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INTRODUCTION

In estuarine and coastal ecosystems, community

structure and the dynamics of phytoplankton are heav-

ily shaped by a wide variety of environmental parame-

ters, including nutrient inputs, salinity, turbidity and

other optical properties of the water column. In these

coastal waters, anthropogenic nutrient enrichment and

hydrological perturbations related to freshwater dis-

charges are the major stressors that cause significant

changes in phytoplankton biomass and in the composi-

tion of the community (Phlips et al. 2002, Paerl et al.
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ABSTRACT: We explored the role of natural and anthropogenic environmental perturbations in

shaping the community structure and dynamics of pico- and nanophytoplankton in coastal waters.

The distribution patterns of phycoerythrin-rich picocyanobacteria (PE-CYAN) and phycocyanin-rich

picocyanobacteria (PC-CYAN), autotrophic picoeukaryotes (PEUK) and nanophytoplankton (NANO)

were examined over a period of 3 yr in 24 Mediterranean coastal lagoons displaying wide trophic

gradients (from 0.2 to 630 µg chlorophyll a [chl a] l–1) and salinity gradients (from fresh to marine

waters). In summer, picoplanktonic abundances reached 3 × 108 cells l–1, 5 × 109 cells l–1 and 6 × 1010

cells l–1 for PE-CYAN, PC-CYAN and PEUK, respectively. PE-CYAN and PC-CYAN showed

opposing responses to environmental gradients, resulting in a restricted dominance of PE-CYAN in

oligotrophic marine lagoons and a dominance of PC-CYAN in some eutrophic brackish lagoons. Most

lagoons exhibited steady-state nutrient conditions, giving competitive advantages to small eukary-

otic algae, even in eutrophic and hypertrophic waters. Among the picophytoplankton, picoeukary-

otes (ca. 2 to 3 µm) are the most competitive with increasing nutrient availability; in terms of abun-

dance and biomass, their relative and absolute importance tended to increase with increasing total

chl a biomass. Freshwater discharges resulted in large pulses of nutrient and more turbulent systems

that altered the structure of the phytoplankton community and stimulated fast-growing NANO com-

posed of phytoflagellates and diatoms (ca. 3 to 6 µm, up to 1.6 × 109 cells l–1). Members of the micro-

phytoplankton (ca. 20 to 200 µm) were rarely observed in eutrophic and hypertrophic lagoons and

were composed of harmful dinoflagellates in oligotrophic lagoons. These results show that anthro-

pogenic and meteorological changes are highly influential on the composition and size structure of

phytoplankton communities.
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2003, 2006). Freshwater discharges are the main

sources of nutrients in coastal waters and they influ-

ence multiple hydrologic parameters, such as salinity

and water residence time. Residence time plays an im-

portant role in determining the availability and utiliza-

tion of nutrients by phytoplankton (Paerl et al. 2006). It

is well known that nutrient availability influences the

size structure of the phytoplankton community (Malone

1980, Chisholm 1992). Therefore, changes in phyto-

plankton community structure, in terms of composition

and size, can reflect phytoplankton responses to natural

and anthropogenic environmental perturbations.

The size distribution of the phytoplankton commu-

nity — particularly the partitioning between small

phytoplankton (picoplankton and nanoplankton:

<20 µm in size) and larger cells — plays an essential

role in carbon flux and food webs in pelagic systems

(Legendre & Rassoulzadegan 1995). The abundance

and biomass of the picophytoplankton (≤3 µm) gener-

ally increases with trophic status while their relative

contribution to total autotrophic biomass declines

(Weisse 1993, Agawin et al. 2000, Bell & Kalff 2001). A

thin diffusion boundary layer and a high surface-to-

volume ratio, due to small size, confer on picoplank-

tonic cells a greater capacity to acquire and use nutri-

ents in resource-limited areas — leading to competitive

advantages over larger cells in oligotrophic waters

(Raven 1986, Chisholm 1992). When nutrient availabil-

ity increases, the larger phytoplankton could outcom-

pete the picophytoplankton because they are released

from the constraints of nutrient diffusion limitation

(Agawin et al. 2000). Among the autotrophic pico-

plankton community, the distribution of prokaryotic

and eukaryotic components overlaps along the gradi-

ent of a land–sea transect from offshore to nearshore

waters. Prochlorococcus (ca. 0.5 to 0.7 µm in size) is the

dominant genus of picocyanobacteria in offshore nutri-

ent-depleted waters, while Synechococcus (ca. 1 µm in

size) generally thrives in moderately oligotrophic and

mesotrophic waters (Partensky et al. 1999, Gin et al.

