkt 5k

giving the result. O

Proposition 19. Suppose n > 5. Then there is C € R[ky, . .., ks] such that

k,
—Aq(p)- i(d—‘{ﬂ
wyky, .. kg) <Cp 2@ 2

with

d 1 d—2 1 d—4 1 d—4 1 d—5 2
A =(c+ )+ (L o+ ([t o o+ (= - S )k + (=2 - 2 )k
dP) (2+6) 1+< 2 +6) 2+( ) +6><3+< 2 6) 4+( ) 6)5
for p odd, and

d 1 d—2 1 d—4 1 d—4 16 d-5
A =\l - _— _— _— _— _— _— _—
a(p) (2+34>k1+< 2 +34>k2+< 2 +17)k3+< 2 17)k4+( 2 )k5
forp=2.

Proof. The proof is by induction on d. Since C will not affect the convergence of the
sums, we consider we do not compute it. The lemma will follow from Theorem 14 and
Theorem 15 if we show that

d—1
j=1| 2

k.
-4
(k... skg) <2971p wy(ki, ... kg—1). (19)
In order to see this inequality, observe that if
o .0

x1 P 0

M= € Myp;ki,..., kg)
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then for the matrix obtained by removing the last row

oo 0
53
x91 0
M = 4 e My_1k1,. ... kg—1).
.0
Xd—11 «++ +=- pkd_l

The inequality (19) will follow if we show that the fibers of the map M +> M’ have
volume bounded by

1| ki
2d_1p7 Zﬁ:ll ’77}-‘

As usual, we set
Vj = (le,. . .,xj,',O,. . .,0).

Suppose vy, . . ., v4_1 are the rows of M’. We now bound the volume of the set of vectors
vg with x4 = p*@ such that

Vgovg=cCiV1+ -+ Cqvq

with ¢; € Z. Itis clear that ¢; = x44. We thensee thatfor1 <j<d —1

d—1
2 — i .
Xgj — XddXdj = Cj¥Xjj + Z CkXkj-
k=j+1

If ¢, xyj are given forj + 1 < k < d, then the existence of such a a ¢; is equivalent to

d—1
2
Vp xdj — XddXdj — Z CikXkj | = k]‘.
k=j+1
Tk

Proposition 9 implies that the volume of x,; is bounded by 2p /21, Induction will give

the result. O
We can now prove part 2 of Theorem 6:

Proof. We will prove this theorem for Z4*1, We will show that the abscissa of conver-
gence of ¢74(5) is less than or equal to % — é. Recall

d Y ?i .
§Z<d(s) = 1_[ Z pZ/'zl(d ])k}p 521:1 kjﬂp(kly k).

P ki,...kz=0
It is not hard to see that by Lemma 19 the factor corresponding to p = 2 converges for
o =R > % — . For the remainder of this proof, we will write > for 3o odq- It

remains to prove the convergence of the series

SO PRy N kg
P kit Akg>1

=S PRy T k)
P kit Akg=1

d NEoo d .
+ Z Z pzi=1(d7])k/p o Yj=1 klup k1, ..., kg).
podd ky+...4+k;>2
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By Lemma 10
4 Ak —o Yk d+1\ _
Yo p Zf=lk’up(k1,-..,kd)=( ) )p ‘.
ki+...4kg=1

and Zp (”Hz'l)p"’ converges for all 0 > 1. By Theorem 18, we see that the other summand
is bounded by

SO PR Rk, k)
P kit..tkg=2

d . d . —Ag-Yi. df')[q
SZ Z pz/'ﬂ(d—l)k}p—‘fz,':lk/p a=2j=s@=)| 7
P k.. +kg=2

By+iS? (d—jpki —o S ki
I M e
P ki+..4kg=2

where

d 1 d 1 d 1
Bij=(=—-1-2)(ki+ ke +k ——24 )k — —2— " ks
d (2 6)(1+ 2+ 3)+<2 +6> 4+(2 6)5

Our series is now bounded by

Yy ) S

P k.. 4kg=2

P m+tky>2
where C;(m) is the number of solutions to Z}‘.iz_ll ki = m for m > 0. Since Cy(m) is a

polynomial in 1, this series converges if and only if

P mtkg>2

converges. The subseries consisting of m = 0, k; > 2 convergesifo > % Ifk; =0,m > 2,

the series converges for o > % — é. If m, kg > 1 then the series converges if o > % — ﬁ

The theorem is now immediate. O
We state the following corollary of the proof for future reference.

