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Abstract

In this paper, we study the distribution of orders of bounded discriminants in number
fields. We use the zeta functions introduced by Grunewald, Segal, and Smith. In order
to carry out our study, we use p-adic and motivic integration techniques to analyze the
zeta function. We give an asymptotic formula for the number of orders contained in
the ring of integers of a quintic number field. We also obtain non-trivial bounds for
higher degree number fields.
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Introduction
Let K/Q be an extension of degree n with ring of integersOK . An orderO is a subring of
OK with identity that is a Z-module of rank n. Set

NK (B) := |{O ⊆ OK ;O an order , |discO| ≤ B}| .
In this paper, we study the asymptotic growth of NK (B) as B grows.

Results

Our first theorem, which is a consequence of the motivic framework used here, is the
following result:

Theorem 1. There is αK ∈ Q>0,βK ∈ N,CK ∈ R>0 such that

NK (B) ∼ CKBαK (logB)βK−1

as B → ∞.

Let E/Q be the normal closure of K with Galois group G = Gal (E/Q). Then G has a
natural embedding in Sn as a transitive subgroup. Let V2 be the vector space whose basis
is the set of 2-element subsets of {1, · · · , n}. The group G has a natural action on V2. Let
r2 be the dimension of the space of G fixed vectors in V2. Then, we have the following
theorem:

Theorem 2. Let K/Q number field of degree n.

1. For n ≤ 5, there is a constant CK > 0 such that

NK (B) ∼ CKB1/2(logB)r2−1

as B → ∞;
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Table 1 Transitive subgroups up to conjugation

n Order Group name Generators r2

3 3 Z/3Z (1 2 3) 1

3 6 S3 (1 2), (1 3) 1

4 4 Z/4Z (1 2 3 4) 2

4 4 Z/2Z × Z/2Z (1 2)(3 4), (1 4)(2 3) 3

4 8 D4 (1 2 3 4), (1 3) 2

4 12 A4 (1 2 4), (2 3 4) 1

4 24 S4 (1 2), (1 3), (1 4) 1

5 5 Z/5Z (1 2 3 4 5) 2

5 10 D5 (1 2 3 4 5), (1 4)(2 3) 2

5 20 AGL(1, 5) (1 2 3 4 5), (2 3 5 4) 2

5 60 A5 (1 2 4), (3 4 5), (2 3 5) 1

5 120 S5 (1 2), (1 3), (1 4), (1 5) 1

2. For any n > 5,

B1/2(logB)r2−1 � NK (B) �ε B
n
4− 7

12+ε .

Table 1 lists the transitive subgroups of Sn for small n and the corresponding r2 values.
The reference for the list of subgroups up to conjugation is ([9], section 2.9). For the
computation of r2, see section ‘Some remarks on r2’.
In order to study the behavior of NK (B), we form the counting zeta function

ηK (s) =
∑

Oorder

1
|discO|s ,

where OK is the ring of integers of K and O is an order. This series converges absolutely
for 	s large, and in its domain of absolute convergence we have

ηK (s) = |discOK|−sη̃K (2s)

where

η̃K (s) =
∑

O order

1
[OK : O]s

.

The zeta function η̃K has an Euler product of the form

η̃K (s) =
∏
p

η̃K ,p(s)

where

η̃K ,p(s) =
∑
O

1
[OK ⊗Z Zp : O]s

and the summation in the last expression is over full rank sublattices of OK ⊗Z Zp that
are subrings with identity. We define the coefficients ai(p) by

η̃K ,p(s) = 1 +
∞∑
i=1

ai(p)
pis

.

The number ai(p) is what in section ‘Our method’ is denoted by a1,<OK

(
pi
)
.

The proof of Theorem 2 has two main steps. The first step which is arithmetic is the
following theorem:
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Theorem 3 (Arithmetic Step). The Euler product

f (s) =
∏

punramified

(
1 + a1(p)p−s)

converges absolutely for 	s large, and it has an analytic continuation to a meromorphic
function on an open set containing 	s ≥ 1 with a unique pole at s = 1 of order r2.

Remark 1. It is reasonable to conjecture that for n small the function η̃K (s) is holomor-
phic for 	s > 1, and has an analytic continuation to a domain containing 	s ≥ 1 with a
unique pole of order r2 at s = 1. If this is true, then there is a nonzero constant CK such
that

NK (B) = CKB1/2(logB)r2−1(1 + o(1))

as B → ∞. The conjecture is true for n ≤ 5 by Theorem 2. The results of Brakenhoff
[3], summarized in section ‘Comparison with previous results’ below, show that for n ≥ 8
there is a pole to the right of 	s = 1.

The second step of the proof of the main theorem is geometric. Since by Lemma 4.15 of
[10] the finitely many bad primes do not contribute to the main pole, part 1 of Theorem 2
is a consequence of the following theorem:

Theorem 4 (Geometric Step for small n). Let n ≤ 5. There is a finite set S of primes such
that the series∑

p�∈S

∞∑
i=2

ai(p)
piσ

converges for any real σ > 19/20.

We give heuristic reasoning for why this result should hold in the case n = 5. Let
bi(p) be the number of subrings with identity of Z5

p, i.e., orders, whose index is pi. It is
reasonable to expect that

ai(p) ≤ bi(p) (1)

for all i and p. It is then a consequence of Theorem 14 that the series∑
podd prime

∞∑
i=2

bi(p)
piσ

converges for σ > 19/20. Alas, we have not been able to prove (1) - even though we are
confident it is true. Here, we employ an alternative method based on p-adic integration.
Part 2 of Theorem 2 is a consequence of the following theorem and Lemma 4.15 of [10]:

Theorem 5 (Geometric step for large n). Let n > 5. There is a finite set S of primes such
that the series∑

p�∈S

∞∑
i=2

ai(p)
piσ

converges for any real σ > n
2 − 7

6 .
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Remark 2. Note that by Theorem 1.5 of [10], the zeta function ηK (s) has an analytic
continuation to a domain of the form 	s > α − ε with α > 0 the abscissa of convergence
and ε > 0.

Remark 3. A byproduct of our methods, stated as Corollary 4 and Corollary 5 in
section ‘The proof of Theorems 1 and 2’, is an improvement of the upper bounds obtained
by Brakenhoff [3], Theorem 5.1 and Theorem 8.1.

Remark 4. It would be interesting to obtain information about the constant CK . For
the cubic case, the results of [6] stated below give precise values for CK . Corollary 1 of
Nakagawa [24] gives the value of CK in terms of certain Euler products, but it is not clear
if these Euler products have any conceptual meaning. For higher degree extensions, we
know nothing about the constants CK .

More generally if L = ∏
i Ki is an étale Q-algebra with Ki’s number fields, we define

OL = ∏
iOKi . Clearly, OL is Z-algebra which is free as a Z-module of rank d = ∑

i[Ki :
Q]. We define an order O in OL to be a subring with identity of OL which is of Z-rank d.
Again, we set

η̃L(s) =
∑

O order

1
[OL : O]s

.

As usual, knowing the analytic properties of η̃L(s) via Tauberian arguments, e.g.,
Theorem 9, gives us information about the function

ÑL(B) := |{O ⊂ OL;Oan order, [OL : O]≤ B}| .
Our methods give an asymptotic formula for ÑL(B) whenever [ L : Q]≤ 5.
Let us explain the simplest possible case. For d ∈ N, we set Nd(B) := ÑQd (B). Given

k ∈ N, we define fd(k) to be the number of orders in Zd of index equal to k. Clearly,
Nd(B) = ∑

k≤B fd(k). It is easy to see that the function fd(k) is multiplicative, i.e., if k1, k2
are coprime integers then fd(k1k2) = fd(k1)fd(k2).
This is the prototype of the problem that we study in this paper:

Problem 1.1. Let d ∈ N. Study the function Nd(B) as B → ∞.

Despite its innocent appearance, this is a very difficult problem, and prior to our work,
the only cases for which an asymptotic formula is known for Nd(B) are d = 2, 3, 4 [19].
Here, we obtain an asymptotic formula for N5(B), and give non-trivial bounds for Nd(B)

when d > 5.

Definition 1. Let d, k ∈ N. We define a<
Zd (k) to be number of subrings S of Zd, not

necessarily with identity, such that [Zd : S]= k.

A subring S in Zd which is of finite index as an additive group will necessarily be a
free Z-module of rank d. Such subrings are called multiplicative sublattices in [19]. An
elementary proposition in [19] states that for any d, k ∈ N, d ≥ 2, we have

fd(k) = a<
Zd−1(k).
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As a result, with the notation of section ‘Our method’

η̃Qd (s) = ζ<
Zd−1(s).

Determining the asymptotic behavior ofN1(B) andN2(B) is trivial. In this paper, we will
use the method of p-adic integration as in section ‘Our method’ to prove the following
theorem:

Theorem 6. 1. Let d ≤ 5. There is a positive real number Cd such that

Nd(B) ∼ CdB(logB)(
d
2)−1

as B → ∞.
2. Suppose d ≥ 6. Then for any ε > 0 we have

B(logB)(
d
2)−1 � Nd(B) �ε B

d
2 − 7

6+ε

as B → ∞.

We actually prove a more precise statement and give error estimates; see Theorems 12,
13, and 14. We include the d = 3 case to illustrate our method in a simple case. Our
results for d ≥ 5 are new.
Theorem 6 is more than just a prototype of the type of result we can prove. The com-

putations in section ‘Orders of Z5’ form the backbone of the proof of Theorem 2. In fact,
Theorem 8 shows that, essentially, whatever estimate we obtain for the volumes of the
sets considered in section ‘Orders of Z5’ works in general.
We expect the asymptotic formula in Part 1 of Theorem 6 to be valid for d < 8. The

formalism of p-adic integration shows that Nd(B) has an asymptotic formula of the form
CBa(logB)b−1, for a rational number a and a natural number b, but for d ≥ 8 it is not
clear what the numbers a, b should be.
We finish this introduction with the following conjecture:

Conjecture 1. Let K/Q be a number field of degree d. Then with the notation of
Theorem 1, we have

αK = 1
2

lim
B→∞

logNd(B)

logB
.

In particular, αK only depends on the extension degree of K over Q.

Comparison with previous results

If we write

ζZn(s) :=
∑

�⊂Zn

1
[Zn : �]s

,

where � is a sublattice of Zn, it can be seen that for 	(s) > n, we have

ζZn(s) = ζ(s)ζ(s − 1) · · · ζ(s − n + 1).

As a result, ζZd (s) has a pole of order 1 at s = n with residue ζ(n)ζ(n − 1) · · · ζ(2).
Consequently,

|{� ≤ Zn | �sublattice, [Zn : �]≤ B}| ∼ ζ(n)ζ(n − 1) · · · ζ(2)
d

Bn

as B → ∞. The book [20] contains five distinct proofs of this fact.
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Since in this work we are counting sublattices with additional structure, we expect
slower asymptotic growth. Theorem 2 is trivial for a quadratic field as the counting zeta
function is simply the Riemann zeta function ζ(s). For K a cubic or quartic extension of
Q, Theorem 2 is due to Datsovsky-Wright [6] for the cubic case, and Nakagawa [24] for
the quartic case.
In the cubic setting, there is a bijection between the set of equivalence classes of integral

binary cubic forms and the set of orders of cubic fields. Then it follows from Shintani’s
theory of zeta functions associated to the prehomogeneous vector space of binary cubic
forms combined with a theorem of [6] that

η̃K (s) = ζK (s)
ζK (2s)

ζ(2s)ζ(3s − 1).

In the quartic setting, Nakagawa explicitly computes the local factors of the zeta func-
tion η̃K using an intricate combinatorial argument involving counting the number of
solutions of some very complicated congruences. Due to computational difficulties at the
prime 2, Nakagawa’s theorem assumes some mild ramification conditions. Under these
conditions, he shows that the zeta function η̃K (s) has an analytic continuation to 	s >

2/3. Nakagawa’s explicit local computations can also be used to prove Theorem 6 for d =
4. The paper [19] contains a different approach to Theorem 6 using combinatorial argu-
ments. Here, too, the local Euler factors of the counting zeta function are explicitly com-
puted, though the proof follows from elegant recursive formulas, c.f. Propositions 6.2 and
6.3 of [19].
In a series of spectacular papers, Bhargava studies orders in quintic fields. In [1], he

shows that there is a canonical bijection between the set of orbits of GL4(Z) × SL5(Z) on
the space Z4 ⊗ ∧2Z5 and the set of isomorphism classes of pairs (R, S) with R a quintic
ring and S a sextic resolvent ring of R. An impressive theorem of Bhargava [2] which is
proved using the above bijection says that∑

Kquintic
NK (B) ∼ cB

as B → ∞. Bhargava’s methods do not identify the contribution of eachNK (B) to the sum.

The thesis [3] contains an array of interesting results on the distribution of orders in
number fields. In keeping with our notation below, for a number field K , we let

a1,<OK
(m) = |{O ⊂ OK ;O an order, [OK : O]= m}| .

We then let

a1,<(n,m) = max
K/Qextension of degree n

a1,<OK
(m).

Theorem 5.1 of [3] is the statement that

c7(n) ≤ lim sup
m→∞

log a1,<(n,m)

logm
≤ c8(n)

with c7(n) = max0≤d≤n−1
d(n−1−d)
n−1+d and c8(n) given by the following Table 2:

Table 2 Values of c8(n)

n 2 3 4 5 6 7 8 9 10 11 12 13 ≥ 14

c8(n) 0 1
3 1 20

11
29
11

186
53

49
11

119
22

70
11

388
53

440
53

492
53 n − 8

3
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Furthermore,

lim inf
n→∞

1
n
lim sup
m→∞

log a1,<(n,m)

logm
≥ 3 − 2

√
2

and

lim sup
n→∞

1
n
lim sup
m→∞

log a1,<(n,m)

logm
≤ 1.

One can compute the values of c7(n) explicitly as follows:

c7(n) =

⎧⎪⎪⎨⎪⎪⎩
k(2k−1)
4k−1 n = 3k;

k
2 n = 3k + 1;
k(k+1)
2k+1 n = 3k + 2.

In particular, for n ≥ 8, c7(n) > 1.
Theorem 8.1 of [3], which is used in [2], is the following result: If K/Q is a quintic field,

then for any prime p
∞∑
k=1

a1,<OK

(
pk
)

p2k
= O

(
1/p2

)
.

We improve the upper bounds in these theorems in section ‘The proof of Theorems 1
and 2’, Corollary 4 and Corollary 5.

Our method

Given a ring R whose additive group is isomorphic to Zd for some d ∈ N, we define

a<
R (k) := ∣∣{Ssubring of R | [R : S]= k

}∣∣ .
For any k ∈ N, a<

R (k) is finite. We define the subring zeta function of R by

ζ<
R (s) :=

∞∑
k=1

a<
R (k)
ks

=
∑
S≤R

1
[R : S]s

.

We view ζ<
R (s) not just as a formal series, but as a series converging on some non-trivial

subset of the complex numbers. The idea is that the analytic properties of the resulting
complex function have consequences for the distribution of subrings of finite index in R.
In particular, by various Tauberian theorems, e.g., Theorem 9, the location of poles and
their orders gives information about the function s<R (B) defined by

s<R (B) :=
∑
k≤B

a<
R (k) = ∣∣{Ssubring of R | [R : S]≤ B

}∣∣ .
Similar constructions can be made for subgroups of finitely generated groups and ideals

in rings, but in this introduction, we only consider subring zeta functions. We have the
following theorem which is a summary of results from [10,14]

Theorem 7. 1. The series ζ<
R (s) converges in some right half plane of C. The abscissa

of convergence α<
R of ζ<

R (s) is a rational number. There is a δ > 0 such that ζ<
R (s)

can be meromorphically continued to the domain {s ∈ C | 	(s) > α<
R − δ}.

Furthermore, the line 	(s) = α<
R contains at most one pole of ζ<

R (s) at the point
s = α<

R .
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1. There is an Euler product decomposition

ζ<
R (s) =

∏
p

ζ<
R,p(s)

with the local Euler factor given by

ζ<
R,p(s) =

∞∑
l=0

a<
R
(
pl
)

pls
.

This local factor is a rational function of p−s; there are polynomials Pp,Qp ∈ Z[ x]
such that ζ<

R (s) = Pp
(
p−s) /Qp

(
p−s). The polynomials Pp,Qp can be chosen to

have bounded degree as p varies. The local Euler factors satisfy functional equations.

The functional equation mentioned in the theorem is proved in [27]; also see Chapter 4
of [13]. A corollary of this theorem is that the asymptotic behavior of the function s<R (B) is
of the form c<R Bα<

R (logB)b
<
R −1 as B → ∞. Here, b<

R is the order of pole of ζ<
R (s) at s = α<

R .
It is known that b<

R ≥ 1. It is a fundamental problem in the subject to relate the numbers
α<
R , b<

R , c<R ∈ R to structure of R.
The paper [14] introduced a p-adic formalism to study the local Euler factors ζ<

R (s). Fix
a Z-basis for R and identify R with Zd . The multiplication in R is given by a bi-additive
map

β : Zd × Zd → Zd

which extends to a bi-additive map

βp : Zd
p × Zd

p → Zd
p

giving Rp = R ⊗Z Zp the structure of a Zp-algebra.

Definition 2. LetMp(β) be the subset of the set of d × d lower triangular matricesM
with entries in Zp such that if the rows ofM = (xij)1≤i,j≤d are denoted by v1, . . . , vd, then
for for all i, j satisfying 1 ≤ i, j ≤ d, there are p-adic integers c1ij, . . . , cdij such that

β(vi, vj) =
d∑

k=1
ckijvk .

Let dM be the normalized additive Haar measure on Td(Zp), the set of n × n lower
triangular matrices with entries in Zp. Proposition 3.1 of [14] says:

ζ<
R,p(s) = (

1 − p−1)−d
∫
Mp(β)

|x11|s−d|x22|s−d+1 · · · |xdd|s−1 dM. (2)

Most of the statements of Theorem 7 are proved using this p-adic formulation. The
integral appearing in (2) is an example of a cone integral. The beauty of Equation (2) is
that it allows us to express the number of subrings of a given index in terms of volumes of
certain p-adic domains.