2003, Pan et al. 2007). Autotrophic picoeukaryotes (ca.

2 to 3 µm in size) show a clear trend in enhanced abun-

dance in coastal waters where they can surpass pico-

cyanobacteria in terms of biomass (Vaquer et al. 1996,

Gobler et al. 2002, Calvo-Diaz & Morán 2006, Pan et al.

2007). These distribution patterns show that the nutri-

ent availability could potentially shape the size struc-

ture of the phytoplankton community, even in the

picoplanktonic cell range. In addition to nutrients, gra-

dients of salinity and optical properties of the water

column (from blue offshore waters to green coastal

waters) can also shape the distribution of picoplank-

tonic organisms in oceanic waters (Morel et al. 1993,

Partensky et al. 1999). Hence, picocyanobacteria and

picoeukaryotes show differential responses to environ-

mental gradients. In particular, it can be hypothesized

that the relative importance of prokaryotic and

eukaryotic picoplanktonic components could differ in

terms of abundance and biomass along the trophic gra-

dient. Given the functional importance of autotrophic

picoeukaryotes in microbial food webs and carbon flux

in coastal marine waters (Worden et al. 2004, Bec et al.

2005), there is a need to clarify the relative and

absolute importance of picocyanobacteria and pico-

eukaryotes as a function of trophic status, and to exam-

ine the main factors that regulate their distribution in

coastal systems.

Among coastal zones, lagoons are highly productive

and dynamic systems (Kjerfve 1994) but they are par-

ticularly sensitive to anthropogenic and climatic per-

turbations. On the one hand, their restricted water

exchanges with the sea, and the potential accumula-

tion of elevated levels of nutrients supplied by water-

sheds and internal cycling, may amplify the eutrophi-

cation processes (Kjerfve 1994, Glibert et al. 2010). On

the other hand, due to their location at the land–sea

interface, and their shallowness, they exhibit great

physical and chemical variability related to natural

constraints (e.g. freshwater discharges, wind and

tides). All of these environmental perturbations have

broad impacts on the patterns of phytoplankton bio-

mass and community composition (Knoppers 1994,

Phlips et al. 2002).

Several studies have shown that picophytoplankton

can be a major component of phytoplankton communi-

ties in coastal lagoons (Sorokin et al. 1996, Vaquer et

al. 1996, Phlips et al. 1999). In these systems, it is

expected that changes in the structure of the picophy-

toplankton community could reflect picoplanktonic

responses to natural and anthropogenic environmental

perturbations. In this context, we investigated the dis-

tribution patterns and the size structure of phytoplank-

ton communities with a specific emphasis on pico-

phytoplankton and nanophytoplankton in 24 French

Mediterranean lagoons characterized by large trophic

gradients (from oligotrophy to massive eutrophication)

and salinity gradients (from fresh to marine waters).

The objectives of the present study were: (1) to assess

the relative and absolute importance of abundance

and biomass of picocyanobacteria, picoeukaryotes and

nanophytoplankton along the anthropogenic trophic

gradient, and (2) to determine the main environmental

factors driving the distribution of these organisms in

coastal waters. Various geomorphological features

(volume, size, depth) of the lagoons provided contrast-

ing hydrological conditions (e.g. episodic or continu-

ous freshwater discharges) which have allowed us to

explore how phytoplankton communities respond and

adapt to anthropogenic and climate changes in coastal

ecosystems.
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MATERIALS AND METHODS

Study sites. We included 24 Mediterranean coastal

lagoons from the Languedoc–Roussillon region (south-

ern French Mediterranean coast) and from Corsica

(Fig. 1). Depending on the lagoon geomorphology (sur-

face and depth), 1 to 4 stations were sampled (Table 1).