Corollary 3. Let d > 6. There is a polynomial D such that for all primes p and all
natural numbers | we have

< d_5Y
a7 (') = pp? 2
Consequently, for each € > 0, we have
d
al (k) <e ki3
The proof of Theorems 1 and 2

In this section, we present a proof of Theorems 4 and 5 which finish the proof of our main
result, Theorem 2. Let K/Q be an arbitrary extension of degree n which we assume to be
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K = Q() for « a root of an irreducible polynomial f(x) € Z[x]. We want to find a finite
set S of primes and oy (#) € R such that the double series

Z Z al=< (pk)
pask= P o
converges for ¢ > og(n). We show that op(5) = 19/20 works, and for n > 5, op(n) =
n/2 —7/6 works.
We choose an integral basis for K/Q which we will fix throughout; in particular, this
basis provides an integral basis for K ® Q, over Q,. By Equation (3) we have

Loz, p® = L —pH7" /MI(K) e[ oa T T M (20)
14

where we have written ./\/11}J (K) instead of the relevant /\/l}g B).

Definition 6. If kK = (ki, ..., k,) is a n-tuple of non-negative integers, we set
PFro ..0
1 x1 PR 0 1
MK k) = {M = ' € M, (K)
0
Xnl -+ Xnn—1 Pk"

We define u}, (K, k) to be the @—dimensional volume of M ; (K; k).

The basic observation is that MII,(K ,k) is given by a cone condition. The set M, (K; k)
is given by cone conditions. To define the set ./\/l}l, (K, k), we have to add the condition
that the sublattice generated by the rows contains the identity element. Let e € Z}, be the
image of the identity element of Ox ® Z, under the identification of the latter with Zj.

Write
pPro .0
ko 0
M= X21 P
0
Xnl -+« Xnn—1 Pk”

and let the rows of the matrix M be vq,...,v,. Then M € M;(K ; k) if there are
01,...,0y, € ZZ such that ), o;v; = e. This is equivalent to saying

(ali e ,C(n)M =e,
or what is the same
—1 n
eM e Zp.

Since M is a lower triangular matrix, this last statement is equivalent to a collection
of p-adic inequalities of the form considered in section ‘Application to some volume
computation’.

Let S be a large finite set of primes containing all primes lying above 2 and all ramified
primes; after enlarging S if necessary, we may assume that any p ¢ S is good in the sense
of section ‘Resolutions with good reduction’. Let p be the set of primes p ¢ S which are
split in the number field K. Clearly, p is an infinite set of primes.
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It is easy to see that

(Gior,y® = D pETNip T Rkl k. (21)
k=K1 )
ki=0,Vi

Let p € p. For each m
Wren, @ = Y. pERCTNGE ).

k=(ky,....kn)
k=00, kj=m

First, we consider n = 5. We start with the observation that by Equation (15) for m > 0
GZ; (p}’ﬂ) — a24 (p}’ﬂ) S A(m)p71+19m/20
P P
for a polynomial A (). On the other hand, since

a;};(pWI) — Z p4k+31+2r+t l(k l it M)
k+-l+r+t+u=m

we have

p4k+3l+2r+t H;(k; l; it M) < A(k, l, 7t u)p—l+l9(k+l+r+t+u)/20

whenever k + [+ r 4+t + u > 2, for some polynomial A(k, [, r,t,u). Thus,
Hp(k Lrt,u) < Atk L, r, t, w)p~ ' p~ GH1/20k=(2+1/20)1=(1+1/20)r—£/20+19u/20,
In the terminology of section ‘Application to some volume computations’, this means
that /\/l}, (K) is (1, a, A)-narrow with
o = (3+1/20,2+1/20,1+ 1/20,1/20, —19/20)

and some polynomial A. Now, Theorem 8 implies that there is a finite set 7" of primes
such that for p ¢ T the set M},(K ) is (1, ¢, A)-narrow. Reversing the process, we get

a}j‘; (pWI) S B(m)p_1+19m/20 (22)
for some polynomial B(m). Clearly, this implies that

>y e

peT m>2

converges for o > 19/20. This shows that o¢(5) = 19/20 works. The proof of the state-
ment that og(n) = n/2 — 7/6 works for n > 6 follows the same reasoning, except that we
use Corollary 3. This finishes the proof of the theorem.

The following corollary is immediate from Equation (22). This is an improvement of
Theorem 8.1 of [3].

Corollary 4. For any quintic field K and any prime number p, we have

OK 120! 1
Z p2m O 2+L )
m>1 p 0
As in the introduction, we set
a¥<(n,m) = max a%f (m).
K /Qextension of degree n K

We have the following corollary:
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Corollary 5. We have
logab<(5, 19
limsup (984" Gm) _ 19,
m—>00 logm 20

Forn > 6, we have

. loga<(m,m) n 5
limsup ————= < — — —.
m—00 logm 2 3

In particular,
1 loga®=(n, 1
lim sup — lim sup e (1, m) < -.
n—oo M m—o0 log m 2
Endnote

! We learned Galois’ theorem from a question posted by Chandan Singh Dalawat on
mathoverflow, and comments by Matt Emerton, Jack Chapman, and Jack Schmidt.
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