Let D = (f0, g0, f1, g1, · · · , fl, gl) be polynomials in the variables x1, . . . , xm with rational
coefficients. We call D the cone integral data. For a prime number p, we define

Mp(D) := {x ∈ Zm
p | vp(fi(x)) ≤ vp(gi(x)), for all 1 ≤ i ≤ l},
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and we define the cone integral associated to the cone integral data D by

ZD(s, p) =
∫
Mp(D)

|f0(x)|sp|g0(x)|p dx

with dx is the normalized additive Haar measure. The study of such integrals in special
cases was started by Igusa [16,17]. Igusa’s original method was based on the resolution of
singularities. Igusa’s approach was generalized by Denef [7] and du Sautoy andGrunewald
[10]. Denef [7] also introduced the use of elimination of quantifiers inQp as an alternative
approach. For surveys on cone integrals and their applications to zeta functions of groups
and rings, as well as references and examples, see [11,13,28]. In general, calculating cone
integrals is difficult and requires explicit desingularizations of highly singular varieties.
For a ‘simple’ example, see [12].

There is a modification of this formalism to treat subrings with identity. Again, let R be
a ring with identity whose additive group is isomorphic to Zd and for simplicity assume
that the identity of R is sent to (1, 1, . . . , 1) under this isomorphism. For k ∈ N, let

a1,<R (k) := |{S subring with identity of R | [R : S]= k}|.
Now define the unitary subring zeta function of R by

ζ
1,<
R (s) :=

∞∑
k=1

a1,<R (k)
ks

.

As before, we have an Euler product expansion

ζ
1,<
R (s) =

∏
p

ζ
1,<
R,p (s).

We let

s1,<R (B) :=
∑
k≤B

a1,<R (k) = ∣∣{S unitary subring of R | [R : S]≤ B
}∣∣ .

Again suppose after identifying R with Zd, the multiplication on R is given by a
bi-additive map

β : Zd × Zd → Zd

which extends to a bi-linear map

βp : Zd
p × Zd

p → Zd
p .

Definition 3. Let M1
p(β) be the subset of Mp(β) whose rows generate a unitary

subring.

Then it is not hard to see that

ζ
1,<
R,p (s) = (

1 − p−1)−d
∫
M1

p(β)

|x11|s−d|x22|s−d+1 · · · |xdd|s−1 dM. (3)

This integral too is a cone integral as we will see in section ‘The proof of Theorems 1
and 2’. As a result, the asymptotic behavior of s<R (B) is of the form c<R Bα<

R (logB)b
<
R −1 as

B → ∞. Again, we use the expression (3) to write the number of unitary subrings of a
given index in terms of volumes of certain p-adic sets.
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In our problems of interest, the ring R is a product of rings of integers of number fields.
The two usual methods to study the cone integrals coming from subring zeta functions
are resolution of singularities and elimination of quantifiers. Neither of these methods,
however, can be applied in any obvious fashion to the problem of counting subrings of
such R. This is due to the fact that our cone integrals are too complicated (see sections
‘Orders of Z4’ and ‘Orders of Z5’). In general, there is no effective algorithm to eliminate
quantifiers for a complicated p-adic domain, and resolution of singularities, while in prin-
ciple computationally tractable, is dreadful for domains of the type considered here. For
example, the domain needed to study Zd would involve about d3 inequalities of the form
vp(f (x)) ≤ vp(g(x)) with x a vector of variables of length about d2, and f , g ranging over
polynomials with integer coefficients of degrees 2 to d.
In this paper, inspired by [26], we propose a different approach. So far as the deter-

mination of the fundamental quantities α<
R , b<

R is concerned, we do not need explicit
computations of the local integrals. Instead, in favorable circumstances such as those
under consideration here, we can accomplish this by computing the first two terms of the
Euler factors and estimating the rest of the terms. It is precisely for this reason that our
method can be applied to more cases that what was treated in the earlier papers [6,19,24].
Here, the difficulty lies in estimating volumes of certain p-adic sets that arise in the split
situation of Zd, see section ‘Orders of Z4’, ‘Orders of Z5’, and ‘Orders of Zd for d > 5’.
Once this has been accomplished, we will use the results of section ‘Application to some
volume computations’ to show that the volume estimates obtained for the Zn setting
automatically extend to an arbitrary R of the sort considered here.

Organization of the paper

The rest of the paper is organized as follows. In section ‘Geometry and p-adic integrals’,
we recall results by Denef [8], and use them to prove Theorem 8. We prove Theorem 3
in section ‘The proof of Theorem 3’, using the outline explained in section ‘Outline
of the proof of Theorem 3’. Section ‘Tauberian theorem’ contains the statements of
the Tauberian theorems we use in this work. We discuss the values of r2 in section
‘Some remarks on r2’. The proof of Theorem 6 is presented in section ‘The proof of
Theorem 6’. The outline of the proof is sketched in section ‘Outline of the proof of
Theorem 6’ and details are postponed to later sections. In section ‘General facts about
volumes’, we collect several lemmas used in estimating volumes. Section ‘Orders of Z3’
contains the treatment of the simple case of Z3. We include this simple case to illustrate
the method. In sections ‘Orders of Z4’ and ‘Orders of Z5’, we give bounds for the vol-
umes of our domains for n = 4 and n = 5, respectively. These bounds are then used in
Sections ‘Counting orders of Z4’ and‘ Counting orders of Z5’ to establish Theorems 12,
13, and 14 which imply the first part of Theorem 6. The proof of the second part of
Theorem 6 is presented in section ‘Orders of Zd for d > 5’. The paper ends with the proof
of Theorem 2 in section ‘The proof of Theorems 1 and 2’.

Notation

In this paper, a ring R is an additive group with a bi-additive multiplication such that the
underlying additive group is finitely generated. We write S ≤ R if S is a subring of R. The
number [R : S] is defined to be the index of S in R as an additive subgroup. Throughout
this paper, p is a prime number. When p is used as the index of a sum or product, we will
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always understand that it ranges through the primes. The symbolsQp and Zp are the field
of p-adic numbers and its ring of integers, respectively. We let Up denote the group of
units of Zp. We normalize the additive Haar measure on Qp such that vol (Zp) = 1, and
the volume of a subset of Qp is always with respect to this measure. For example, if P(x)
is a statement about a p-adic number x, the volume of x ∈ Qp such that P(x) means the
normalized Haar measure of the set {x ∈ Qp;P(x)}. The measure on Qr

p for any r > 0 is
normalized similarly. The function vp : Qp → Z∪{∞} is the p-adic valuation. If f : S → C

and g : S → R+ are functions defined on a set S to the set of positive real numbersR+ and
C, respectively, the notation f (x) = O(g(x)) means there is a constant C > 0 such that for
all x ∈ S we have |f (x)| ≤ Cg(x); this is also sometimes denoted by f (x) � g(x). If S,T are
sets, and f : S → C and g : S × T → R+ are functions, the notation f (x) = Oy(g(x, y))
means that for every y ∈ T , there is a constant C(y) > 0 such that for every x ∈ S we have
|f (x)| ≤ C(y)g(x, y).
If f (x), g(x) : R+ → R+, we say that f (x) ∼ g(x) as x → +∞ if limx→+∞ f (x)/g(x) = 1.

For a complex number s, 	(s), usually denoted by σ , is the real part of s. We will, with-
out explicit mention, repeatedly use the fact that

∑
p prime pa−bs, with a, b real numbers,

converges for 	(s) > (a + 1)/b. The collection of n × n matrices with entries in a ring R
is denoted by Mn(R). The set of lower triangular matrices in Mn(R) is written Tn(R). A
finite extension K/Q is called a number field, and its absolute discriminant is denoted by
disc K. The ring of integers of K is written OK . A subring with identity of OK which is a
Z-module of rank equal to the Z-rank ofOK is called an order. We write ζ(s) for the Rie-
mann zeta function. Ifψ is a property of integers, and f an arithmetic function,

∑
p ψ f (p)

means the sum of the values of f over all prime numbers p which satisfy ψ ; for example,
if S is a set of integers,

∑
p�∈S f (p) means the sum is over all those prime numbers which

are not in S.

Geometry and p-adic integrals
In this section, we study a multivariable version of the Igusa zeta integral following the
method of [8] and [10]. We start with some geometric preparation.

Resolutions with good reduction

We recall the the material of Section 2 of [8]. In this section, K is an arbitrary field of
characteristic zero, R a discrete valuation subring of K with field of fractions K , P unique
maximal ideal, and residue field K which we assume to be perfect. Let f (X) ∈ K[X],
X = (X1, · · · ,Xm) be a nonzero polynomial. Let X = Spec K[X], X̃ = Spec R[X], X =
Spec K[X], and

D = Spec
(
K[X] /(f )

) ⊂ X .

A resolution (Y , h) for f over K consists of a closed integral subscheme Y of Pk
X for

some k, and themorphism h : Y → X which is the restriction of the projective morphism
Pk
X → X such that:

1. Y is smooth over Spec K ;
2. The restriction h : Y \ h−1(D) → X \ D is an isomorphism;
3. The reduced scheme (h−1(D))red associated to h−1(D) has only normal crossings.
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Let Ei, i ∈ T , be the irreducible components of (h−1(D))red. For i ∈ T , we define Ni to
be the multiplicity of Ei in the divisor of div (f ◦ h) on Y , and let νi − 1 be the multiplicity
of Ei in the divisor of h∗(dx1 ∧ · · · ∧ dxm). We have Ni, νi ≥ 1 for all i ∈ T .

We think of Pk
X as an open subscheme of Pk

X̃ . If Z is a closed subscheme of Pk
X , we

define Z̃ to be the scheme theoretic closure of Z in Pk
X̃ . We also set Z = Z̃ ×R Spec K ,

and we call it the reduction of Z mod P.
Let h̃ : Ỹ → X̃ be the restriction to Ỹ of the projective morphism Pk

X̃ → X̃ , and
h̄ : Y → X be obtained from h̃ by base extension. We say (Y , h) has good reduction mod
P if the following two conditions are satisfied:

1. Y is smooth over Spec K ;
2. Ēi is smooth over Spec K , for all i ∈ T , and ∪iĒi has only normal crossings; and
3. for i �= j, Ēi and Ēj have no common irreducible components.

Let K ′ be a field containing K , R′ a discrete valuation subring of K ′ who fraction field
is K ′, and which contains R, with maximal ideal P′ containing P, and with perfect residue
field. Suppose (Y , h) be a resolution of f over K as above. Let Y ′ = Y ×K Spec K ′ and
h′ : Y ′ → X ′ = Spec K ′[X] be obtained from h by base extension. Proposition 2.3 of [8]
says that then (Y ′, h′) is a resolution of f over K ′. Moreover, if (Y , h) is a resolution with
good reduction mod P, (Y ′, h′) has good reduction mod P′.
In the arithmetic case, let F be a number field, and OF its ring of integers. Let f (X) ∈

F[X], X = (X1, · · · ,Xm). Let (Y , h) be a resolution for f . For any maximal ideal p, we
consider the discrete valuation ring OF ,p with maximal ideal pOF ,p. Note that the field
of fractions of OF ,p is F . Theorem 2.4 of [8] then states that for almost all p, (Y , h) is a
resolution with good reduction mod pOF ,p. As a corollary, if Fp is the p-adic completion
of F , and Op its ring of integers, and by abuse of notation p its unique prime ideal, then
(Y , h) is a resolution of f over Fp with good reduction mod p for almost all p.

Multivariable cone integral

For a finite extension F ofQp, we let beOF its ring of integers, p the maximal ideal, |.|F its
normalized absolute value, and vF the corresponding discrete valuation. Let q be the size
of F , the residue field of F .
Let f1, · · · , fl and g1, · · · , gl be polynomials in the variables X = (X1, · · · ,Xm) with

rational coefficients. We denote by ψF(X) the first order formula

vF(fi(X)) ≤ vF(gi(X)), i = 1, . . . , l.

As before we call the formula ψF(X) a cone condition, and the polynomials fi, gi, 1 ≤
i ≤ l, the cone data.
We define

VF ,ψ = {x ∈ Om
F ;ψ(x)}.

If h0, h1, . . . , hk are polynomials in X with rational coefficients, we define the cone
integral in k complex variables s = (s1, · · · , sk) ∈ Ck with respect to ψ by

Zψ(s; F) =
∫
VF ,ψ

|h0(x)| · |h1(x)|s1 · · · |hk(x)|sk · |dx|.
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Our first goal here is to find an explicit formula forZψ for p outside a finite set of primes.
In this section, following themethod of [10] closely, we will find an explicit formula for our
multivariable cone integral which depends on the numerical invariants of a resolution.
Let (YQ, hQ) be a resolution of the polynomial � = ∏

i hi.
∏

j fjgj over Q, and assume
that the prime p is such that (YQ, hQ) has good reduction mod p, and � �≡ 0 mod p.
Let (Y , h) be the resolution of � over F obtained by base extension. Then (Y , h) has good
reduction mod p.
Let a ∈ Y(F). Since Y is a closed subscheme of Ỹ , a is a closed point of Ỹ . Let

Ta = {i ∈ T , a ∈ E i} = {i ∈ T , a ∈ Ẽi}.
Let r = |Ta| and write Ta = {i1, · · · , ir}. Then in the local ringOỸ ,a, we write

� ◦ h̃ = ucNi1
1 . . . cNir

r

where cj ∈ OỸ ,a generates the ideal of Ẽij and u a unit inOỸ ,a. Since fi, gi, hi divide �, we
can also write

fi ◦ h̃ = u(fi)c
Ni1 (fi)
1 . . . cNir (fi)

r

gi ◦ h̃ = u(gi)c
Ni1 (gi)
1 . . . cNir (gi)

r

hi ◦ h̃ = u(hi)c
Ni1 (hi)
1 . . . cNir (hi)

r .

We define vectors wj, 1 ≤ j ≤ r, by

wj = (Nij(h1), . . . ,Nij(hk)) ∈ Nk .

Define an integral Ja,ψ(s, F) by the following expression:

Ja,ψ(s; F) =
∫

θ−1(a)∩h−1(VF ,ψ)

|h0 ◦ h| · |h1 ◦ h|s1 · · · |hk ◦ h|sk · |h∗(dx1 ∧ · · · ∧ dxm)|.

Here, the function θ is defined as follows: Let H = {b ∈ Y(F), h(b) ∈ Om
F }. A point b ∈

H ⊂ Y(F) can be represented by its coordinates (x1, · · · , xm, y0, · · · , yk) ∈ Fm × Pk
X (F)

where (x1, · · · , xm) ∈ Om
F and (y0, . . . , yk) are homogeneous coordinates that are chosen

to satisfy mini vF(yi) = 0. We define θ(b) = (x1, · · · , xm, y0, · · · , yk) ∈ Y(F). The next
step is to calculate each integral Ja,ψ . We have

Ja,ψ(s; F) =
∫

θ−1(a)∩h−1(VF ,ψ)

|c1|w1·s+Ni1 (h0)+νi1−1 · · · |cr|wr ·s+Nir (h0)+νir−1 |dc1∧· · ·∧dcm|.

Since c1, . . . , cm are in the maximal ideal of OY ,a, we have that c1(b), . . . , cm(b) ∈ p for
all b ∈ θ−1(a), and the map c : θ−1(a) → pm given by

b �→ (c1(b), . . . , cm(b)).

is a bijection. Consequently,

Ja,ψ(s; F) =
∫
V ′
F ,ψ

|c1|w1·s+Ni1 (h0)+νi1−1 · · · |cr|wr ·s+Nir (h0)+νir−1 |dc1 ∧ · · · ∧ dcm|

where V ′
F ,ψ is the set of all y = (y1, . . . , ym) ∈ pm such that for each i satisfying 1 ≤ i ≤ l

r∑
j=1

Nij(fi)vF(yj) ≤
r∑

j=1
Nij(gi)vF(yj).
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Let Aj,a = wj and Bj,a = Nij(h0) + νij for 1 ≤ j ≤ r and Aj,a = 0 and Bj,a = 1 for j > r.
Then

Ja,ψ(s; F) =
∑

(k1,...,km)∈�

q−∑m
j=1 kj

(
Aj,a.s+Bj,a−1

) (
q−k1 − q−k1−1

)
. . .
(
q−km − q−km−1

)

= (1 − q−1)m
∑

(k1,...,km)∈�

q−∑m
j=1 kj

(
Aj,a.s+Bj,a

)
,

where

� =
⎧⎨⎩(k1, . . . , km) ∈ Nm;

r∑
j=1

Nij(fi)kj ≤
r∑

j=1
Nij(gi)kj, 1 ≤ i ≤ l

⎫⎬⎭ .

The set � is the intersection of Nm with a rational polyhedral cone C in Rm. Write this
cone as a disjoint union of simplicial cones C1, . . . ,Ct with

Ci = {α1vi1 + · · · + αmivimi ;αj ∈ R>0, 1 ≤ j ≤ mi}
where {vi1, . . . , vimi} is a linearly independent set of vectors in Rm.
Then � is the disjoint union of the following sets

�i = {l1vi1 + · · · + lmivimi ; lj ∈ N, 1 ≤ j ≤ mi}.
Now vjk = (qjk1, . . . , qjkm) ∈ Rm

>0 for 1 ≤ k ≤ mj. Hence

Ja,ψ(s; F) = (1 − q−1)m
t∑

i=1

mi∏
u=1

q−Ai,u,a.s−Bi,u,a

1 − q−Ai,u,a .s−Bi,u,a

with Ai,u,a = ∑m
j=1 qiujAj,a and Bi,u,a = ∑m

j=1 qiujBj,a.
For each I ⊂ T define

cF ,I =
∣∣∣{a ∈ Y(F); a ∈ E iif and only if i ∈ I}

∣∣∣ ,
and put Ai,u,I = Ai,u,a and Bi,u,I = Bi,u,a for any a ∈ {x ∈ Y(F); x ∈ E iif and only if i ∈ I}.
Clearly,

Zψ

(
s; F
) =

∑
a∈Y(F)

Ja,ψ
(
s; F
)
.