Eight lagoons, named the ‘Palavasian’ series (Table 1),

were located near the Montpellier city district (popula-

tion 250 000). One site (Sea station, Fig. 1), located in

the Mediterranean Sea offshore of the Diana lagoon

(D), was defined as ‘reference marine waters’. The hy-

drological characteristics of the studied lagoons are de-

scribed in Table 1. All stations were sampled monthly

in different years between 1998 and 2002 in the frame-

work of the Lagoon Monitoring Network (Réseau de

Suivi Lagunaire). For all lagoon stations, summer sam-

pling was also carried out once a month from June to

August in 2001 (except for Corsican lagoons) and 2002.

On each date, subsurface water samples were collected

between 10:00 and 16:00 h with 2 l polypropylene bot-

tles. Temperature and salinity were recorded with a

WTW LF 197 field sensor (precision ±0.5%). Several

lagoons with 2 or 4 stations (Table 1) did not exhibit sig-

nificant spatial variations of salinity, leading to pooled

station data for each lagoon (Lagoons C, L, T, PR, D and

U; see Table 1). We also exploited data from a nutrient

database, developed by the Lagoon Monitoring Net-

work (Souchu et al. 2010), which records concentra-

tions of dissolved inorganic phosphorus (DIP), dissolved

inorganic nitrogen (DIN = NO3
+ + NO2

+ + NH4
+) and

dissolved silicates (DSi). For each lagoon (Souchu et al.

2010), the eutrophication status was estimated accord-

ing to the succession from phanerogams to macroalgae

and/or phytoplankton (Schramm 1999) that has allowed

us to distinguish 4 levels of trophic status (Table 1). The

oligotrophic lagoons display transparent waters and a

dominance of marine phanerogams with associated

macroalgae. The mesotrophic state still includes climax

species but also contains proliferating macroalgae. The

eutrophic state leads to the disappearance of climax

species, but proliferating macroalgae can still develop.

Hypertrophic lagoons are characterized by quasi-

exclusive dominance of phytoplankton.

Phytoplankton biomass. Chlorophylls a, b and c

(chl a, chl b and chl c, respectively) and pheopigments

a (phe a) were analyzed in all samples

(annual cycles and additional sum-

mers). Upon return to the laboratory, 5

to 50 ml (depending on phytoplankton

abundance) were filtered under vac-

uum (<10 cm Hg) on Whatman GF/F

membranes (0.7 µm porosity) and

stored at –20°C in glass tubes. Filters

were ground in acetone (90%) and

extracted during 24 h in the dark at

4°C. Pigments were measured by spec-

trofluorimetry (Neveux & Lantoine

1993). Concentrations are expressed in

µg l–1 (precision ±5%).

Flow cytometric determination of

phytoplankton abundance. A volume

of 1 ml of sample was fixed with 2%

formaldehyde (final conc.) and stored

in liquid nitrogen (Troussellier et al.

1995). For samples from the period

1998 to 1999, counts were performed

with an ACR-1400-SP flow cytometer

(Bruker Spectrospin) fitted with a mer-

cury-arc lamp with an excitation wave-

length of 470 to 490 nm;  for counting

samples from the period 2001 to 2002,

we used a FACSCalibur flow cytometer

(Becton Dickinson) fitted with a 15 mW

argon laser (488 nm excitation). Sam-

ples were analyzed with a mixture of

fluorescent beads (‘Fluoresbrite’ YG,

Polysciences) of various nominal sizes
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Fig. 1. The 21 lagoons along the French Mediterranean coast, the 3 lagoons

in Corsica, and the Sea station offshore of the Diana lagoon with the sampling 

points. Table 1 gives further information on the individual stations
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Lagoon Mean Area Opening Main Stn Salinity Chl a Trophic

(code) depth (km2) to the sea freshwater (µg l–1) status

(m) sources

Canet-St. Nazaire 0.35 6.0 Direct River CS 22.0 (4.9–32.6) 19.5 (3.0–204) Hypertrophic

(C) CN 20.4 (6.2–37.8) 16.8 (3.5–122)

Salses-Leucate (L) 2.0 54 Direct Karst LS 35.4 (33.3–38.1) 1.6 (1.0–3.0) Oligotrophic

LN 37.2 (34.0–40.3) 1.3 (0.5–3.4)

La Palme (LP) 0.5 6.0 Direct Karst LP 37.0 (30.2–41.2) 1.6 (0.4–3.4) Oligotrophic

Bages-Sigean (B) 1.3 37 Direct Channel BS 37.7 (31.9–39.7) 1.6 (0.6–6.2) Oligotrophic

BM 34.7 (29.4–40.7) 2.7 (0.8–23.6) Mesotrophic

BN 32.7 (28.2–37.5) 4.8 (0.8–20.1) Eutrophic

Campignol (CA) 0.5 1.1 Lagoon Channel CA 12.8 (2.5–24.8) 5.6 (2.3–27.7) Hypertrophic

Ayrolle (AY) 0.5 13.2 Direct Lagoon AY 35.3 (20.6–38.1) 1.1 (0.2–4.8) Oligotrophic

Gruissan (GR) 0.5 1.4 Channel Channel GR 35.7 (17.8–44.0) 1.6 (0.3–24.5) Mesotrophic

Vendres (VE) 0.9 4.8–10 Channel* Wetland VE 23.7 (21.7–35.2) 189 (55–402) Hypertrophic

Bagnas (BA) 0.4 1.5 – Wetland BA 5.2 (0.6–18.3) 7.6 (1.5–119) Hypertrophic

Thau (T) 4.0 75 Direct River TWS 38.8 (36.4–40.2) 1.0 (0.4–7.2) Mesotrophic

TWB 38.9 (36.6–40.2) 1.1 (0.4–7.1)

TES 38.7 (36.7–39.9) 2.3 (0.4–6.9)

TEB 38.7 (37.0–40.0) 1.6 (0.6–6.1)

Palavasian lagoons

South-Ingril (IS) 0.6 3.6 Direct Channel IS 36.1 (28.7–40.0) 4.7 (0.7–20.5) Mesotrophic

North-Ingril (IN) 0.6 3.2 Channel Channel IN 35.6 (23.4–39.8) 9.4 (0.9–27.7) Mesotrophic

Pierre-Blanche (PB) 0.4 3.7 Channel Channel PB 29.7 (17.4–45.1) 30.6 (4.9–56.8) Eutrophic

Vic (VC) 1.2 11.5 Channel Channel VC 29.4 (19.3–46.4) 39.7 (3.1–71.7) Eutrophic

Prévost (PR) 0.75 3.8 Direct Channel PRW 31.5 (14.7–40.8) 15 (1.8–77.6) Eutrophic

PRE 33.9 (21.8–39.3) 15.5 (1.1–79.5)

Arnel (AR) 0.4 4.7 Channel River AR 29.8 (7.8–40.0) 16.4 (2.5–310) Hypertrophic

Méjean (M) 0.75 5.5 Channel Channel MW 19.7 (12.1–32.4) 170 (57–630) Hypertrophic

ME 22.1 (12.2–32.5) 64.3 (14.0–377)

Grec (GE) 0.3 2.7 Channel Channel GE 26.8 (12.1–32.7) 72.9 (12.6–206) Hypertrophic

Or (O) 0.8 32 Channel Wetland OW 24.6 (20.6–26.5) 56.1 (3.0–84.9) Hypertrophic

OE 22.1 (18.0–24.5) 17.6 (4.8–85.7)

Ponant (PO) 2.7 2.0 Direct River PO 18.7 (0.5–30.4) 11.4 (1.5–22.3) Eutrophic

Médard (MD) 0.6 1.4 Channel Channel MD 20.0 (15.6–23.4) 8.6 (1.0–86.4) Eutrophic

Corsica

Biguglia (BI) 1.5 14.5 Direct* Wetland BI1 20.0 (14.0–37.1) 5.0 (1.0–37.7) Mesotrophic

BI2 17.8 (13.2–33.1) 4.4 (0.9–77.1)

BI3 16.8 (12.6–29.5) 4.1 (1.4–70.6)

BI4 15.0 (11.5–29.3) 3.9 (2.0–30.2)

Diana (D) 6.0 5.7 Direct River DSS 37.5 (35.1–39.1) 3.2 (1.1–9.4) Oligotrophic

DSB 37.9 (36.0–38.9) 3.1 (0.8–8.2)

DNS 37.3 (35.5–38.6) 1.6 (0.7–6.5)

DNB 37.8 (36.0–39.0) 1.7 (0.8–4.6)

Urbino (U) 5.0 7.6 Direct* River USS 36.6 (32.8–39.6) 2.9 (1.2–5.9) Oligotrophic

USB 37.2 (35.5–39.6) 3.1 (1.4–5.1)

UNS 36.5 (33.0–39.5) 3.1 (1.1–4.9)

UNB 36.8 (25.5–39.6) 3.1 (1.3–4.6)

Mediterranean Sea 40 – – – Sea 37.5 (36.8–38.7) 0.4 (0.1–1.0) –

Table 1. Morphometric and hydrological characteristics of the 24 Mediterranean coastal lagoons. For each station, median,

minimum and maximum (in parentheses) values of salinity and chlorophyll a (chl a) based on annual period are indicated. 