Putting everything together

Zψ

(
s; F
) = (

1 − q−1)m∑
I⊂T

cF ,I
tI∑
i=1

mi∏
u=1

q−Ai,u,I .s−Bi,u,I

1 − q−Ai,u,I .s−Bi,u,I
.

The absolute convergence of the integral is guaranteed if

Ai,u,I .	s + Bi,u,I > 0

for all I ⊂ T , 1 ≤ i ≤ t, and 1 ≤ u ≤ mi, where

	s = (	s1, . . . ,	sk).

We note that the domain of the absolute convergence depends only on the geometry of
our data, and not on the particular choice of the field F .
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As in [10], we derive another expression for the integral. Set

DT =
⎧⎨⎩(x1, . . . , xt) ∈ Rt≥0;

t∑
j=1

Nj(fi)xj ≤
t∑

j=1
Nj(gi)xj, 1 ≤ i ≤ l

⎫⎬⎭
where t = |T |. This is a closed cone. This cone is a disjoint union of open simplicial pieces
called Rk , 0 ≤ k ≤ w. We assume that the fundamental region for the lattice points of Rk
has no lattice points in its interior. We will assume that R0 = (0, . . . , 0) and that R1, . . . ,Rq
are all the open one-dimensional edges of the cone DT . Write

Rk = {
αek = α(qk1, . . . , qkt);α > 0

}
.

For any 0 ≤ k ≤ w, there is a subsetMk ⊂ {1, . . . , q} such that

Rk =
⎧⎨⎩∑

j∈Mk

αjej,∀j ∈ Mk

⎫⎬⎭ .

Letmk := |Mk| ≤ t. For each I ⊂ T set

DI = {
(k1, . . . , kt) ∈ DT ; ki > 0,∀i ∈ I, ki = 0,∀i ∈ T \ I}

�I = DI ∩ Nt .

We also set DT = �T . For each I ⊂ T , there is a subsetWI ⊂ {0, . . . ,w} such that

DI =
⋃
k∈WI

Rk .

Suppose a ∈ Y(F) is such that a ∈ E i if and only if i ∈ I. Then we have

Ja,ψ
(
s; F
) = p−(m−|I|)

∫
V ′
F

∏
i∈I

|zi|Ni(h1)s1+···+Ni(hk)sk+Ni(h0)+νi−1
∏
i∈I

|dzi|

with V ′
F the set of all (zi)i∈I ∈ p|I| satisfying for 1 ≤ j ≤ l∑

i∈I
Ni(fj)vF(zi) ≤

∑
i∈I

Ni(gj)vF(zi).

Then

Ja,ψ(s; F) = p−(m−|I|)(1 − p−1)|I|
∑

(k1,...,kt)∈�I

q−∑t
j=1 kj(Ni(h1)s1+···+Ni(hk)sk+Ni(h0)+νi)

=
∑
k∈WI

p−(m−|I|)(1 − p−1)|I|
∑

(k1,...,kt)∈Rk∩Nt

q−∑t
j=1 kj(Nj(h1)s1+···+Nj(hk)sk+Nj(h0)+νj)

as DI = ∪k∈WIRk . As

Rk ∩ Nt =
⎧⎨⎩∑

j∈Mk

αjej;αj ∈ N,∀j ∈ Mk

⎫⎬⎭
we have

Ja,ψ(s; F) =
∑
k∈WI

p−(m−|I|)(1 − p−1)|I|
∏
j∈Mk

q−(Aj .s+Bj)

1 − q−(Aj .s+Bj)

with
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Aj =
t∑

i=1
qjiNi

Bj =
t∑

i=1
qji(Ni(h0) + νi),

and

Ni = (Ni(h1), . . . ,Ni(hk)).

So if we set cF ,k = cF ,I and Ik = I if k ∈ WI , for every non-archimedean local field F
where the resolution has good reduction, we have

Zψ(s; F) =
w∑

k=0
(q − 1)|Ik |q−mcF ,k

∏
j∈Mk

q−(Aj .s+Bj)

1 − q−(Aj .s+Bj)
.

In the situation where the resolution is not necessarily of good reduction, following the
argument of Proposition 3.3 of [10], one proves that there exists a finite set BF such that
for every b ∈ BF there is an associated subset Ib ⊂ T and an integer eb such that

Zψ(s; F) =
∑
b∈BF

∑
k∈WIb

(q − 1)|Ib|q−m
∏
j∈Mk

q−eb
(
Aj .s+Bj

)

1 − q−
(
Aj .s+Bj

) . (4)

Application to some volume computations

Let F be a finite extension of Qp with ring of integersOF and |.|F its normalized absolute
value. We fix a uniformizer �F for F . Let q be the size of the residue field of F . For x =
(x1, · · · , xn) ∈ (F×)n, and α = (α1, · · · ,αn) ∈ Rn, we define vF(x) = (vFx1, . . . , vFxn),
and |x|αF = ∏

i |xi|αiF . We define volF and volFn , to be the normalized Haar measure on
F , and on Fn, respectively. If k = (k1, . . . , kn) ∈ Zn, and α ∈ F is nonzero, we set αk =(
αk1 , . . . ,αkn

)
; in particular, � k

F =
(
�

k1
F , . . . ,� kn

F

)
.

Let X = (X1, · · · ,Xn) and Y = (Y1, · · · ,Ym), and let fi, gi ∈ Z[X;Y ], 1 ≤ i ≤ k, be
polynomials. For each x ∈ On

F , define a set

VF(x) = {y ∈ Om
F ; vF(fi(x; y)) ≤ vF(gi(x; y)), 1 ≤ i ≤ k}.

We will assume that VF(x) is F-round in that it is invariant under the action of units of
the local field, i.e., VF(x) = VF(x′) if vF(x) = vF(x′). With abuse of language, when we say
V , we mean the assignment that takes an extension F of Qp and an element x ∈ On

F , and
returns the set VF(x). We will call V round if for all F , VF(x) is F-round.

Definition 4. Let α = (α1, · · · ,αn) ∈ Rn, � ∈ N, and P ∈ R[X1, . . . ,Xn] with positive
coefficients. We say V is (�,α,P, F)-narrow, if for all x ∈ (OF \ {0})n we have

volFm(VF(x)) ≤ P(vF(x))q−�|x|αF .

Now, here is the theorem:

Theorem 8. Suppose there is α = (α1, · · · ,αn) ∈ Rn, � ∈ N, P ∈ R[X1, . . . ,Xn] with
positive coefficients, and an infinite set of primes P such that for all p ∈ P the set V is
(�,α,P,Qp)-narrow. Then V is (�,α,P,Qp)-narrow for almost all primes p.
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In the statement of the theorem ‘almost all’ means all but possibly finitely many.

Proof. Let F = Qp for p ∈ P . In order to prove the theorem, we consider the following
integral:

ZV (s) =
∫
On

F

volFm(VF(x))|x|s dx

= (
1 − p−1)n ∑

k∈Zm≥0

volFm
(
VF
(
�

k
F

))
p−|k|p−k.s.

On the other hand, we write

ZV (s) =
∫
Om+n

F ;v(fi(x;y))F≤v(gi(x;y))F ,1≤i≤k
|x1|s1 . . . |xn|sn |dx| |dy|.

This is a multivariable cone integral.
Since the set P is infinite, we may assume that p is good in the sense of section

‘Resolutions with good reduction’. By section ‘Multivariable cone integral’, we have

ZV (s) =
w∑

k=0
(p − 1)|Ik |p−m−ncF ,k

∏
j∈Mk

p−(Aj .s+Bj)

1 − p−(Aj .s+Bj)

with non-negative integer vectors Aj and non-negative integers Bj. Regrouping terms
gives

ZV (s) =
∑
k

p−k.s
w∑
i=0

(p − 1)|Ii|p−m−ncF ,i

⎛⎝∏
j∈Mi

+∞∑
αj=1

⎞⎠∑
j αjAj=k

p−αjBj

where the notation⎛⎝∏
j∈Mi

+∞∑
αj=1

⎞⎠∑
j αjAj=k

means we have only considered those αj’s that satisfy
∑

j αjAj = k. Comparing the two
expressions for ZV gives

volFm
(
VF
(
�

k
F

))
= (

1 − p−1)−n p|k|
w∑
i=0

(p − 1)|Ii|p−m−ncF ,i

⎛⎝∏
j∈Mi

+∞∑
αj=1

⎞⎠∑
j αjAj=k

p−αjBj

=
w∑
i=0

cF ,i
(
1 − p−1)−n p|k|(p − 1)|Ii|p−m−n

⎛⎝∏
j∈Mi

+∞∑
αj=1

⎞⎠∑
j αjAj=k

p−αjBj .

We note that if |Ii| > m + n, then cF ,i = 0. As a result, we may write

volFm
(
VF
(
�

k
F

))
=

w∑
i=0

cF ,i
(
1 − p−1)−n p|k|(p − 1)|Ii|p−m−nPi,k

(
p−1)

with Pi,k(X) a polynomial with positive integral coefficients which depends only on i and
k, and not on the choice of the field F . Furthermore, the number of terms of Pi,k depends
on k in a polynomial fashion. In particular, there are no cancellations between the terms.
These observations imply that V is (α, F)-narrow if and only if for each i = 0, . . . ,w, we
have some polynomial with positive coefficients P such that

cF ,i
(
1 − p−1)−n p|k|(p − 1)|Ii|p−m−nPi,k

(
p−1) ≤ P(k1, . . . , kn)p−�p−α1k1−···−αnkn .
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This is true if and only if

cF ,ip|k|p|Ii|−m−nPi,k
(
p−1) ≤ P(k1, . . . , kn)p−�p−α1k1−···−αnkn .

Proposition 4.9 combined with Proposition 4.13 of [10] implies that, after letting P
become larger in p, this inequality is true if and only if

pm+n−|Ii|p|k|p|Ii|−m−nPi,k
(
p−1) ≤ P(k1, . . . , kn)p−�q−α1k1−···−αnkn ,

which is equivalent to

p|k|Pi,k
(
p−1) ≤ P(k1, . . . , kn)p−�p−α1k1−···−αnkn .

Since p is infinite, we can let p → ∞, and as a result, an inequality of this nature is valid
if and only if it is true for degree reasons. The theorem now follows.

Remark 5. Here is a variation of the above theorem which may be useful in other con-
texts. There is a finite set S of primes such that every p /∈ S has the following property: If
there is α ∈ Rn, � ∈ N, and P ∈ R[X1, . . . ,Xn] such V is (�,α,P, F)-narrow for every F
finite extension of Qp, then for all q /∈ S, V is (�,α,E)-narrow for every E finite extension
of Qq.

The proof of Theorem 3
Tauberian theorem

We will use the Tauberian theorem of [5], Appendix A, in the following form:

Theorem 9. Let

F(s) =
∞∑
n=1

an
ns

be a Dirichlet series with an Euler product

F(s) =
∏
p

Fp(s).

Suppose each Euler factor is of the form

Fp(s) = 1 +
∑
l≥1

al(p)
pls

where a1(p) = k, a positive integer independent of p, and al(p) are non-negative real
numbers. Suppose there is a δ0 satisfying 1

2 ≤ δ0 < 1 such that for σ > δ0, we have∑
p

∑
l≥2

al(p)
pσ

< +∞.

Then there is a polynomial P of degree k − 1 such that for all ε > 0∑
n≤B

an = BP(logB) + Oε

(
Bδ0+ε

)
as B → ∞.

Outline of the proof of Theorem 3

If p is unramified in K , we write

pOK = p1p2 . . . pr ,
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where each pi is a prime ideal inOK , and let

fi = f (pi/p)

denote the residue degree of the prime pi.
Then

OK ⊗Z Zp =
∏
i
Opi

where Opi is the ring of integers of the completion of K at the prime pi, and the isomor-
phism class ofOK ⊗ZZp is determined by the multi-set fp = {f1, · · · , fr}, called the type of
p. The type of a prime is always a partition of n. We typically write the type of an unrami-
fied prime p in the form fp = 1v2wre11 · · · rekk , where 1 < 2 < r1 < · · · < rk are the distinct
residue degrees, and v,w, e1, · · · , ek are the number of times each of these appears.
The starting point of the proof of the theorem is the following proposition:

Proposition 1. If p is an unramified prime of type fp = 1v2wre11 · · · rekk , then

a1(p) = w +
(
v
2

)
;

in particular, a1(p) depends only on the type fp.

We will present the proof of this proposition in section ‘Proof of Proposition 1’. Given
a partition f as above, we let

a(f ) = w +
(
v
2

)
.

Then we observe that the condition that p has type 1u2wre11 · · · rekk is Chebotarev condi-
tion in G = Gal (E/Q) in the sense that there are a number of conjugacy classes Ci ⊂ G,
1 ≤ i ≤ t, such that p has type 1u2wre11 · · · rekk if and only if(

E/Q

p

)
= Ci

for some i. Here,
(
E/Q
p

)
is the Frobenius conjugacy class of p in G. Next, we use the

following fact:

Proposition 2. Let L/K be a Galois extension of number fields with Galois group H =
Gal (L/K). Let C ⊂ H be a conjugacy class and define

FC(s) =
∏

p unramified( L/K
p
)
=C

(1 − N(p)−s)−1.

Then FC(s) converges absolutely for 	s > 1. Furthermore, FC(s)|H| has an analytic con-
tinuation to a meromorphic function on an open set containing 	s ≥ 1 with a unique pole
of order |C| at s = 1.

We will present the proof of this proposition in section ‘Proof of Proposition 2’. Now,
suppose a partition f of n is given. On the one hand, f can be type of a prime p, and on
the other hand, p determines a conjugacy class in Sn. It is a well-known fact that if p has
type f in K/Q, then

(
E/Q
p

)
has cycle type f . Given a type f , we define b(f ) be the number
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of elements of G of cycle type f in Sn. Combining everything done so far, one concludes
that the function f (s) in the statement of Theorem 3 has a pole at s = 1 of order

r := 1
|G|

∑
f type

a( f )b( f ). (5)

We finally have the following statement:

Lemma 1 (B. Srinivasan). We have r = r2.

Proof of Lemma. We define a function α on G as follows. If g is of cycle decomposition
type f , we set α(g) = a(f ). We note that the expression on the right is equal to 〈α,ψ〉
where ψ is the trivial character of G, and 〈, 〉 is the inner product on the space of class
functions of G. The function α is character of the permutation representation π of G on
the set of 2-element subsets of {1, 2, . . . , n}. In fact, if g is of type f as above, then it is
clear that it fixes

(u
2
) + w 2-element sets. Then the expression on the right-hand side of

(5) is equal to the multiplicity of the trivial representation in π . For every orbit of G on
the set of 2-element subsets of {1, 2, . . . , n}, we get a copy of the trivial representation in
π , and these are the only copies of the trivial representation in π . It is easily seen that if G
is transitive the number of such orbits is equal to r2.

Theorem 3 now follows from a standard Tauberian argument.

Proof of Proposition 1

We first give an overview of the proof of Proposition 1. A result of [14] shows that deter-
mining a1(p) is equivalent to a counting problem about certain lower-triangular matrices.
By Lemma 5.18 of [3] Op := OK ⊗Z Zp is a Zp-module of rank n. By choosing a special
type of basis for Op and then applying elementary row operations, the lower-triangular
matrices we consider will be of a relatively simple form.We then break up the overall com-
putation of a1(p) into a few parts depending on the type of p. The proof of Proposition 1
depends on the following lemmas.

Lemma 2. Let L/Qp be an extension of degree n. If n > 2, the ring of integersOL of L does
not have any multiplicatively closed sublattices of index p that are Zp modules of rank n.

This result shows that in order to determine a1(p) in general, we need only determine
primes of a restricted type.

Lemma 3. Let p be a prime of type fp = 1v2wre11 · · · rekk , and let q be a prime of type
fq = 1v2w. Then a1(p) = a1(q).

We will determine a1(p) for primes of this type by considering primes of type 1v and
primes of type 2w separately. The next lemma follows directly from [19] Proposition 1.1.

Lemma 4. Let p be a prime of type fp = 1v. Then a1(p) = (v
2
)
.

Lemma 5. Let p be a prime of type fp = 2w. Then a1(p) = w.
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The proof of Proposition 1 will follow from combining these results in the following
way.

Lemma 6. Let p be a prime of type fp = 1v2w. Then a1(p) = (v
2
)+ w.

We now explain how to interpret a1(p) in terms of a counting problem about lower-
triangular matrices. The first observation is that a1(p) depends only on Op and not on
K . We choose any ordered basis of this ring, {v1, . . . , vn} and represent a subring L of Op
by a matrix M where the ith column corresponds to vi and L is generated by the rows of
M. The entries of this matrix are in Zp. By elementary linear algebra, a version of Gauss-
Jordan elimination over Zp, we are free to suppose thatM is lower triangular. Multiplying
a row of M by a unit in Zp does not change the subring generated by M. Therefore, we
may suppose that the (i, i) entry ofM is equal to pki for some ki ≥ 0.
LetM(p) denote the set of all lower triangular matrices whose rows generate a subring

of Op with respect to this ordered basis. We can now present a slight modification of a
proposition of Grunewald, Segal and Smith [14].

Proposition 3. For every prime p,

ηK ,p(s) = (
1 − p−1)−n

∫
M∈M(p)

|x11|s−n|x22|s−(n−1) · · · |xnn|s−1|dv|,

where |dv| is the additive Haar measure of the p-adic lower triangular matrices.