Eutrophication status of each lagoon is also indicated (Souchu et al. 2010). *Not permanently open
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(1, 2, 3, 6 and 10 µm) to identify the size range of phy-

toplanktonic populations (Fig. 2). Size classes have

been estimated from the average of forward scatter

(FSC) values of natural populations relative to the FSC

of fluorescent beads. They were also calibrated with

cultures of unicellular algae whose cell diameter had

been determined by optical microscopy and analyzed

by Optilab Pro software (Bec et al. 2008). Cytometric

analysis by size classes was carried out on data from

2001 and 2002. For sample processing, the sheath fluid

was prepared from filtered (pore size 0.2 µm) artificial

seawater (NaCl) whose salinity was adjusted to that of

the samples (±2 units) in order to avoid alterations of

refractive indices of the cells and changes in the mea-

sured FSC (Marie et al. 1999). Two protocols have been

used depending on cell size: one instrument setting for

analysis of cells ≤3 µm, and another for cells >3 µm.

Sample acquisition was done at a flow rate of 25 to

30 µl min–1. Samples were diluted when events

reached 1000 s–1. Data were logged using Cell Quest

software and analyzed with Attractors software (Bec-

ton Dickinson). Eukaryotic phytoplankton were distin-

guished on the basis of red fluorescence (FL3, related

to chl a fluorescence; wavelength >650 nm) and light

diffraction (FSC, related to cell size). Two groups were

defined depending on the cell size: ≤3 µm (autotrophic

picoeukaryotes, PEUK) and >3 µm (nanophytoplank-

ton, NANO). Phycoerythrin-rich picocyanobacteria

(PE-CYAN; Fig. 2a,b) were discriminated from other

photosynthetic organisms by their strong orange fluo-

33

Fig. 2. Dotplots of flow cytometric analysis of phytoplankton from marine and freshwater samples collected in (a,b) Thau and (c,d)

Bagnas lagoons, respectively. (a,c) Forward scatter vs. red fluorescence. (b,d) Forward scatter vs. orange fluorescence. These dot-

plots allow phycoerythrin-rich picocyanobacteria (PE-CYAN), phycocyanin-rich picocyanobacteria (PC-CYAN), autotrophic 

picoeukaryotes (PEUK) and nanophytoplankton (NANO) to be distinguished
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rescence (FL2, wavelength 542 to 585 nm) and light-

scattering properties (FSC). The identification of phy-

cocyanin-rich picocyanobacteria (PC-CYAN) requires

a red excitation wavelength (635 nm; Collier 2000,

Murrell & Lores 2004). However, flow cytometers fitted

with a blue laser can detect them (Collier 2000, Li &

Dickie 2001), but PC-CYAN present low red fluores-

cence and light-scattering characteristics very close to

those of Prochlorococcus, a typical picocyanobac-

terium of ultra-oligotrophic ocean waters. In the pre-

sent study, small (<1 µm) cells with a near-background

red fluorescence were detected (Fig. 2c,d) in few

lagoons (Lagoons CA, BA, BI; see Table 1). Due to the

hydrological characteristics of those systems (Table 1),

we assumed that those were PC-CYAN rather than

Prochlorococcus. Molecular analyses have confirmed

the presence of PC-CYAN in those lagoons (E. Mas-

seret unpubl. data). Thus, 4 groups (PEUK, NANO, PE-

CYAN and PC-CYAN) were distinguished by flow

cytometry for the whole data set (Fig. 2).