The index of a subring L ⊆ Op is the determinant of any matrixM ∈ M(p) generating
L. By definition, a1(p) is equal to the p−s coefficient of the integral in this proposition. We
therefore need only consider matrices M ∈ M(p) where exactly one xii is equal to p and
all others are equal to 1.
Suppose the rows of M generate a subring of Op of index p and suppose that xjj = 1

for some j. By adding multiples of the jth row of M to its other rows, we can set each of
the nondiagonal entries in column j to 0 without changing the subring generated by this
matrix. In fact, by applying a version of Gauss-Jordan elimination, we can simultaneously
accomplish this for each column which has its diagonal entry equal to 1. This gives a
matrix that is diagonal except for a single column that may have nonzero entries below
the diagonal. We give an example below:⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 p 0 0
0 0 a1 1 0
0 0 a2 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Suppose the rows of M generate a subring of Op of index p, xjj = p for some j,
and every other column of M has a single 1 on the diagonal and is 0 otherwise. Let
{a0, a1, a2, . . . , ap−1} be some choice of representatives for Zp/pZp with a0 = 0 and
a1 = 1. By adding multiples of row j to the rows below it, we may suppose that the
entries xj+1,j, xj+2,j, . . . , xn,j are all elements of {a0, . . . , ap−1}. These representatives are
uniquely defined by the subring, but the elements of a matrix generating this subring can
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be changed by an arbitrary element of pZp. We note that the normalized volume of pZp
is p−1.
This reduction gives a map from subrings of Op of index p given by a matrix M with

xjj = p and all other diagonal entries equal to 1 to tuples
(
xj+1,j, xj+2,j, . . . , xn,j

)
where each

xi,j ∈ {a0, . . . , ap−1}. Let a1(p, j) be the size of the image of this map. In the case j = n, if
the matrix M with diagonal entries all equal to 1 except for xn,n = p and all other entries
equal to 0 generates a subring of Op of index p, then we define a1(p, n) = 1. Otherwise,
a1(p, n) = 0. This description along with Proposition 3 shows the following.

Lemma 7. We have a1(p) = ∑n
j=1 a1(p, j).

The particular basis that we choose for Op has a major effect on the multiplication of
rows of the matrix generating a subring. Our next goal is to pick a convenient basis for
this module.
Suppose that p is an unramified prime of type fp = 1v2wre11 · · · rekk where the ri are dis-

tinct and greater than 2. Each residue degree ri that occurs contributes ri basis elements.
We choose these basis elements forOp/fOp to be 1, y, y2, . . . , yri−1, where f (y) is an irre-
ducible polynomial of degree ri over Zp. We get ei such groups of ri basis elements for
each ri, including w blocks of two basis elements {1, y} coming from primes of residue
degree 2, and v basis elements {1} corresponding to primes of residue degree 1.We choose
these basis elements to be orthogonal to each other unless they correspond to the same
irreducible polynomial.
The ordering of the basis elements has a large effect on the form of the lower trian-

gular matrices in M(p). We order this basis so that elements corresponding to a single
irreducible polynomial are given left to right by increasing powers of y. The ei sets of ri
columns corresponding to the primes of residue degree ri are ordered so that they occur
in adjacent blocks. We order these groups of ei blocks of ri columns from left to right
by decreasing values of ri, except that we switch the positions of the block of v columns
corresponding to primes of residue degree 1, and the w pairs of columns corresponding
to primes of residue degree 2. We give an example for a lower triangular matrix corre-
sponding to a prime of type 122131. The first three columns correspond to basis elements
corresponding to an irreducible cubic, followed by two columns corresponding to linear
polynomials, and finally by a pair of columns from an irreducible quadratic. In the picture
below, variable names are chosen to emphasize the grouping of columns:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 0 0 0 0 0 0
a2,1 a2,2 0 0 0 0 0
a3,1 a3,2 a3,3 0 0 0 0
a4,1 a4,2 a4,3 b4,4 0 0 0
a5,1 a5,2 a5,3 b5,4 b5,5 0 0
a6,1 a6,2 a6,3 b6,4 b6,5 c6,6 0
a7,1 a7,2 a7,3 b7,4 b7,5 c7,6 c7,7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We now briefly explain how to take the product of two rows of such a matrix. A row
vector corresponds to a linear combination of basis elements. We can take two vectors,
take the product of the corresponding elements in Op and then express the result as a
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linear combination of our chosen basis. We denote the product corresponding to rows v
and w by v ◦ w.
We now give the proof of Lemma 2 on the non-existence of certain kinds of multiplica-

tively closed sublattices.

Proof of Lemma 2. Let R be a multiplicatively closed sublattice of OL of index p. Then
clearly pOL ⊂ R, and consequently

pOL ⊂ R ⊂ OL.

This means (R/pOL) ⊂ (OL/pOL). Now, OL/pOL is a field of order pn, and R/pOL is
a subring, not necessarily with a multiplicative identity, of OL/pOL. It is also clear that
R/pOL is multiplicatively closed. Any multiplicatively closed subset of a finite field does
contain the identity element because the multiplicative group of the field is cyclic, so
R/pOL is also a field.
Since the index is of R inOL is p the number of elements of R/pOL is pn−1. Thus, if Fpk

is the finite field with pk elements, we have Fpn−1 ⊂ Fpn . This implies either n − 1 = 0 or
n − 1 divides n. In the first case, we get n = 1 and in the second case, we get n = 2. Any
larger value of n gives a contradiction.

Corollary 1. Let p be a prime of type fp = r with r ≥ 3. Then a1(p) = 0.

These previous two lemmas allow us to compute a1(p) by considering a much smaller
class of lower triangular matrices.

Proof of Lemma 3. We choose the ordered basis of Op described above. Suppose that
column j corresponds to a basis element coming from a prime of residue degree k > 2.
We claim that the diagonal element of this column must be equal to 1.
We argue by contradiction. Suppose that xjj = p. By row-reducing, wemay suppose that

the only nonzero elements of this matrix off the diagonal are in column j. Basis elements
that do not correspond to the same irreducible polynomial are orthogonal. Suppose that
the columns corresponding to the same irreducible polynomial as the basis element of
column j are labeled by c1, . . . , ck and let v1, . . . , vk be the rows containing the diagonal
entries of these columns. The only nonzero entries of the vector vi ◦ vj are in positions
corresponding to the columns c1, . . . , ck . Therefore, vi ◦ vj is a linear combination of the
rows v1, . . . , vk . Taking the span of these rows and projecting onto the coordinates cor-
responding to the columns c1, . . . , ck gives a multiplicatively closed sublattice of a ring
corresponding to a degree k extension of Qp, which is impossible by the argument of
Lemma 2.
Therefore, every column corresponding to a basis element coming from a prime of

residue degree greater than 2 has its diagonal entry equal to 1 and does not contribute to
a1(p).

Proof of Lemma 5. A subring ofOp of index p is generated by a lower triangular matrix
M with exactly one diagonal element equal to p and all others equal to 0. We choose the
basis of Op so that columns occur in pairs with each pair corresponding to two basis
elements {1, y} of Op/fOp where f (y) is an irreducible quadratic polynomial over Fp and
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the column corresponding to 1 occurs first. When p �= 2, we can choose f (y) = y2 − b
with b a positive integer which is not a square modulo p. We focus on this case but note
that for p = 2, we can take f (y) = y2 + y+ 1 and the rest of the argument is similar. Basis
elements occurring in distinct pairs are orthogonal to each other.
We will first show that it is not possible that the column with diagonal entry p cor-

responds to a basis element 1 for some quadratic polynomial. Suppose that it is and let
the row which contains this diagonal element be v1. Let v2 be the row which has diago-
nal element in the column corresponding to the basis element y for the same polynomial.
Suppose the entry in row v2 in the column with diagonal entry p is a ∈ Zp.
We will now give a first example of an argument that will be important throughout the

rest of this section. SupposeM spans a sublattice of index p and has diagonal entries equal
to 1 except for a single column in which the corresponding entry is p. We note that all
vectors in the lattice spanned byM that are zero except in this entry must lie in pZp since
otherwise we could row reduce M and see that the index of this lattice is actually 1. We
will use this fact to show that certain columns cannot have the single diagonal entry equal
to p.
We see that v2 ◦ v2 has two nonzero entries: 2a in the column corresponding to y and a

b + a2 corresponding to 1, since y2 is bmodulo f (y). SinceM generates a multiplicatively
closed sublattice, and all other entries in the column with diagonal entry in the row v2 are
0, and so v2 ◦ v2 − 2av2 must be in the row span of v1. So there must exist some α1 ∈ Zp
such that

pα1 = b + a2 − 2a2 = b − a2.

This implies that b − a2 ∈ pZp, contradicting the fact that b is a nonsquare modulo
p. Therefore, we may suppose that for each column corresponding to 1 for a quadratic
polynomial, the diagonal entry is 1.
There are w columns which correspond to basis elements y for distinct irreducible

quadratic polynomials.Wewill show that if the diagonal element of such a column is equal
to p then all other entries of this column are in pZp. Applying elementary row operations
together with Lemma 7 completes the proof.
We suppose that row v1 has its diagonal entry equal to p and that this column corre-

sponds to a basis element y for some irreducible quadratic polynomial. Let v2 denote the
row with diagonal entry corresponding to the basis element 1 for the same quadratic poly-
nomial. Note that v2 is above v1 in this matrix and has a single nonzero entry equal to 1.
We will show that it is not possible for there to be a row u with an entry that is a unit in
the column with diagonal entry p.
Suppose that there is such a row with an entry a ∈ Up in this column and consider u◦v1.

This has a single nonzero entry equal to a in the column corresponding to the diagonal
entry p. The argument above shows that such a matrix actually generates Op and not a
subring of index p, which is a contradiction. We have shown that there are no units in the
column with diagonal entry p, completing the proof.

Proof of Lemma 6. We continue with the notation of the previous proof. Again, we con-
sider p �= 2 and note that when p = 2 we choose f (y) = y2 + y + 1 for our irreducible
quadratic polynomials and the argument is very similar.



Kaplan et al. Research in theMathematical Sciences  (2015) 2:6 Page 25 of 57

We choose the basis elements of Op so that the first v columns correspond to primes
of residue degree 1 and the last 2w columns occur in pairs and correspond to primes of
residue degree 2. The proof of the previous lemma shows that matrices with diagonal
entry equal to p in a column corresponding to a prime of residue degree 2 contribute w to
a1(p). We now focus only on the entries of the columns of this matrix which correspond
to primes of residue degree 1.
Suppose xjj = p and that this column corresponds to a prime of residue degree 1. Since

L is a subring and not just a multiplicative sublattice, it must contain the identity element
of Op, and we see that there must be some entry in this column that is a unit. In fact, we
will show that there must be a unique entry in this column that is a unit. Each of the v− j
rows directly below this diagonal entry can contain any unit in 1+pZp, but no other units
can occur. Applying Lemma 7 shows that a1(p) = w+∑v

j=1(v− j) = w+ (v2), completing
the proof.
We first note that we cannot have two units in rows corresponding to primes of degree

1 in the column with diagonal entry equal to p. If we did, taking v1 ◦ v2 for these two
rows would give a vector with a single nonzero entry which is a unit in the column with
diagonal entry p. This is a contradiction.
Suppose there is a row with diagonal entry corresponding to an irreducible quadratic

polynomial which has a unit entry in the column with diagonal entry p. Let v1 be the row
corresponding to the basis element 1 for this polynomial and v2 be the row corresponding
to the basis element y. Suppose the entry in the column with diagonal entry p is a in row
v1 and c in row v2. By assumption, at least one of a, c is a unit. We show that this is a
contradiction.
We see that v1 ◦ v1 − v1 has an entry of a2 − a in the column with diagonal entry p and

every other entry of this vector is zero. So either a ∈ pZp or a ∈ 1 + pZp. We see that
v2 ◦ v2 − bv1 has an entry c2 − ab in the column with diagonal entry p and every other
entry is zero. If a ∈ 1+ pZp then since b is not a square modulo p, we get a contradiction.
If a ∈ pZp, then we have c2 ∈ pZp, which is also a contradiction.

Combining Lemma 3 and Lemma 6 completes the proof of Proposition 1.

Proof of Proposition 2

To fix notation, we give a quick review of basic class field theory [25]. Let K be a number
field, and let JK be the free group generated by the finite primes of K . There is a natural
map ι : K× → JK . A modulus, called a cycle in [25], is a finite formal product of primes
of K with non-negative exponents

∏
p p

np . If m = ∏
p p

np is a modulus, and x ∈ K , we
write x ≡ 1 mod m to mean:

• For each finite p|m, x ≡ 1 mod pnp ;
• for each real prime ν|m, we have xv > 0.

If S is a finite set of primes, we let JSK be the subgroup of J generated by the primes not
in S. For a modulusm, we let JmK be JSK where S is the set of finite primes that dividem. Set

Km := ι−1 (JmK )
and

Km
1 := {x ∈ Km; x ≡ 1 mod m}.
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Let PmK = ι
(
Km
1
)
and define

CmK = JmK /PmK .

This class group is finite. A congruence subgroup modulo m is a subgroup Hm of JmK
which contains PmK . We recall the following two main theorems of class field theory:

Theorem 10 (Artin Reciprocity Law). For L/K an Abelian extension of number fields,
there is a modulus m divisible by all the ramified primes of L/K such that the sequence

1 → PmK .NL/K
(
JmL
)

↪→ JmK → Gal (L/K) → 1

is exact.

Theorem11. For any congruence subgroupHm, there is a unique Abelian extension L/K
such that L is the class field of K of the congruence class group JmK /Hm.

We have the following lemma:

Lemma 8. Let K be a number field, m a modulus, and Hm a congruence subgroup. If C
is a coset of JmK /Hm, we set

fC(s) =
∏
p∈C

(1 − N(p)−s)−1.

Then fC(s) is holomorphic for 	s > 1. Furthermore, then gC(s) = fC(s)r, r = |JmK /Hm|,
has an analytic continuation to an open set containing 	s = 1 with a unique pole at s = 1.
Assuming GRH, s = 1 is the only pole for 	s > 1/2.

We do not need the additional convergence provided but assuming GRH to prove
Proposition 2, but include this statement to give a better idea of the analytic behavior of
this function.

Proof. Let G = JmK /Hm. Then

log gC(s) = |G| log fC(s)

= −|G|
∑
p∈C

log(1 − N(p)−s)

= |G|
∑
p∈C

N(p)−s + |G|
∑
p∈C

∑
m≥2

1
m
N(p)−ms.

Write

h(s) = |G|
∑
p∈C

∑
m≥2

1
m
N(p)−ms.

This is holomorphic for 	s > 1/2. We then write

log g(s) − h(s) =
∑
p

∑
χ∈Hom(G,S1)

χ(p)χ
(
C−1)N(p)−s

=
∑

χ∈Hom(G,S1)

χ
(
C−1)∑

p
χ(p)N(p)−s
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=
∑

χ∈Hom(G,S1)

χ(C−1)

⎛⎝log
∏
p

(1 − χ(p)N(p)−s) −
∑
p

∑
m≥2

1
m

χ(p)mN(p)−ms

⎞⎠
= log

⎛⎝ ∏
χ∈Hom(G,S1)

L(s,χ)χ(C−1)

⎞⎠+ H(s)

with H(s) a function that is holomorphic for 	s > 1/2. Hence

gC(s) =
∏

χ∈Hom(G,S1)

L(s,χ)χ(C−1)eH(s)+h(s).

The lemma now follows from results on zero free regions of L-functions, e.g., Ch. 2
of [23].

Next, we can prove Proposition 2:

Proof of Proposition 2. If L/K is Abelian, this follows from the above lemma and class
field theory. In general, let σ ∈ C, and let H = 〈σ 〉. Let M = LH . Note that L/M is an
Abelian Galois extension. Let

FH(s) =
∏
p∈S

(1 − NM(p)−s)−1

where S is the set of primes of LH satisfying

•
(
L/M
p

)
= σ ;

• f (p/p ∩ OK ) = e(p/p ∩ OK ) = 1.

We will also consider

F ′
H(s) =

∏
p∈S′

(1 − NM(p)−s)−1

where S′ is the set of primes p ofM such that
(
L/M
p

)
= σ . We know from what we proved

before that F ′
H(s)|H| has a simple pole at s = 1. By the computations of Ch. V, (section 6 of

[25]), we know that F ′
H(s)/FH(s) is holomorphic for 	s > 1/2. Thus FH(s)|H| has a simple

pole at s = 1 and otherwise holomorphic in an open set containing 	s ≥ 1.
Next, it follows from the reduction step of the proof of the Chebotarev density theorem,

Theorem 6.4 of [25], that

FH(s) =

⎛⎜⎜⎜⎝ ∏
pprime of K( L/K

p
)
=C

(1 − N(p)−s)−1

⎞⎟⎟⎟⎠
|G|

|C|·|H|

= (FC(s))
|G|

|C|·|H| .

The proposition is now immediate.

Some remarks on r2
Suppose we have a finite group G acting on a finite set A. Let O1, . . . ,Or be the distinct
orbits of the action of G. Then G has an induced representation on the vector space

V = ⊕a∈AC.
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We skip the proof of the following elementary lemma:

Lemma 9. We have

dimVG = r.

The lemma has the following consequence:

Proposition 4. We have

1. for n ≥ 3, r2(Sn) = r2(An) = 1;
2. r2(Cn) = r2(Dn) = �n/2�.

Proof. For the first part, we show that An acts transitively on the two element subsets of
{1, . . . , n}. For this, we notice that for three distinct elements a, b, c, the even permutation
(a c)(b a) maps the set {a, b} to the set {b, c}.
For Cn and Dn, write n = 2k or n = 2k + 1, depending on the parity of n. Suppose

Cn = 〈(1 2 . . . n)〉. It is easy to see that for each 1 ≤ i ≤ k, the set

Oi = {{a, b}; 1 ≤ a, b ≤ n, b − a ≡ i mod n}

is an orbit of the action of Cn on the set of two element subsets of {1, . . . , n}. Further-
more, these are all the possible orbits. To see the result forDn, we consider the generators
(1 2 . . . n), σ , with

σ = (1 n)(2 n − 1) . . . (k k + 1).

We observe that each orbit Oi is invariant under the action of σ .

For the case where n is a prime number, we have the following proposition:

Proposition 5. Let G be a transitive subgroup of Sp, p prime. Then one of the following
two possibilities occurs:

1. G is doubly transitive and r2(G) = 1;
2. G is solvable in which case p | |G| and r2(G) = gcd

( |G|
p , p−1

2

)
.