Phytoplankton identification. The composition of

NANO and microphytoplankton was determined by

optical microscopy. Identification of the main phyto-

plankton genera was done using a Zeiss Axiolab

microscope after sedimentation (Utermöhl 1958). Sam-

ples (1 l) were fixed with Lugol’s solution and pre-

served in the dark. A total of 150 sample identifications

were performed from lagoons monitored during the

period 1998 to 1999 and the period 2001 to 2002. The

emphasis was on identification of the phytoplankton

community from lagoons with contrasting hydrological

features (freshwater, brackish and marine), with recur-

rent cohabitation of primary producers (opportunistic

macroalgae vs. phytoplankton), and with contrasting

climatic events (floods or rainy periods vs. summer

periods). Samples with discrepancies between chl a

biomass and abundance were also examined. These

identifications have allowed us to characterize the

global community structure of phytoplankton in the 24

Mediterranean lagoons.

Contribution to chl a biomass. The contribution of

the 4 phytoplankton groups to total chl a biomass was

estimated using chlorophyll cell content from the liter-

ature. The picocyanobacterial biomass was estimated

using a chlorophyll cell content of 1.4 fg chl a cell–1

(Kana & Glibert 1987). For eukaryote microalgae, the

chlorophyll cell content depends on taxonomic group

(Vaillancourt et al. 2004). Based on our results from

microscopic observations, accessory pigment concen-

tration (chl b and chl c) and cell size, a content of 10 fg

chl a cell–1 for prasinophyte picoalgae (Vaillancourt et

al. 2004) and a mean content of 200 fg chl a cell–1 for

diatoms, cryptophytes and prymnesiophytes (Vaillan-

court et al. 2004) were used to estimate PEUK and the

NANO biomass contribution. We excluded estimated

biomass values <0.001 µg chl a l–1 (i.e. less than the

theoretical detection limit of chlorophyll).

Statistical analysis. Statistical analyses were done

with JMP 5.0.1 software. Non-parametric tests

(Wilcoxon test for n = 2 and Kruskal–Wallis test for

n >2) were used to compare spatial variations of envi-

ronmental and biological parameters in lagoons with 2

or 4 stations. Relationships between environmental

parameters and biological variables were studied

using Spearman’s rank correlation. The relationships

between the total biomass and phytoplankton abun-

dances were described by linear regression of log-

transformed values of the variables. The variance

explained by the fitted models and the significance of

the fit were tested by analysis of variance (Sokal &

Rohlf 1981).

RESULTS

Salinity and nutrient regimes

The lagoon waters ranged in salinity from freshwater

(salinity <1), linked to high river run-off in the rainy

season (Lagoon PO; Fig. 3), to hypersaline (salinity

>40) in the dry season in shallow lagoons as a result of

evaporation (LP, GR; Fig. 3). Most lagoons were char-

acterized by brackish waters (salinity <30). Among

them, lagoons surrounded by wetlands (BA, VE, O;

Table 1) had relatively stable salinities throughout the

year. Shallow lagoons exposed regularly to large

inputs of freshwater (C, CA, AR, PO; Table 1) pre-

34

Fig. 3. Distribution of salinity in the 24 Mediterranean coastal

lagoons/stations and the Sea station. Box-and-whisker plots

from annual data: the whiskers represent the 5th and the 95th

percentiles, the outer edges of the boxes represent the 25th

and 75th percentiles, and the horizontal line within the boxes

represents the median. Salinity range for hypersaline, sea-

water, brackish waters and freshwaters was defined as in

Contreras & Kerekes (1993). See Table 1 for station identifi-

cations and their median salinity values
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sented large ranges in salinity and annual median val-

ues below 30. In contrast, deep lagoons (mean depth

>4 m; T, U and D) exhibited small ranges in salinity,

with annual median values (from 36.6 to 38.9; Table 1)

close to that observed at the Sea station (37.5).

The inverse correlation between nutrient concen-

trations and salinity (Table 2) indicates that nutrient

loads were due mostly to freshwater discharges.

Nutrient concentrations increased especially during

the cold season, corresponding to the flood period in

lagoons, while concentrations decreased in summer.

Based on annual data, median values of DIP (dis-

solved inorganic phosphorus) and DIN (dissolved

inorganic nitrogen) were low (0.14 and 1.3 µM,

respectively) and NH4
+ represented the main source

of DIN (70%).

Chlorophyll a gradient

Chl a ranged from 0.2 µg l–1 (Lagoon AY) to 630 µg l–1

(Lagoon MW) in lagoons, and from 0.1 to 1.0 µg l–1 at

the Sea station (Table 1). Large differences in annual

ranges of chl a were observed between the 24 lagoons.