Proof. A theorem of Burnside [4,22] says that a transitive subgroup of Sp is either doubly
transitive or solvable. If the action ofG is doubly transitive, then r2(G) = 1. IfG is solvable,
a classical theorem of Galois ([15], p. 163)1 asserts that G contains a unique normal sub-
group C of order p, and is contained in the normalizer of C. Furthermore, G/C is a cyclic
group of order dividing p− 1. Up to conjugation, we may assume that C = 〈(1 2 . . . p)〉.
The normalizer of C is the split extension of the group C by the cyclic group Z of order
p − 1 consisting of the elements σk , 1 ≤ k ≤ p − 1 identified by

σk(x) ≡ kx mod p,

for x ∈ {1, . . . , n}; that the group Z is cyclic is the theorem of the primitive root in elemen-
tary number theory. Let σg be a generator of Z. SinceG is transitive,G is equal to C� 〈σ j

g〉
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for some j|p−1. By the description of orbits of C on the two element subsets of {1, . . . , p},
we just need to know the number of orbits of 〈σ j

g , σ
p−1
2

g 〉 on (Z/pZ)∗. The latter is equal to

|(Z/pZ)∗|
|〈σ j

g , σ
p−1
2

g 〉|
= p − 1

|〈σ gcd
(
j, p−1

2

)
g 〉|

= gcd
(
j,
p − 1
2

)
.

The proof of Theorem 6
Outline of the proof of Theorem 6

Let d ∈ N, and let R = Zd equipped with componentwise addition and multiplication.
Namely for v = (v1, . . . , vd),w = (w1, . . . ,wd) ∈ Zn, we set

v + w = (v1 + w1, . . . , vd + wd),

β(v,w) := v ◦ w = (v1w1, . . . , vdwd).

To emphasize the dependence ofMp(β) from Definition 2 on d, we write it asMd(p).
For d = 2, 3, 4, we will give an explicit description of Md(p) in sections ‘Orders of Z3’,
‘Orders of Z4’, and ‘Orders of Z5’.

Definition 5. If k = (k1, . . . , kd) is a d-tuple of non-negative integers, we set

Md(p; k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
M =

⎛⎜⎜⎜⎜⎜⎝
pk1 0 . . . 0

x21 pk2 0
...

...
...

. . . 0
xd1 . . . xd d−1 pkd

⎞⎟⎟⎟⎟⎟⎠ ∈ Md(p)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

We define μp(k) to be the d(d−1)
2 -dimensional volume ofMd(p; k).

It is easy to see that

ζ<
Zd ,p(s) =

∑
k=(k1,...,kd)

ki≥0,∀i

p
∑d

i=1(d−i)kip−s
∑d

i=1 kiμp(k). (6)

Intuitively, what this means is that we have multiplied the rows by units to make the
diagonal entries a p-power. We note that this does not change the lattice generated by the
rows.
Warning. The volume ofMd(p; k) are used to count subrings of finite index in Zd, and

orders of finite index in Zd+1. The reader should be careful about the distinction between
subrings and orders.
We have the following lemma which is equivalent to Lemma 4 given during the proof

of Proposition 1.

Lemma 10. We have

a<
Zd (p) =

(
d + 1
2

)
.
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For a proof, see [19] Proposition 1.1. The quantity a<
Zd (p) is equal to fd+1(p) of that

reference. By Theorem 9, Theorem 6 is proved if we can show the following statement:
there is an ε > 0 such that for 	(s) = σ > 1 − ε we have

∑
p

∞∑
k=2

a<
Zd (pk)
pkσ

< ∞.

Since by Equation (6)

a<
Zd (pk) =

∑
k=(k1,...,kd)∑

i ki=k

p
∑

i(d−i)kiμp(k),

in order to prove the lemma, we need to estimate μp(k). The relevant computations are
performed in sections ‘Orders of Z3’, ‘Orders of Z4’, and ‘Orders of Z5’.
The results are stated in Theorems 12, 13, and 14. These theorems form part 1 of

Theorem 6.
The proof of part 2 of Theorem 6 appears in section ‘Orders of Zd for d > 5’.

General facts about volumes

We begin with some lemmas that allow us to bound the volumes of certain sets that arise
in our volume computations. Let Up denote the set of units of Zp and vp(·) be the p-adic
valuation. Recall that for α,β ∈ Zp, if vp(α) �= vp(β) then vp(α − β) = min{vp(α), vp(β)}.

Proposition 6. For fixed y, z ∈ Zp, k ≥ 0, the volume of x ∈ Zp such that vp(xy− z) ≥ k
is at most p−(k−vp(y)).

Proof. We first note that for y = 1, the volume of x such that vp(x − z) ≥ k is p−k , since
we are just fixing the first k digits in the p-adic expansion of x to coincide with those of z.
Similarly, for any unit u ∈ Up, the volume of x such that vp(ux − z) ≥ k is p−k .
We see that if vp(z) < k and vp(y) > vp(z), then clearly vp(xy − z) = vp(z) < k for any

value of x. If vp(z) ≥ k, then vp(xy − z) ≥ k if and only if vp(xy) ≥ k which holds if and
only if vp(x) ≥ k − vp(y). This holds on a set of volume at most p−(k−vp(y)) if k ≥ vp(y)
and on a set of volume 1 if vp(y) ≥ k.
Now, if vp(z) < k and vp(y) ≤ vp(z) then we can write y = pvp(y)u for some unique unit

u ∈ Up, and z = pvp(y)z′ for some unique z′ ∈ Zp. We have vp(xy − z) ≥ k if and only if
vp(xu − z′) ≥ k − vp(y), which holds on a set of volume at most p−(k−vp(y)).

Proposition 7. For fixed z ∈ Zp, the combined volume of x, y ∈ Z2
p such that vp(xy−z) ≥

k is at most (k + 1)p−k.

Proof. If vp(y) ≥ k, then there are two cases. Either vp(z) ≥ k in which case any x will
work or vp(z) < k in which case no x works. So assume 0 ≤ vp(y) < k. Then given y with
l = vp(y), we need x such that x ∈ p−l(pkZp + z). So the total volume is

k−1∑
l=0

p−lvol (p−l(pkZp + z)) ≤ kp−k .
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Proposition 8. For any fixed z ∈ Zp, the combined volume of x, y ∈ Z2
p such that vp(x(y−

z)) ≥ k is at most (k + 1)p−k.

Proof. This proposition is very similar to the previous one. We have vp(x) ≥ k on a set
of volume p−k . Suppose that this does not hold and set vp(x) = m. We see that for any
fixed z, the volume of y such that vp(y − z) ≥ k − m is p−(k−m). Summing over the k
possible values ofm gives the result.

Proposition 9. Suppose z ∈ Zp, k, l ≥ 0 are given. Then the volume of x ∈ Zp such that

vp
(
x
(
x − pl

)
− z

)
≥ k

is bounded by 2p−�k/2�.

Proof. If there is no such x, then the volume is zero and there is nothing to prove.
Assume that the volume is nonzero. For simplicity of notation, let y = pl. If vp(t) ≥ k and
vp(x(x − y) − z) ≥ k, then x + t also satisfies the same inequality.
Given y and z modulo pk , we must determine the number of x modulo pk such that

x(x − y) − z ≡ 0 mod pk . If this number is N , the volume of our domain is N · p−k .
Suppose X,X + u are both solutions of the congruence

x(x − y) ≡ z mod pk .

This implies that u satisfies the congruence

u2 + u(2X − y) ≡ 0 mod pk .

We count the number of nonzero solutions u of this congruence equation.
If 2X − y ≡ 0 mod pk , then u2 ≡ 0 mod pk . This implies any solution u is of the form

a� k
2 �p

� k
2 � + ar+1pr+1 + · · · + ak−1pk−1.

There are at most pk−�k/2� choices for u. If not, then we write 2X − y ≡ psq mod pk

with s < k and (q, p) = 1.
We write u = prm mod pk . By assumption, (m, p) = 1 and r < k. Since

u (u + (2X − y)) ≡ 0 mod pk , (7)

we have u + (2X − y) ≡ 0 mod pk−r .
If 2r ≥ k, then r ≥ � k

2�, and as above there are at most pk−�k/2� choices for u.
If 2r < k, then s = r and Equation 7 implies that u and 2X − y match up in the first

k − r ≥ � k
2� digits of their p-adic expansions. This gives at most pk−� k

2 � ≤ p� k
2 � choices

for u. Multiplication by p−k gives the result.

We point out that in the most general possible case, it is not possible to improve this
result by more than a factor of 2. Suppose l ≥ �k/2�. Then vp(x) + vp

(
x − pl

) ≥ k if and
only if vp(x) ≥ �k/2�, which holds on a set of volume at most p−�k/2�. However, in some
cases, we can say something stronger.
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Proposition 10. Suppose z ∈ Zp, k, l ≥ 0 are given. Then there is a constant C, which
for odd p may be taken to be 6, such that the volume of x ∈ Zp satisfying

vp
(
x
(
x − pl

)
− z

)
≥ k

is bounded by Cp−(k−l) except when p = 2 and v2(z) = 2l − 2 < k. In this exceptional
situation:

1. If v2
(
z + 22l−2) ≥ k, the volume is bounded by 2−�k/2�, and this is the best bound

possible.
2. If v2

(
z + 22l−2) < k is odd, the volume is zero.

3. If v2
(
z + 22l−2) < k, the volume is bounded by

8
∣∣∣z + 22l−2

∣∣∣−1/2

2
2−k ,

where | . |2 is the 2-adic absolute value on Q2.

Proof. The proposition will have no content unless l < k. First, we consider the case
where p is odd. We recognize two basic cases:

1. If vp(z) ≥ k, then we have vp
(
x
(
x − pl

)) ≥ k. We consider two cases, when vp(x) = l
and when vp(x) �= l. In the first case vp

(
x − pl

) ≥ k − l, and in the second case, we have
vp(x) ≥ k − l. In either case, the volume is bounded by p−(k−l).
2. If vp(z) < k, then our inequality can be valid only when vp

(
x
(
x − pl

)) = vp(z). Since
vp(z) < k, we write z = ζpu with u < k. We are looking for solutions to

vp
(
x
(
x − pl

)
− ζpu

)
≥ k

that satisfy vp(x) + vp
(
x − pl

) = u.

• If vp(x) > l, then we must have vp(x) + l = u, and as a result u − l > l which means
u > 2l. Write x = εpu−l. Then we need

vp
(
εpu−l

(
εpu−l − pl

)
− ζpu

)
≥ k.

This implies vp(ε(εpu−2l − 1) − ζ ) ≥ k − u. This is a quadratic equation in ε with at
most two solutions modulo p. Hensel’s lemma says that the volume of ε satisfying this
last inequality is at most 2p−(k−u). The volume for x is then at most 2p−(u−l) · p−(k−u)

= 2p−(k−l).
• (*) If vp(x) < l, then 2vp(x) = u, which means u is even and u < 2l. Write x = εpu/2.

Then we need vp
(
εpu/2 (εpu/2 − pl

)− ζpu
) ≥ k which gives

vp
(
ε
(
ε − pl−u/2)− ζ

) ≥ k − u. By Hensel’s lemma, the volume of such ε is at most
2p−(k−u). The volume of x is then bounded by
2p−(k−u) · p−u/2 = 2p−k+u/2 < 2p−k+l which is what we want.

• If vp(x) = l, then x = εpl, and we have 2l + vp(ε − 1) = u. This means u ≥ 2l. Then
we need vp

(
ε (ε − 1) − ζpu−2l) ≥ k − 2l. An application of Hensel’s lemma then

says that the volume of ε satisfying this inequality is at most 2p−(k−2l). Since x = plε,
the volume of x is at most 2p−(k−l).
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Now, we examine the situation for p = 2. Except for the stepmarked (*) every other step
of the proof works verbatim. The argument (*) can be adjusted as follows.We let r = l− u

2
and s = k − u. Then r ≥ 1 and we are trying to determine the volume of ε ∈ Up such that

v2(ε(ε − 2r) − ζ ) ≥ s.

for a given unit ζ . Rewrite this inequality as

v2
((

ε − 2r−1)2 − (
ζ + 22r−2)) ≥ s.

First, we consider the situation for r ≥ 2. In this case, both ε − 2r−1 and ζ + 22r−2 are
still units, and without loss of generality, we may assume that our inequality has the form

v2(ε2 − ζ ) ≥ s

with ε, ζ units. Fix an ε that satisfies the inequality, and we determine for what values of
τ , ε + τ also satisfies the inequality. The volume of such τ is the volume of ε. We have

v2((ε + τ)2 − ζ ) = v2((ε2 − ζ ) + τ(τ + 2ε)).

This implies that

v2(τ (τ + 2ε)) ≥ s.

This immediately implies that v2(τ ) ≥ s − 1 or v2(τ + 2ε) ≥ s − 1. Consequently, the
volume of ε is bounded by 2 · 2−(s−1) = 4 · 2−(k−u). The rest of the argument works as
before.
Now, we consider the case where r = 1. In this case, the inequality becomes

v2((ε − 1)2 − (ζ + 1)) ≥ s.

There are two cases to consider:

Case I. v2(ζ + 1) ≥ s. In this case, we see that v2(ε − 1) ≥ �s/2� and as a result, the
volume is 2−�s/2�. The volume of x is then seen to be bounded by 2−�k/2�.

Case II. v2(ζ + 1) < s. We have 2v2(ε − 1) = v2(ζ + 1), so we can write ζ + 1 = γ 22t ,
with γ a unit. Then we have v2(ε − 1) = t, and write ε − 1 = ω2t . This implies

v2(ω2 − γ ) ≥ s − 2t.

As above, the volume of suchω is bounded by 4·2−s+2t . The volume of ε then is bounded
by 4 · 2−s+t . The volume of x is then bounded by 4 · 2−k+l · 2t .

Orders of Z3

Volume estimates forZ3

First, we give a description ofM2(p).

Lemma 11. The setM2(p) is the collection of matrices

M =
(
x11 0
x21 x22

)
,

with entries in Zp such that

vp(x21(x21 − x22)) ≥ vp(x11).
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Proof. Let v1 and v2 be the first and the second rows of M, respectively. Then since
entries are in Zp, it is clear that v1 ◦v1 and v1 ◦v2 are integral linear combinations of v1, v2.
Now we need v2 ◦ v2 = α1v1 + α2v2 with α1,α2 ∈ Zp. So x222 = α2x22, which implies
α2 = x22. Then α1x11 + x22x21 = x221, and α1 = x−1

11
(
x221 − x21x22

)
. Therefore, α1 is in Zp

if and only if vp(x11) ≤ vp
(
x221 − x21x22

)
.

We note that the sublattice corresponding to a matrixM as above has finite index if and
only if detM �= 0.

Counting orders ofZ3

We now prove the following theorem:

Theorem 12. There is a polynomial P3 of degree 2 such that for all ε > 0

N3(B) = BP3(logB) + O
(
B

1
2+ε

)
as B → ∞.

Proof. By Theorem 9 and Lemma 10, it suffices to prove the following statement: If
σ > 1

2 , the series∑
p

∑
k+l≥2

pkp−kσ−lσ μp(k, l) (8)

converges. Here, μp(k, l) is as in Definition 5.
We divide the series (8) into three subseries:
Case I. k ≥ 0, l ≥ 2. Then by Proposition 9

μp(k, l) ≤ 2p−k/2.

Our subseries is then majorized by∑
p

∑
k≥0

∑
l≥2

pk/2p−kσ−lσ

which converges for σ > 1
2 .

Case II. k ≥ 2, l = 0. Then by the proof of Proposition 9

μp(k, 0) ≤ 2p−k

and as a result, our subseries is majorized by∑
p

∑
k≥2

p−kσ

which converges for σ > 1
2 .

Case III. k = 1, l = 1. By Proposition 9

μp(1, 1) ≤ 2p−1

and our subseries is majorized by∑
p

p−2σ .

This converges for σ > 1
2 .
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For the second assertion in the statement of the theorem, we observe that

f3(k) = N3(k) − N3(k − 1).

Orders of Z4

Volume estimates forZ4

Lemma 12. The domainM3(p) is the collection of 3 × 3 lower triangular matrices⎛⎜⎝ x11
x21 x22
x31 x32 x33

⎞⎟⎠
with entries in Zp such that the following inequalities hold:

[4-1] vp(x11) ≤ vp
(
x221 − x21x22

)
[4-2] vp(x11) ≤ vp(x21(x31 − x32))

[4-3] vp(x22) ≤ vp
(
x232 − x32x33

)
[4-4] vp(x11) + vp(x22) ≤ vp

(
x22

(
x231 − x31x33

)− x21
(
x232 − x32x33

))
.

Proof. We want to determine the conditions on matrices

M =
⎛⎜⎝ x11 0 0

x21 x22 0
x31 x32 x33

⎞⎟⎠ ,

such that x11, x21, x22, x31, x32, x33 ∈ Zp and for 1 ≤ i, j ≤ 3, there exist α1,α2,α3 ∈ Zp
with vi ◦ vj = α1v1 + α2v2 + α3v3, where vi is the ith row of the matrixM.
The condition that v2 ◦ v2 = α1v1 + α2v2 gives the same condition that we had for the

case n = 3. That is, vp(x11) ≤ vp
(
x221 − x21x22

)
.

We have

v2 ◦ v3 = (x21x31, x22x32, 0) = α1v1 + α2v2 + α3v3.

Clearly, α3 = 0. We have α2x22 = x32x22, so α2 = x32. So we have α1x11 + x32x21 =
x21x31. This implies

α1 = x−1
11 (x21x31 − x21x32).

Therefore, vp(x11) ≤ vp(x21(x31 − x32)).
Next, consider

v3 ◦ v3 = (
x231, x

2
32, x

2
33
) = α1v1 + α2v2 + α3v3.

We must have α3 = x33. So α2x22 + x33x32 = x232. This implies

α2 = x−1
22
(
x232 − x32x33

)
.

Therefore, vp(x22) ≤ vp
(
x232 − x32x33

)
.

We also have α1x11 + x−1
22
(
x232 − x32x33

)
x21 + x33x31 = x231. This implies

α1 = x−1
11

(
x231 − x31x33 − x−1

22 x21
(
x232 − x32x33

))
= x−1

11 x
−1
22 (x22(x231 − x31x33) − x21(x232 − x32x33)).

So vp(x11) + vp(x22) ≤ vp
(
x22

(
x231 − x31x33

)− x21
(
x232 − x32x33

))
.
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Suppose that vp(x11) = k, vp(x22) = l and vp(x33) = r. By multiplying by appropriate
units, we can suppose that x11 = pk , x22 = pl, and x33 = pr . Note that this does not
change the lattice generated by the rows. Then we can define μp(k; l; r) as in Definition 5.

Proposition 11. Suppose that k, l, r ≥ 0. Then

μp(k; l; r) ≤ 8p−7k/6p−l/6. (9)

Proof. We divide the proof into three steps. We give two different bounds on μp(k; l; r)
and then take an average.
Step I. By Proposition 9, the volume of x32 satisfying inequality [4-3] is at most 2p−l/2.

By Proposition 9, the volume of x21 satisfying inequality [4-1] is at most 2p−k/2, and for
fixed x21, x32, Proposition 9 implies that the volume of x31 satisfying inequality [4-4] is at
most 2p−k/2. Multiplication gives:

μp(k; l; r) ≤ 8p−kp−l/2.

Step II. By one of the steps of the proof of Proposition 10 the volume of x21 satisfying
inequality [4-1] is at most 2p−k+l. By Proposition 9 the volume of x32 satisfying inequality
[4-3] is at most 2p−l/2. By Proposition 9 the volume of x31 satisfying inequality [4-4] is at
most 2p−k/2. Multiplication gives

μp(k; l; r) ≤ 8p−3k/2pl/2.

Step III. We now consider an appropriate average. The idea is that if μ ≤ A and μ ≤ B,
with μ,A,B > 0, then for allm, n positive integers

μ ≤ (AmBn)
1

m+n .

The bounds from steps I and II give

μp ≤
{(

8p−kp−l/2
)2 (

8p−3k/2pl/2
)}1/3

= 8p−7k/6p−l/6.

Remark 6. This is not the best possible bound one can prove. In fact, using a more
complicated argument similar to the proof of step I of Theorem 15, we can prove a bound
ofCp−9k/8p−l/2 in step I of the above theorem. This leads to the boundμp ≤ Cp−5k/4p−l/2

after averaging. This, however, will not improve the bound in Theorem 13 unless one has
an analogue of Theorem 17 for r = 1. Such a theorem is easy to prove, but the resulting
estimate would still not be as good as the one obtained in [19]. For this reason, we decided
to include only the simplest non-trivial estimate.

Proposition 12. Let p be odd. If r = 0 and k, l ≥ 1, then

μp(k; l; 0) ≤ 24p−3k/2−l.

Proof. Proposition 9 implies that inequality [4-1] holds on a set of x21 of volume at most
2p−�k/2�. Proposition 10 implies that inequality [4-3] holds on a set of x32 of volume at
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most 2p−l. For fixed x21, x32, Proposition 10 implies that inequality [4-4] holds on a set of
x31 of volume at most 6p−k .
We see that our total volume is bounded by 24p−k−l−�k/2�.

Proposition 13. Let p be odd. Then

μp(0; l; 0) ≤ 2p−l

and

μp(k; 0; 0) ≤ 3p−2k .

Proof. If k = r = 0, then inequality [4-3] and Proposition 10 give the result. Now
suppose l = r = 0. Then we have

vp(x21) + vp(x21 − 1) ≥ k

which determines two possibilities for x21:

1. vp(x21) ≥ k. In this case, inequality [4-4] says

vp(x31) + vp(x31 − 1) ≥ k.

The volume of such x31 is 2p−k . As a result, the whole volume is at most 2p−2k .

2. vp(x21) = 0 and vp(x21 − 1) ≥ k. Then inequality [4-2] gives

vp(x31 − x32) ≥ k

and the two-dimensional volume of (x31, x32) satisfying this inequality is at most p−k .
This gives a bound on the entire volume of p−2k .

Adding up gives the result.

Counting orders ofZ4

In this section, we prove the following theorem:

Theorem 13. There is a polynomial P4 of degree 5 such that for all ε > 0

N4(B) = BP4(logB) + O
(
B

11
12+ε

)
as B → ∞.

Proof. By Theorem 9, it suffices to prove the following statement: the expression∑
p

∑
k+l+r≥2

p2k+l−kσ−lσ−rσμp(k; l; r) (10)

converges whenever σ > 11
12 .

We write the sum (10) as∑
k+l+r≥2

22k+l−kσ−lσ−rσμ2(k; l; r) +
∑
podd

∑
k+l+r≥2

p2k+l−kσ−lσ−rσμp(k; l; r).
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By Proposition 11, the first piece is majorized by∑
k,l,r≥0

22k+l−kσ−lσ−rσ 2−7k/62−l/6

which converges for σ > 5/6.
We now consider the second piece of the sum. We consider three cases.

Case I. r ≥ 2. By Proposition 11, the relevant sum is bounded by∑
podd

∑
r≥2

∑
k,l≥0

p2k+l−kσ−lσ−rσp−7k/6p−l/6 =
∑
p odd

∑
r≥2

∑
k,l≥0

p
( 5
6−σ

)
(k+l)−rσ .

This sum is equal to∑
podd

∑
r≥2

∑
m≥0

(m + 1)p
( 5
6−σ

)
m−rσ .

This sum is converges for σ > 5
6 .

Case II. r = 1. From the previous computation, the corresponding sum converges if the
sum ∑

podd

∑
m≥1

p
( 5
6−σ

)
m−σ

converges. If σ > 5
6 , the series converges if the series∑

podd
p( 56−σ)−σ

converges. The latter converges for σ > 11/12.

Case III. r = 0. We write the corresponding sum as∑
podd

∑
k+l≥2

p2k+l−kσ−lσμp(k; l; 0) =
∑
p odd

∑
l≥2

pl−lσμp(0; l; 0)

+
∑
podd

∑
k≥2

p2k−kσμp(k; 0; 0) +
∑
podd

∑
k,l≥1

p2k+l−kσ−lσμp(k; l; 0).

By Proposition 13, we have∑
podd

∑
l≥2

pl−lσμp(0; l; 0) �
∑
p odd

∑
l≥2

p−lσ

and this is convergent for σ > 1/2. Again, by Proposition 13∑
podd

∑
k≥2

p2k−kσμp(k; 0; 0) �
∑
k≥2

p−kσ

which converges for σ > 1/2. Finally, by Proposition 12∑
podd

∑
k,l≥1

p2k+l−kσ−lσ μp(k; l; 0) �
∑
p odd

∑
k,l≥1

p
( 1
2−σ

)
k−lσ .

If σ > 1
2 , this last series converges if the series∑

podd
p
( 1
2−σ

)−σ

converges. This last series converges for σ > 3
4 .
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Remark 7. The bounds obtained by Liu [19] for f3(k) and f4(k) are better than what we
have obtained here. Liu proves f3(k) = O

(
k1/3

)
and f4(k) = Oε

(
k1/2+ε

)
.

Orders of Z5

Volume estimates forZ5

We will begin with the set of inequalities defining our region of integration.

Lemma 13. M4(p) is the collection of matrices with entries in Zp⎛⎜⎜⎜⎝
x11
x21 x22
x31 x32 x33
x41 x42 x43 x44

⎞⎟⎟⎟⎠
whose entries satisfy:

[5-1] vp(x11) ≤ vp
(
x221 − x21x22

)
[5-2] vp(x11) ≤ vp(x21(x31 − x32))

[5-3] vp(x22) ≤ vp(x232 − x32x33)

[5-4] vp(x11) + vp(x22) ≤ vp
(
x22

(
x231 − x31x33

)− x21
(
x232 − x32x33

))
[5-5] vp(x11) ≤ vp(x21(x41 − x42))

[5-6] vp(x22) ≤ vp(x32(x42 − x43))

[5-7] vp(x11) + vp(x22) ≤ vp(x22x31(x41 − x43) − x21x32(x42 − x43))

[5-8] vp(x33) ≤ vp
(
x243 − x43x44

)
[5-9] vp(x22) + vp(x33) ≤ vp(x33x42(x42 − x44) − x32x43(x43 − x44))

[5-10] vp(x11) + vp(x22) + vp(x33) ≤ vp(x22x33x41(x41 − x44) − x22x31x43(x43 − x44)

−x21x33x42(x42 − x44) + x21x32x43(x43 − x44)).

The proof of this lemma is very similar to the proof of Lemma 12.
By multiplying by appropriate units, we can suppose that x11 = pk , x22 = pl, x33 = pr ,

and x44 = pt . We define μp(k; l; r; t) as in Definition 5.
We start with a lemma:

Lemma 14. Let p be a prime. Then there is a polynomial with positive coefficients R ∈
R[ x] such that

μp(k; l; r; t) ≤ R(k)p−2k−l.

Proof. In this proof, we will suppress the dependence of R(k) on k, and will simply write
R. The value of the polynomial R does not affect the convergence of the sum we consider,
so we do not compute it. The key to our argument will be that once our other variables
are fixed, there are several different bounds available to us for the volume of x31 such that
inequalities [5-4] and [5-10] hold.
More specifically, we use Proposition 9 to give a bound on the volume of the possible

set of x32, then give a bound on the set of possible x43. Once these two values are fixed,
we again use Proposition 9 to give a bound on the set of x42, which then bounds the set of
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possible x21. Finally, we combine a few different possible bounds for the set of x31 so that
these inequalities simultaneously hold.
Proposition 9 implies that inequality [5-3] holds on a set of x32 of volume at most 2p−l/2.
Suppose that vp(x43(x43 − x44)) = r + z. Inequality [5-8] implies that z ≥ 0. This

inequality holds on a set of x43 of volume at most 2p−r/2−z/2. Fix such an x43.
Now for fixed x32, x43, Proposition 9 implies that inequality [5-9] holds on a set of x42

of volume at most 2p−l/2.
We now consider inequality [5-5]. For fixed x42, Proposition 8 implies that the total

volume of x21, x41 such that this inequality holds is at most (k + 1)p−k .
Finally, we consider x31. We begin with inequality [5-10]. For fixed values of

x21, x32, x41, x42, x43, we can write this as

k + l + r ≤ vp(x31x22y − τ),

where y, τ ∈ Zp with vp(y) = r + z. We see that this holds on a set of x31 of volume at
most p−(k−z).
Consider inequality [5-4]. By Proposition 9, this holds on a set of x31 of volume at most

2p−k/2.
Using 2p−(k−z) as our bound for the volume of x31 gives a bound on our total volume of

R1p−2k−l−(r−z)/2,

for some polynomial R1. This is enough for our result if r ≥ z. Suppose that this is not the
case.
By the proof of Proposition 10, we see that the total volume of x31 such that

vp(x31(x31 − x33) − z) ≥ k,

is at most 6p−(k−r) unless p = 2, vp(x31) = r − 1 and vp(z) = 2r − 2 < k. If we are not in
this exceptional situation, the total volume is at most R2p−2k−l−(z/2−r/2). Since r < z, this
is at most Rp−2k−l, completing the proof.
Suppose that we are in the situation where p = 2, vp(x31) = r−1 and vp(z) = 2r−2 < k.
First, suppose that vp(x31) �= vp(x32). Then vp(x31 − x32) ≤ vp(x31) = r − 1. Inequality

[5-2] now holds on a set of x21 of volume at most p−(k−r). Using this bound for the volume
of x21, 2p−l/2 for the volume of x32 and 2p−k/2 for the volume of x31, gives the total bound

R3p−2k−l−(z−r)/2,

which is at most Ap−2k−l for some polynomial A, since z ≥ r.
Now suppose vp(x32) = vp(x31) = r−1. Then vp(x32(x32 −x33)) = 2r−2, and we must

have vp(x21) = l. Now consider inequality [5-7]. We write x21 = αpl, x31 = βpr−1, and
x32 = γ pr−1 for units α,β , γ . Factoring out pl+r−1, the inequality is now

vp(βx41 − αγ x42 + (αγ − β)x43) ≥ k − r + 1.

For fixed values of x21, x31, x32, x42, x43, this holds on a set of x41 of volume at most
p−(k−r). Using 2p−k/2 as our bound for x21 and x31, this gives total bound

R4p−2k−l−(z−r)/2,

which is at most Rp−2k−l, completing the proof.
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Proposition 14. Let p be any prime. Suppose that k, l, r, t ≥ 0. Then for a polynomial
A ∈ R[ x] with positive coefficients, we have

μp(k; l; r; t) ≤ A(k)p−(2+ 1
34
)
k−(1+ 1

34
)
l− r

17+ 16t
17 .

Proof. The value of the polynomial A does not affect the convergence of the sum we will
consider so we do not compute it. For example in the collection of Equations (11), (12),
and (13), the polynomials A will not be the same.
We have two steps:
Step I. Here, we show that the following three inequalities hold:

μp(k; l; r; t) ≤ Ap−3k/2−3l/2+t (11)

μp(k; l; r; t) ≤ Ap−2k−l−r+3t (12)

μp(k; l; r; t) ≤ Ap−5k/2−l+r+3t . (13)

We proceed as follows. Inequality [5-1] holds on a set x21 of volume at most the min-
imum of 2p−k/2 and 2p−(k−l). Inequality [5-3] holds on a set x32 of volume at most the
minimum of 2p−l/2 and 2p−(l−r). Inequality [5-8] holds on a set of x43 of volume at most
2p−(r−t).
When p �= 2, we can use Proposition 10 for the remaining three variables (see the

proof of Theorem 15 for details). For p = 2, some care is required. By Proposition 9, we
always have the following. For any fixed x21 and x32, inequality [5-4] holds on a set of x31
of volume at most 2p−k/2. For any fixed x32, x43, inequality [5-9] holds on a set of x42 of
volume at most 2p−l/2. For any fixed x21, x31, x32, x42, x43, inequality [5-10] holds on a set
of x41 of volume at most 2p−k/2.
Inequality (11) follows from taking 2p−k/2 for the volume of x21, x31, x41, taking 2p−(l−r)

for the volume of x32, taking 2p−l/2 for the volume of x42, and taking 2p−(r−t) for the
volume of x43.
For inequality (12), we take 2p−k/2 as our bound for the volume of x21 and x31, 2p−l/2

as the bound for x32 and x42, and 2p−(r−t) as the bound for the volume of x43. We must
now show that when all other variables are fixed, the total volume of x41 satisfying our
inequalities is at most Ap−(k−2t).
Suppose we are not in the special case in which we cannot apply Proposition 10. We

have that the volume of x41 satisfying inequality [5-10] is at most 6p−(k−t), completing
this case.
We can write inequality [5-10] as

vp(x11) + vp(x22) + vp(x33) ≤ vp(x22x33x41(x41 − x44) − (x22x31x43(x43 − x44)

+x21(x33x42(x42 − x44) − x32x43(x43 − x44)))).

Inequality [5-8] implies that we can write x43(x43 − x44) = prα, with α ∈ Zp. Inequality
[5-9] implies that we can write

x33x42(x42 − x44) − x32x43(x43 − x44) = pl+rβ ,

with β ∈ Zp.
Our inequality is now

k ≤ vp(x41(x41 − x44) − (x31α + x21β)).
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We can apply Proposition 10, giving our bound, unless vp(x41) = t − 1 and vp(x31α +
x21β) = 2t − 2.
First, suppose that vp(x21) ≤ 2t. Then for fixed x21, x42, inequality [5-5] holds on a set of

x41 of volume at most p−(k−2t), which completes this case. Now suppose that vp(x31) ≤ 2t.
Proposition 6 now implies that for fixed x21, x31, x32, x42, x43, inequality [ 5 − 7] holds on
a set of x41 of volume at most p−(k−vp(x31)) ≤ p−(k−2t). This is enough for our bound, so
we suppose that vp(x21) ≥ 2t and vp(x31) ≥ 2t. This implies that vp(x31α + x21β) ≥ 2t >

2t − 2, so we can apply Proposition 10, completing this case.
Inequality (13) will be proved in a few steps. First, we suppose that we are in the case

where we can apply Proposition 10 to inequality [5-4] and conclude that the volume of x31
satisfying this inequality is at most 6p−(k−r). As above, we see that either one of x21, x31
has valuation at most 2t, giving a bound of p−(k−2t), or both have valuation at least 2t, in
which case we can apply Proposition 10 and conclude that the total volume of x41 is at
most 6p−(k−t). Using 2p−k/2 as our bound for x21, 2p−l/2 as our bound for x32 and x42,
and 2p−(r−t) as our bound for x43, we get total volume

Ap−5k/2−l+3t ,

completing this case.
Now suppose that we are in the case where we cannot apply Proposition 10 to inequality

[5-4]. Then vp(x31) = r− 1. We now consider two subcases. First, suppose that vp(x31) �=
vp(x32). Then inequality [5-2] implies that vp(x21) ≥ k − vp(x31) > k − r, which holds on
a set of x21 of volume at most p−(k−r). We use 2p−k/2 as the bound for the volume of x31
satisfying inequality [5-4]. Now using the same argument given above, the volume of x41
satisfying these inequalities is at most 6p−(k−2t). Combining these estimates gives total
volume bounded by

Ap−5k/2−l+3t ,

completing this case.
Finally, suppose that vp(x31) = vp(x32) = r − 1. Now for fixed x32, x43, the total vol-

ume of x42 satisfying inequality [5-6] is at most p−(l−r). We use 2p−(k−l) as the bound
on the volume of x21 satisfying inequality [5-1], 2p−k/2 as the bound on the volume of
x31, 2p−(r−l) as our bound on the volume of x32, and 2p−(r−t) as the bound on the volume
of x43. Using the same argument given above, we can use 6p−(k−2t) as our bound on the
volume of x41. This gives total bound

Ap−5k/2−l+r+3t ,

completing step I.
Step II. Here, we consider an appropriate average of the previous inequalities to prove

the theorem. The constants attached to these inequalities do not affect the convergence
of the sums we consider so we will suppress them. By Lemma 14 and step I, we have

μp ≤ p−2k−l,

μp ≤ p−3k/2−3l/2+t ,

μp ≤ p−2k−l−r+3t ,

and

μp ≤ p−5k/2−l+r+3t .
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This means for all n ≥ 1

μp ≤
{ (

p−3k/2−3l/2+t
) (

p−2k−l−r+3t
)3 (

p−5k/2−l+r+3t
)2 (

p−2k−l
)n }1/(n+6)

=p−
(
2+ 1

2(n+6)

)
k−
(
1+ 1

2(n+6)

)
l− r

n+6+ 16t
n+6 .