Marine lagoons (L, T, U and D; Fig. 3) exhibited low

values of chl a, with annual median values <3 µg chl a

l–1 (Table 1). In contrast, high values of chl a were mea-

sured throughout the year in shallow ‘Palavasian’

lagoons receiving regular effluents from the sewage

treatment plants of the Montpellier city district.

Lagoons exposed to high and irregular inputs of fresh-

water (CA and PO; Fig. 3) had relatively low annual

median values (5.6 and 12.4 µg chl a l–1, respectively)

compared to ‘Palavasian’ series. Among hypertrophic

lagoons, 2 stood out by their high levels of biomass (up

to 630 µg l–1 and 400 µg l–1 in MW and VE, respec-

tively) and highest annual median values (170 µg l–1

and 189 µg l–1 in MW and VE, respectively). Based on

annual data, chl a was inversely correlated with salin-

ity and was highly correlated with turbidity (Table 2).

Distribution and community structure of

picophytoplankton

Phycoerythrin-rich picocyanobacteria (PE-CYAN)

PE-CYAN presented a wide range of abundances

(from 103 to 108 cells l–1) that increased as total chl a

biomass increased, leading to a significant positive re-

lationship between these 2 variables (Fig. 4a, Table 3).

PE-CYAN were not observed in all lagoons (Fig. 5),

and maximal densities were generally measured in

summer. In particular, high densities (up to 2 × 108 cells

l–1) were observed in summer in 3 oligotrophic marine

lagoons (L, D and U; Table 1). PE-CYAN were numeri-

cally dominant only in those 3 lagoons (>60% of total

picoplanktonic abundances; Fig. 5) but they were pre-

sent in other lagoons (T, IS, PO; Fig. 5) directly con-

nected to the sea. Summer median densities ranged

between 3.8 and 6.8 × 107 cells l–1 in the first ones while

median values were near 1 × 107 cells l–1 in the latter.

Blooms of PE-CYAN (>108 cells l–1) occurred also in la-

goons presenting strong salinity variations and a large

biomass of chl a, such as the ’Palavasian’ series. How-

ever, their relative importance in terms of densities

was low (<2% of total picoplanktonic abundances;

Fig. 5). Based on all lagoon data, PE-CYAN densities
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chl a chl b chl c PE-CYAN PC-CYAN PEUK NANO Temp. Salinity Turbidity DIN DIP DSi

Chl a 1.00 .– .– .– .– .– .– .– .– .– .– .– .–

Chl b 0.76*** 1.00 .– .– .– .– .– .– .– .– .– .– .–

Chl c 0.86*** 0.59*** 1.00 .– .– .– .– .– .– .– .– .– .–

PE-CYAN 0.19*** 0.23** 0.23*** 1.00 .– .– .– .– .– .– .– .– .–

PC-CYAN 0.14* 0.05ns 0.10ns 0.02ns 1.00 .– .– .– .– .– .– .– .–

PEUK 0.72*** 0.67*** 0.49*** 0.34*** 0.01ns 1.00 .– .– .– .– .– .– .–

NANO 0.32*** 0.29*** 0.45*** 0.10** 0.01ns 0.14*** 1.00 .– .– .– .– .– .–

Temp. 0.14*** 0.09* 0.18*** 0.12* 0.17** 0.11* –0.01ns 1.00 .– .– .– .– .–

Salinity –0.49*** –0.31*** –0.32*** –0.01ns –0.29*** –0.33*** –0.23*** 0.06ns 1.00 .– .– .– .–

Turbidity 0.66*** 0.45*** 0.48*** 0.09* 0.04ns 0.49*** 0.23*** –0.14*** –0.52*** 1.00 .– .– .–

DIN 0.13*** 0.14*** 0.06ns 0.10ns –0.07ns 0.09ns 0.24*** –0.26*** –0.48*** 0.34*** 1.00 .– .–

DIP 0.30*** 0.16*** 0.24*** 0.00ns 0.13ns 0.05ns 0.24*** –0.01ns –0.33*** 0.33*** 0.29*** 1.00 .–

DSi 0.50*** 0.47*** 0.32*** 0.09* 0.10ns 0.46*** 0.11* 0.11* –0.58*** 0.35*** 0.31*** 0.32*** 1.00