Setting n = 11 gives the result.

We now state several results for odd primes p.

Proposition 15. Let p be odd. Suppose that k, l, r, t ≥ 0. Then there is a polynomial
B ∈ R[x] with positive coefficients such that

μp(k; l; r; t) ≤ B(k)p−(2+ 1
20
)
k−(1+ 1

20
)
l− r

20+ 9t
20 .

Proof. We have two steps:
Step I. Here, we show that the following three inequalities hold:

μp(k; l; r; t) ≤ Bp−2k−3l/2−r+3t ,

μp(k; l; r; t) ≤ Bp−3k−l+r+3t ,

and

μp(k; l; r; t) ≤ Bp−5k/2−3l/2+3t . (14)

We will use (14) in the proof of Theorem 17. We proceed as follows. Inequality [5-1]
holds on a set x21 of volume at most the minimum of 2p−k/2 and 2p−(k−l). Inequality [5-3]
holds on a set x32 of volume at most the minimum of 2p−l/2 and 2p−(l−r). Inequality
[5-8] holds on a set of x43 of volume at most 2p−(r−t). For any fixed x21 and x32, inequality
[5-4] holds on a set of x31 of volume at most the minimum of 2p−k/2 and 6p−(k−r). For
any fixed x32, x43 inequality [5-9] holds on a set of x42 of volume at most 6p−(l−t). For
any fixed x21, x31, x32, x42, x43, inequality [5-10] holds on a set of x41 of volume at most
6p−(k−t). Hence the total volume is bounded by

Bp−(k−t) · p−(l−t) · p−(r−t) · p−k/2 · p−l/2 · p−k/2,

by

Bp−(k−t) · p−(l−t) · p−(r−t) · p−(k−l) · p−(l−r) · p−(k−r),

and by

Bp−(k−t) · p−(l−t) · p−(r−t) · p−k/2 · p−l/2 · p−(k−r).

Simplification gives the result.
Step II. Here, we consider an appropriate average of the previous inequalities to prove

the theorem. As constants play no role, we ignore them. By Lemma 14 and step I, we have

μp ≤ p−2k−l,

μp ≤ p−2k−3l/2−r+3t ,

and

μp ≤ p−3k−l+r+3t .



Kaplan et al. Research in theMathematical Sciences  (2015) 2:6 Page 44 of 57

This means for all n ≥ 1

μp ≤
{ (

p−2k−3l/2−r+3t
)2 (

p−3k−l+r+3t
) (

p−2k−l
)n }1/(n+3)

=p−(2+ 1
n+3 )k−(1+ 1

n+3 )l− r
n+3+ 9t

n+3 .

Setting n = 17 gives the result.

Proposition 16. Let p be odd. Then for any k, l, r, with k + l + r ≥ 2, we have

μp(k; l; r; 0) ≤ Cp−(2+ 1
7
)
k−(1+ 1

7
)
l− r

7− 8
7

for some constant C > 0.

Proof. We have two basic steps:
Step I. Here, we will show that μp ≤ Cp−2k−l−2 whenever k + l + r ≥ 2. We first note

that Proposition 10 implies that inequality [5-8] holds on a set of x43 of volume at most
2p−(r−t) = 2p−r . Inequality [5-3] holds on a set of x32 of volume at most 2p−�l/2�.
Proposition 9 implies that inequality [5-1] holds on a set of x21 of volume at most

2p−�k/2�. For fixed x21, x32, Proposition 9 implies that the total volume of x31 satisfying
inequality [5-4] is at most 2p−�k/2�.
For fixed x21, x31, x32, x42, x43, inequality [5-10] can be written as

k + l + r ≤ vp(x22x33x41(x41 − x44) − z),

for some z ∈ Zp. Proposition 10 implies that this holds on a set of x41 of volume at most
6p−k .
Therefore, our total volume is at most

Cp−k−2�k/2�−l−�l/2�−r ,

for some C > 0. If r + �l/2� ≥ 2, we are done. Therefore, suppose r = 0 and l ∈ {0, 1, 2}
or r = 1 and l = 0.
First, suppose r = 0. Then Proposition 10 implies that inequality [5-3] holds on a set of

x32 of volume at most 2p−l. For fixed x21, x32, Proposition 10 implies that inequality [5-4]
holds on a set of x31 of volume at most 6p−k . Using the above bounds for x42 and x41, our
total volume is now bounded by

Cp−2k−�k/2�−2l.

Since k + l ≥ 2, we have �k/2� + l ≥ 2 unless l = 0 and k = 2. In this case, we use 2p−k

as a bound for the volume of x21 satisfying inequality [ 5 − 1], which completes this case.
Now suppose r = 1 and l = 0. Proposition 10 implies that the volume of x21 satisfying

inequality [ 5 − 1] is at most 2p−k . For fixed x21, x32, Proposition 9 implies that the total
volume of x31 satisfying inequality [ 5 − 4] is at most 2p−�k/2�. We use the same bounds
for the volume of x43 and x41. Our total volume is now bounded by

Cp−2k−�k/2�−1.

Since k + l + r ≥ 2, we have k ≥ 1 and our bound is at most Cp−2k−2, completing the
proof.
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Step II. This step is very similar to the last step of the proof of Theorem 15. We have by
the above and the second step of the proof of Theorem 15

μp ≤ p−2k−l−2,

μp ≤ p−2k−3l/2−r ,

and

μp ≤ p−3k−l+r .

This means for all n ≥ 1

μp ≤
{ (

p−2k−3l/2−r
)2 (

p−3k−l+r
) (

p−2k−l−2
)n }1/(n+3)

=p−
(
2+ 1

n+3

)
k−
(
1+ 1

n+3

)
l− r

n+3− 2n
n+3 .

Setting n = 4 gives the result.

We can similarly handle the case where t = 1.

Proposition 17. Let p be odd. Then for any k, l, r with k + l + r ≥ 1, we have

μp(k; l; r; 1) ≤ Dp−(2+ 1
18 )k−(1+ 1

9 )l− r
9− 1

9 ,

for some constant D > 0.

Proof. We have two main steps:
Step I. Here, we will show that the volume is bounded by

Dp−2k−l−1.

We recall that inequality [5-1] holds on a set of x21 of volume at most the minimum of
2p−�k/2� and 2p−(k−l). Similarly, inequality [5-3] holds on set x32 of volume at most the
minimum of 2p−�l/2� and 2p−(l−r). We also have that inequality [5-8] holds on a set of x43
of volume at most the minimum of 2p−�r/2� and 2p−(r−t) = 2p−(r−1).
For any fixed values of x21, x32, we see that inequality [5-4] holds on a set of x31 of

volume at most the maximum of 2p−�k/2� and 6p−(k−r). For any fixed values of x32, x43, we
see that inequality [5-9] holds on a set of x42 of volume at most the maximum of 2p−�l/2�

and 6p−(l−1). For any fixed values of x21, x31, x32, x42, x43, we can write inequality [5-10] as
k ≤ vp(x41(x41 − x44) − z), for some z ∈ Zp. This holds on a set of x41 of volume at most
the maximum of 2p−�k/2� and 6p−(k−1).
We now combine these inequalities to get bounds on the total volume satisfying

inequalities [5-1] through [5-10]. Note that if k − l ≥ �k/2� and l − r ≥ �l/2�, then
k − r ≥ �k/2�. By using 2p−�k/2� as the bound for the volume of x21 and x31, and 2p−(l−r)

as the bound for x32, we see that our total volume is bounded by

Dp−k−2l−2�k/2�+3.

Therefore, we are done if l ≥ 4, or if l ≥ 3 and k is odd. Suppose that this is not the case.
Suppose that l ≤ 3. Using 2p−�l/2� instead of 2p−(l−r) as our bound for the volume of

x32, our total bound is now

Dp−k−2�k/2�−l−�l/2�−r+3.
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Therefore, we are done if �l/2� + r ≥ 4, or �l/2� + r ≥ 3 and k is odd. Suppose that
these conditions do not hold.
First, suppose that l = 3. Then r ≤ 1. We can use 2p−�r/2� as a bound for the total

volume of x43 satisfying inequality [5-8] instead of 2p−(r−1). We use 2p−(l−r) as our bound
for the volume of x32 satisfying inequality [5-3]. We see that our total volume is bounded
by

Dp−k−2�k/2�−3−3+r−�r/2�+2 = Dp−k−2�k/2�−4+r−�r/2�.

Since r ≤ 1, this is at most Dp−2k−l−1, completing this case.
Now suppose that l ≤ 2. For fixed x32, x43, Proposition 9 implies that the total volume

of x42 satisfying inequality [5-9] is at most 2p−�l/2�. We use this bound instead of 6p−(l−1).
Our total volume is now bounded by

Dp−k−2�k/2�−2�l/2�−r+2,

and we are done unless r ≤ 2. In this case �r/2� ≥ r − 1, so we use 2p−�r/2� as our bound
for the volume of x43 satisfying inequality [5-8]. Now our bound is

Dp−k−2�k/2�−2�l/2�−�r/2�+1.

First, suppose r = 2. Then if l is odd or k is odd, we are done. If l = 0, then we can use
2p−k as our bound for the volume of x21 satisfying inequality [5-1], giving

Dp−2k−�k/2�,

as our bound. Therefore, we are done unless k = 0. In this case, k = l = 0, we have that
the total volume is at most the total volume of x43 satisfying inequality [5-9], which is at
most 2p−1, which completes this case.
Now, suppose r = l = 2. This is the most difficult case to consider. If k is odd then

2�k/2� = k + 1, and we are done. If k ≥ 6, then we can use 2p−(k−l) as our bound for x21,
which is enough to complete this case. If k = 0, then we use 1 as our bound for x41 instead
of 6p−(k−1), and our total bound is Dp−l−1, completing this case. We now must consider
k = 2 and k = 4.
First, suppose k = 2. We need a bound of Dp−7. Using 2p−�k/2� as our bound for

x21, x31, x41, 2p−�l/2� as our bound for x32 and x42, and 2p−�r/2� as our bound for x43, we
get a bound of Dp−6. Since l = k = 2 inequality [5-1] becomes 2vp(x21) ≥ 2 and inequal-
ity [5-3] becomes 2vp(x32) ≥ 2. If either of these variables has valuation greater than 1,
then we will have the upper bound that we need. Therefore, we need only consider the
case where vp(x21) = vp(x32) = 1. Inequality [5-2] now implies that vp(x31 − x32) ≥ 1.
Therefore, vp(x31) ≥ 1, and we note that if vp(x32) ≥ 2, we will have our bound.
Therefore, we suppose that vp(x31) = 1. Finally, we consider inequality [5-4]. We have
vp
(
x22

(
x231 − x31x33

)) = 4 = k + l, but vp
(
x21

(
x232 − x32x33

)) = 3 < k + l, so this case
cannot occur.
When k = 4 we will argue similarly. We need a bound of Dp−11. Using 2p−�k/2� as

our bound for x21 and x31, 6p−(k−1) as our bound for x41, 2p−�l/2� as our bound for x32
and x42, and 2p−�r/2� as our bound for x43, we get a bound of Dp−10. Since l = r = 2,
inequality [5-8] becomes 2vp(x43) ≥ 2 and inequality [5-3] becomes 2vp(x32) ≥ 2. If either
of these variables has valuation greater than 1, then we will have the bound that we need.
Therefore, we need only consider the case where vp(x43) = vp(x32) = 1. Inequality [5-6]
now implies that vp(x42−x43) ≥ 1. Therefore, vp(x42) ≥ 1, and we note that if vp(x42) ≥ 2,
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we will have our bound. Therefore, we suppose that vp(x42) = 1. Finally, we consider
inequality [5-9].We have vp

(
x33

(
x242 − x42x43

)) = 4 = l+r, but vp
(
x32

(
x243 − x43x44

)) =
3 < l + r, so this case cannot occur.
Next, suppose l ≤ 2 and r = 1. We have the bound

Dp−k−2�k/2�−2�l/2�.

If l = 1, we are done. Suppose l = 2. Then we can use 2p−l as our bound for the volume
of x32 satisfying inequality [5-3], and we are done. If l = 0, then we can use 2p−k as the
bound for x21 satisfying inequality [5-1], and our bound is

Dp−2k−�k/2�,

which completes this case unless k = 0. If k = l = 0 and r = t = 1, then our total volume
is at most the volume of x43 satisfying inequality [5-8], which is 2p−1, and we are done.
Finally, suppose r = 0 and l ≤ 2. We can use 2p−l as our bound for the volume of x32

satisfying inequality [5-3], and for fixed x21, x32, we use 6p−k as our bound for the volume
of x31 satisfying inequality [5-4]. We also use 2p−�k/2� as our bound for the volume of x41
satisfying inequality [5-10]. Our total volume is now bounded by

Dp−2k−�k/2�−l−�l/2�.

Since k + l + r ≥ 1, we are done.
Step II. Again, we do an averaging. We have the inequalities

μp ≤ p−2k−l−1,

μp ≤ p−2k−3l/2−r+3,

and

μp ≤ p−5k/2−3l/2+3.

The last two inequalities are from step II of the proof of Theorem 15 for t = 1. This
means for all n ≥ 1

μp ≤
{(

p−2k−3l/2−r+3
) (

p−5k/2−3l/2+3
) (

p−2k−l−1
)n}1/(n+2)

=p−
(
2+ 1

2(n+2)

)
k−
(
1+ 1

n+2

)
l− r

n+2+ 6−n
n+2 .

We set n = 7 to get the result.

Remark 8. The case by case analysis of the small values of parameters in the proofs
of Theorems 16 and 17 can be avoided if instead one uses the results of [19] for fn

(
pk
)

for small k. In [19], these values are worked out for k up to 5. This is not sufficient for
our purposes, but computing the missing data is not difficult using the results of Liu.
Here, we chose instead to present the above elementary treatment to make the argument
self-contained.

Remark 9. The choices of the parameter n in the proofs of Theorems 14, 15, 16, and 17
are made to optimize the error estimate in Theorem 14.

Counting orders ofZ5

In this section, we prove the following theorem:
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Theorem 14. There is a polynomial P5 of degree 9 such that for all ε > 0

N5(B) = BP5(logB) + O
(
B

33
34+ε

)
as B → ∞.

Proof. By Theorem 9, it suffices to prove the following statement: for σ > 33
34 the

expression

∑
p

∑
m≥2

a<
Z4(pm)

pmσ

converges.
In our analysis, we will ignore all constants as they will have no bearing on convergence.

We write

∑
p

∑
m≥2

a<
Z4(pm)

pmσ
=
∑
m≥2

a<
Z4(2m)

2mσ
+
∑
podd

∑
m≥2

a<
Z4(pm)

pmσ
.

If we use Proposition 14, we see very easily that the first piece converges for σ > 33
34 . So

we concentrate on the sum corresponding to the odd primes.We will show that form ≥ 2
and p odd, we have

a<
Z4(pm) ≤ A(m)p−1+ 19

20m (15)

for a polynomial A(m).
It is clear that this will be sufficient for the proof of the theorem. In order to prove (15),

we write

a<
Z4(pm) =

∑
k+l+r+t=m

p3k+2l+rμp(k; l; r; t)

=
m∑
t=2

∑
k+l+r=m−t

p3k+2l+rμp(k; l; r; t)

+
∑

k+l+r=m−1,t=1
p3k+2l+rμp(k; l; r; t)

+
∑

k+l+r=m,t=0
p3k+2l+rμp(k; l; r; t)

≤
m∑
t=2

∑
k+l+r=m−t

p3k+2l+rp−(2+1/20)k−(1+1/20)l−r/20+9t/20

+
∑

k+l+r=m−1
p3k+2l+rp−(2+1/18)k−(1+1/9)l−r/9−1/9

+
∑

k+l+r=m,t=0
p3k+2l+rp−(2+1/7)k−(1+1/7)l−r/7−8/7

by Propositions 15, 16, 17, after ignoring some polynomials in terms of k, l, r, t as
coefficients. Next,
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a<
Z4(pm) ≤

m∑
t=2

p9t/20p(1−1/20)(m−t)
∑

k+l+r=m−t
1

+ p−1/9p(1−1/18)(m−1)
∑

k+l+r=m−1
1 + p−8/7p(1−1/7)m

∑
k+l+r=m

1

≤ p−1+(1−1/20)m + p−19/18+(1−1/18)m + p−8/7+(1−1/7)m

after ignoring some polynomials. Now, the result follows.

The following statement is a consequence of the inequality (15):

Corollary 2. For each ε > 0

f (k) �ε k
33
34+ε

∏
p|k

p−1.

If k is odd, then for each ε > 0,

f (k) �ε k
19
20+ε

∏
p|k

p−1.

Remark 10. Using Proposition 14 for odd primes instead of Proposition 15 in the proof
of Theorem 14 would have produced a weaker error term.

Orders of Zd for d > 5

In this section, we prove part 2 of Theorem 6. The idea is to find non-trivial volume
bounds for M5(p), and then use an inductive argument to obtain bounds for Md(p) for
d > 5.
We begin by definingM5(p).

Lemma 15. M5(p) is the collection of 5×5 lower triangular matrices with entries in Zp⎛⎜⎜⎜⎜⎜⎜⎝
x11
x21 x22
x31 x32 x33
x41 x42 x43 x44
x51 x52 x53 x54 x55

⎞⎟⎟⎟⎟⎟⎟⎠
whose entries satisfy:

[6-1] vp(x11) ≤ vp(x21(x21 − x22))
[6-2] vp(x11) ≤ vp(x21(x31 − x32))
[6-3] vp(x22) ≤ vp(x32(x32 − x33))
[6-4] vp(x11) + vp(x22) ≤ vp(x22x31(x31 − x33) − x21x32(x32 − x33))
[6-5] vp(x11) ≤ vp(x21(x41 − x42))
[6-6] vp(x22) ≤ vp(x32(x42 − x43))
[6-7] vp(x11) + vp(x22) ≤ vp(x22x31(x41 − x43) − x21x32(x42 − x43))
[6-8] vp(x33) ≤ vp(x43(x43 − x44))
[6-9] vp(x22) + vp(x33) ≤ vp(x33x42(x42 − x44) − x32x43(x43 − x44))
[6-10] vp(x11) + vp(x22) + x33 ≤ vp(x22x33x41(x41 − x44) − x22x31x43(x43 − x44) −

x21x33x42(x42 − x44) + x21x32x43(x43 − x44))
[6-11] vp(x11) ≤ vp(x21(x51 − x52))
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[6-12] vp(x22) ≤ vp(x32(x52 − x53))
[6-13] vp(x11) + vp(x22) ≤ vp(x22x31(x51 − x33) − x21x32(x52 − x53))
[6-14] vp(x33) ≤ vp(x43(x53 − x54))
[6-15] vp(x22) + vp(x33) ≤ vp(x33x42(x52 − x54) − x32x43(x53 − x54))
[6-16] vp(x11) + vp(x22) + x33 ≤ vp(x22x33x41(x51 − x54) − x22x31x43(x53 − x54) −

x21x33x42(x52 − x54) + x21x32x43(x53 − x54))
[6-17] vp(x44) ≤ vp(x54(x54 − x55))
[6-15] vp(x33) + vp(x44) ≤ vp(x44x53(x53 − x5) − x43x54(x54 − x55)
[6-19] vp(x22) + vp(x33) + x44 ≤ vp(x33x44x52(x52 − x55) − x33x42x54(x54 − x55) −

x32x44x53(x53 − x55) + x32x43x54(x54 − x55))
[6-20] vp(x11) + vp(x22) + vp(x33) + vp(x44) ≤

vp(x22x33x44x51(x51 − x55) − x22x33x41x54(x54 − x55) − x22x31x44x53(x53 −
x55) + x22x31x43x54(x54 − x55) − x21x33x44x52(x52 − x55) − x21x33x42x54(x54 −
x55) − x21x32x44x53(x53 − x55) + x21x32x43x54(x54 − x55))

We omit the proof.
As usual, after multiplying by appropriate units, we can assume that x11 = pk1 , x22 =

pk2 , x33 = pk3 , x44 = pk4 , and x55 = pk5 .
We now give a bound for μp(k1, k2, k3, k4, k5).

Proposition 18. For odd prime p,

μp(k1, k2, k3, k4, k5) ≤ c · p−( 52+ 1
6
)
k1−

( 3
2+ 1

6
)
k2−

( 1
2+ 1

6
)
k3−

( 1
2− 2

6
)
k4+ 2

6 k5

where c is a polynomial in k1, . . . , k5.

Proof. First, we show the following three inequalities:

μp ≤ c1 · p−3k1− 3
2 k2−k3+k5 =: A (16)

μp ≤ c2 · p− 5
2 k1− 3

2 k2− 1
2 k3− 1

2 k4 =: B (17)

μp ≤ c3 · p− 5
2 k1−2k2− 1

2 k3 =: C (18)

where c1, c2, c3 are polynomials in k1, . . . , k5.
To show (1), we see that inequality [6-1] holds on a set of x21 of volume at most 2p−k1/2

by Proposition 9. We see that [6-4] holds on a set of x31 of volume at most 2p−k1/2 by
Proposition 9. The combined volume of x41 and x54 satisfying [6-16] is atmost (k1+1)p−k1

by Proposition 8. The volume of x51 satisfying [6-20] is at most 6p−k1+k5 by Proposi-
tion 10. The volume of x32 satisfying [6-3] is at most 2p−k2/2 by Proposition 9. The volume
of x42 satisfying [6-9] is at most 2p−k2/2 by Proposition 9. The volume of x52 satisfy-
ing [6-19] is at most 2p−k2/2 by Proposition 9. The volume of x43 satisfying [6-8] is at
most 2p−k3/2 by Proposition 9. The volume of x53 satisfying [6-18] is at most 2p−k3/2 by
Proposition 9. Multiplication gives@

μp ≤ c1 · p−3k1− 3
2 k2−k3+k5 = A.

To show (2), we see that inequality [6-1] holds on a set of x21 of volume at most
2p−k1/2 by Proposition 9. The combined volume of x31 and x43 satisfying [6-7] is at most
(k1 + 1)p−k1 by Proposition 7. The volume of x41 satisfying [6-10] is at most 2p−k1/2 by
Proposition 9. The volume of x51 satisfying [6-20] is at most 2p−k1/2 by Proposition 9.
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The volume of x32 satisfying [6-3] is at most 2p−k2/2 by Proposition 9. The volume of x42
satisfying [6-9] is at most 2p−k2/2 by Proposition 9. The volume of x52 satisfying [6-19] is
at most 2p−k2/2 by Proposition 9. The volume of x53 satisfying [6-18] is at most 2p−k3/2

by Proposition 9. The volume of x54 satisfying [6-17] is at most 2p−k4/2 by Proposition 9.
Multiplication gives

μp ≤ c · p− 5
2 k1− 3

2 k2− 1
2 k3− 1

2 k4 = B.

To show (3), we see that inequality [6-1] holds on a set of x21 of volume at most 2p−k1/2

by Proposition 9. The volume of x31 satisfying [6-4] is at most 2p−k1/2 by Proposition 9.
The combined volume of x41 and x54 satisfying [6-16] is at most (k1 + 1)p−k1 by Propo-
sition 8. The volume of x51 satisfying [6-20] is at most 2p−k1/2 by Proposition 9. The
combined volume of x32 and x43 satisfying [6-6] is at most (k2 + 1)p−k2 by Proposition 8.
The volume of x42 satisfying [6-9] is at most 2p−k2/2 by Proposition 9. The volume of x52
satisfying [6-19] is at most 2p−k2/2 by Proposition 9. The volume of x53 satisfying [6-18]
is at most 2p−k3/2 by Proposition 9. Multiplication gives

μp ≤ c · p− 5
2 k1−2k2− 1

2 k3 = C.

Lastly, we note that μp ≤ min {A,B,C} implies that

μp ≤ (ABC)1/3 = c · p−( 52+ 1
6 )k1−( 32+ 1

6 )k2−( 12+ 1
6 )k3−( 12− 2

6 )k4+ 2
6 k5

giving the result.

Proposition 19. Suppose n ≥ 5. Then there is C ∈ R[ k1, . . . , k5] such that

μp(k1, . . . , kd) ≤ Cp
−Ad(p)−

∑d
j=6(d−j)

⌈
kj
2

⌉

with

Ad(p)=
(
d
2

+ 1
6

)
k1 +

(
d − 2
2

+ 1
6

)
k2 +

(
d − 4
2

+ 1
6

)
k3 +

(
d − 4
2

− 1
6

)
k4 +

(
d − 5
2

− 2
6

)
k5

for p odd, and

Ad(p)=
(
d
2

+ 1
34

)
k1 +

(
d − 2
2

+ 1
34

)
k2 +

(
d − 4
2

+ 1
17

)
k3 +

(
d − 4
2

− 16
17

)
k4 +

(
d − 5
2

)
k5

for p = 2.

Proof. The proof is by induction on d. Since C will not affect the convergence of the
sums, we consider we do not compute it. The lemma will follow from Theorem 14 and
Theorem 15 if we show that

μp(k1; . . . ; kd) ≤ 2d−1p
−∑d−1

j=1

⌈
kj
2

⌉
μp(k1, . . . , kd−1). (19)

In order to see this inequality, observe that if

M =

⎛⎜⎜⎜⎜⎜⎝
pk1 0 . . . 0

x21 pk2 0
...

...
...

. . . 0
xd1 . . . . . . pkd

⎞⎟⎟⎟⎟⎟⎠ ∈ Md(p; k1, . . . , kd)
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then for the matrix obtained by removing the last row

M′ =

⎛⎜⎜⎜⎜⎜⎝
pk1 0 . . . 0

x21 pk2 0
...

...
...

. . . 0
xd−1 1 . . . . . . pkd−1

⎞⎟⎟⎟⎟⎟⎠ ∈ Md−1(p; k1, . . . , kd−1).

The inequality (19) will follow if we show that the fibers of the map M �→ M′ have
volume bounded by

2d−1p
−∑d−1

j=1

⌈
kj
2

⌉
.

As usual, we set

vj = (xj1, . . . , xjj, 0, . . . , 0).

Suppose v1, . . . , vd−1 are the rows ofM′. We now bound the volume of the set of vectors
vd with xdd = pkd such that

vd ◦ vd = c1v1 + · · · + cdvd

with ci ∈ Zp. It is clear that cd = xdd. We then see that for 1 ≤ j ≤ d − 1

x2dj − xddxdj = cjxjj +
d−1∑
k=j+1

ckxkj.

If ck , xkj are given for j + 1 ≤ k ≤ d, then the existence of such a a cj is equivalent to

vp

⎛⎝x2dj − xddxdj −
d−1∑
k=j+1

ckxkj

⎞⎠ ≥ kj.

Proposition 9 implies that the volume of xdj is bounded by 2p−�kj/2�. Induction will give
the result.

We can now prove part 2 of Theorem 6:

Proof. We will prove this theorem for Zd+1. We will show that the abscissa of conver-
gence of ζ<

Zd (s) is less than or equal to d−1
2 − 1

6 . Recall

ζ<
Zd (s) =

∏
p

∑
k1,...,kd≥0

p
∑d

j=1(d−j)kjp−s
∑d

j=1 kjμp(k1, . . . , kd).

It is not hard to see that by Lemma 19 the factor corresponding to p = 2 converges for
σ = 	(s) > d−1

2 − 1
6 . For the remainder of this proof, we will write

∑
p for

∑
podd. It

remains to prove the convergence of the series∑
p

∑
k1+...+kd≥1

p
∑d

j=1(d−j)kjp−σ
∑d

j=1 kjμp(k1, . . . , kd)

=
∑
p

∑
k1+...+kd=1

p
∑d

j=1(d−j)kjp−σ
∑d

j=1 kjμp(k1, . . . , kd)

+
∑
podd

∑
k1+...+kd≥2

p
∑d

j=1(d−j)kjp−σ
∑d

j=1 kjμp(k1, . . . , kd).
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By Lemma 10∑
k1+...+kd=1

p
∑d

j=1(d−j)kjp−σ
∑d

j=1 kjμp(k1, . . . , kd) =
(
d + 1
2

)
p−σ .

and
∑

p
(d+1

2
)
p−σ converges for all σ > 1. By Theorem 18, we see that the other summand

is bounded by∑
p

∑
k1+...+kd≥2

p
∑d

j=1(d−j)kjp−σ
∑d

j=1 kjμp(k1, . . . , kd)

≤
∑
p

∑
k1+...+kd≥2

p
∑d

j+1(d−j)kjp−σ
∑d

j=1 kjp
−Ad−

∑d
j=5(d−j)

⌈
kj
2

⌉

≤
∑
p

∑
k1+...+kd≥2

pBd+
1
2
∑d

j=5(d−j)kjp−σ
∑d

j=1 kj

where

Bd =
(
d
2

− 1 − 1
6

)
(k1 + k2 + k3) +

(
d
2

− 2 + 1
6

)
k4 +

(
d
2

− 2 − 1
6

)
k5.

Our series is now bounded by∑
p

∑
k1+...+kd≥2

p
(
d
2 −1− 1

6−σ
)∑d−1

j=1 kjp−σkd

=
∑
p

∑
m+kd≥2

Cd(m)p
(
d
2 −1− 1

6−σ
)
mp−σkd

where Cd(m) is the number of solutions to
∑d−1

j=1 kj = m for m ≥ 0. Since Cd(m) is a
polynomial inm, this series converges if and only if∑

p

∑
m+kd≥2

p
(
d
2 −1− 1

6−σ
)
mp−σkd

converges. The subseries consisting ofm = 0, kd ≥ 2 converges if σ > 1
2 . If kd = 0,m ≥ 2,

the series converges for σ > d−1
2 − 1

6 . Ifm, kd ≥ 1 then the series converges if σ > d
4 − 1

12 .
The theorem is now immediate.

We state the following corollary of the proof for future reference.

Corollary 3. Let d ≥ 6. There is a polynomial D such that for all primes p and all
natural numbers l we have

a1,<
Zd

(
pl
)

≤ D(l)p
(
d
2 − 5

3

)
l.

Consequently, for each ε > 0, we have

a1,<
Zd (k) �ε k

d
2 − 5

3+ε .

The proof of Theorems 1 and 2
In this section, we present a proof of Theorems 4 and 5 which finish the proof of our main
result, Theorem 2. Let K/Q be an arbitrary extension of degree n which we assume to be
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K = Q(α) for α a root of an irreducible polynomial f (x) ∈ Z[ x]. We want to find a finite
set S of primes and σ0(n) ∈ R such that the double series∑

p�∈S

∑
k≥2

a1,<(pk)
pkσ

converges for σ > σ0(n). We show that σ0(5) = 19/20 works, and for n > 5, σ0(n) =
n/2 − 7/6 works.
We choose an integral basis for K/Q which we will fix throughout; in particular, this

basis provides an integral basis for K ⊗ Qp over Qp. By Equation (3) we have

ζ
1,<
OK⊗Zp,p(s) = (1 − p−1)−n

∫
M1

p(K)

|x11|s−n|x22|s−n+1 · · · |xnn|s−1 dM. (20)

where we have writtenM1
p(K) instead of the relevantM1

p(β).

Definition 6. If k = (k1, . . . , kn) is a n-tuple of non-negative integers, we set

M1
p(K ; k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
M =

⎛⎜⎜⎜⎜⎜⎝
pk1 0 . . . 0

x21 pk2 0
...

...
...

. . . 0
xn1 . . . xnn−1 pkn

⎞⎟⎟⎟⎟⎟⎠ ∈ M1
p(K)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

We define μ1
p(K , k) to be the n(n−1)

2 -dimensional volume ofM1
p(K ; k).

The basic observation is thatM1
p(K , k) is given by a cone condition. The setMp(K ; k)

is given by cone conditions. To define the set M1
p(K , k), we have to add the condition

that the sublattice generated by the rows contains the identity element. Let e ∈ Zn
p be the

image of the identity element of OK ⊗ Zp under the identification of the latter with Zn
p.

Write

M =

⎛⎜⎜⎜⎜⎜⎝
pk1 0 . . . 0

x21 pk2 0
...

...
...

. . . 0
xn1 . . . xnn−1 pkn

⎞⎟⎟⎟⎟⎟⎠
and let the rows of the matrix M be v1, . . . , vn. Then M ∈ M1

p(K ; k) if there are
α1, . . . ,αn ∈ Zn

p such that
∑

i αivi = e. This is equivalent to saying

(α1, · · · ,αn)M = e,

or what is the same

e.M−1 ∈ Zn
p.

Since M is a lower triangular matrix, this last statement is equivalent to a collection
of p-adic inequalities of the form considered in section ‘Application to some volume
computation’.
Let S be a large finite set of primes containing all primes lying above 2 and all ramified

primes; after enlarging S if necessary, we may assume that any p �∈ S is good in the sense
of section ‘Resolutions with good reduction’. Let p be the set of primes p �∈ S which are
split in the number field K . Clearly, p is an infinite set of primes.



Kaplan et al. Research in theMathematical Sciences  (2015) 2:6 Page 55 of 57

It is easy to see that

ζ
1,<
OK⊗Zp,p(s) =

∑
k=(k1,...,kn)

ki≥0,∀i

p
∑n

i=1(n−i)kip−s
∑n

i=1 kiμ1
p(K , k). (21)

Let p ∈ p. For eachm

a1,<OK⊗Zp
(pm) =

∑
k=(k1,...,kn)

ki≥0,∀i,∑i ki=m

p
∑n

i=1(n−i)kiμ1
p(K , k).

First, we consider n = 5. We start with the observation that by Equation (15) form ≥ 0

a1,<
Z5
p

(pm) = a<

Z4
p
(pm) ≤ A(m)p−1+19m/20

for a polynomial A(m). On the other hand, since

a1,<
Z5
p

(pm) =
∑

k+l+r+t+u=m
p4k+3l+2r+tμ1

p(k; l; r; t;u)

we have

p4k+3l+2r+tμ1
p(k; l; r; t;u) ≤ A(k, l, r, t,u)p−1+19(k+l+r+t+u)/20

whenever k + l + r + t + u ≥ 2, for some polynomial A(k, l, r, t,u). Thus,

μ1
p(k, l, r, t,u) ≤ A(k, l, r, t,u)p−1p−(3+1/20)k−(2+1/20)l−(1+1/20)r−t/20+19u/20.

In the terminology of section ‘Application to some volume computations’, this means
thatM1

p(K) is (1,α,A)-narrow with

α = (3 + 1/20, 2 + 1/20, 1 + 1/20, 1/20,−19/20)

and some polynomial A. Now, Theorem 8 implies that there is a finite set T of primes
such that for p �∈ T the setM1

p(K) is (1,α,A)-narrow. Reversing the process, we get

a1,<OK
(pm) ≤ B(m)p−1+19m/20 (22)

for some polynomial B(m). Clearly, this implies that∑
p�∈T

∑
m≥2

a1,<OK
(pm)

pmσ

converges for σ > 19/20. This shows that σ0(5) = 19/20 works. The proof of the state-
ment that σ0(n) = n/2 − 7/6 works for n ≥ 6 follows the same reasoning, except that we
use Corollary 3. This finishes the proof of the theorem.

The following corollary is immediate from Equation (22). This is an improvement of
Theorem 8.1 of [3].

Corollary 4. For any quintic field K and any prime number p, we have∑
m≥1

a1,<OK
(pm)

p2m
= O

(
1

p2+ 1
20

)
.

As in the introduction, we set

a1,<(n,m) = max
K/Qextension of degree n

a1,<OK
(m).

We have the following corollary:
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Corollary 5. We have

lim sup
m→∞

log a1,<(5,m)

logm
≤ 19

20
.

For n ≥ 6, we have

lim sup
m→∞

log a1,<(n,m)

logm
≤ n

2
− 5

3
.

In particular,

lim sup
n→∞

1
n
lim sup
m→∞

log a1,<(n,m)

logm
≤ 1

2
.

Endnote
1We learned Galois’ theorem from a question posted by Chandan Singh Dalawat on

mathoverflow, and comments by Matt Emerton, Jack Chapman, and Jack Schmidt.
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