Table 2. Spearman’s rank correlations between biological, physical and chemical variables at the 95% confidence interval (ns = not sig-

nificant, ***p < 0.001, **p < 0.01, *p < 0.05). Correlations were computed with data from annual periods. Relatively strong correlations

(–0.50 ≥ r ≥ +0.50) are in bold. Number of data points, n = 624. PE-CYAN = phycoerythrin-rich picocyanobacteria; PC-CYAN = phycocyanin-

rich picocyanobacteria; PEUK = autotrophic picoeukaryotes; NANO = nanophytoplankton. Temp. = temperature; DIN = dissolved 

inorganic nitrogen; DIP = dissolved inorganic phosphorus; DSi = dissolved silicates; chl a, b, c = chlorophyll a, b and c, respectively
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were an order of magnitude lower than those of PC-

CYAN (Fig. 4b) and PEUK (Fig. 4c), and represented

9% of the total picoplanktonic abundance but 50% of

the total abundance of picoplanktonic cells <1 µm in

size. PE-CYAN densities were not significantly corre-

lated with salinity, while other phytoplankton groups

were inversely correlated with this variable (Table 2).

As for the other picoplanktonic groups, PE-CYAN den-

sities were positively correlated with temperature.

Phycocyanin-rich picocyanobacteria (PC-CYAN)

PC-CYAN presented a narrower range of abun-

dances than did other phytoplankton groups (107 to

1010 cells l–1; Fig. 4b) but they reached densities of

the same order of magnitude as PEUK (Fig. 4c). Their

abundances increased as the total chl a biomass

increased, leading to a significant positive relation-

ship between these 2 variables (Table 3). Similar to

PE-CYAN, PC-CYAN were not present in all lagoons

(Fig. 5), and their abundance clearly increased in

summer (reaching 5 × 109 cells l–1 at BA) but declined

considerably in winter. They contributed 7% of the

total picoplanktonic abundance and 23% of the

abundance of picoplanktonic cells <1 µm in size. In

summer, PC-CYAN were numerically dominant in

only 2 lagoons (BI and BA; Fig. 5) characterized by

brackish waters (Fig. 3). The hypertrophic wetland-

like lagoon (BA) stood out by the highest median

value of PC-CYAN densities (3.5 × 109 cells l–1).

PC-CYAN contributed significantly to the total pico-
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Fig. 4. Relationship between picophytoplankton and nanophytoplankton abundances (106 cells l–1) and total phytoplankton

biomass (µg chl a l–1) in the 24 Mediterranean coastal lagoons. (a) phycoerythrin-rich picocyanobacteria (PE-CYAN), (b) phyco-

cyanin-rich picocyanobacteria (PC-CYAN), (c) autotrophic picoeukaryotes (PEUK) and (d) nanophytoplankton (NANO). Fitted 

linear regression lines are described in Table 3
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planktonic abundance in lagoons exposed to conti-

nuous inputs of freshwater (25 to 40% in CA and

PO; Fig. 5) or eutrophic and hypertrophic lagoons

such the ’Palavasian’ series and the Or lagoon (15

to 30%; Fig. 5). Based on annual data, blooms of

PC-CYAN often occurred after floods when minimum

salinities were reached in lagoonal waters. All of

these observations were strengthened by correlations

showing that PC-CYAN densities were positively cor-

related to temperature and inversely correlated to

salinity (Table 2). Nevertheless, PC-CYAN could also

contribute significantly to the autotrophic picoplank-

ton community in oligotrophic marine

lagoons (U and AY; Table 1, Fig. 5).

Autotrophic picoeukaryotes (PEUK)

PEUK presented the widest range of

abundances, from 105 to 1010 cells l–1

(Fig. 4c) and showed a significant pos-

itive relationship with total chl a bio-

mass (Table 3). They were repeatedly

observed in all lagoons and dominated

the picoplanktonic community with a

contribution of 84% of total abun-

dances. Except for oligotrophic marine

lagoons (L, D and U; Fig. 5) and wet-

land-like lagoons (BA and BI; Fig. 5),

where PE-CYAN and PC-CYAN,

respectively, were dominant, the

PEUK were numerically dominant in

all other lagoons (Fig. 5). Extremely

high densities (6.4 × 1010 cells l–1) were

observed in the summer in a hyper-

trophic lagoon where chl a was above

55 µg l–1 throughout the year (VE;

Table 1). In this lagoon, PEUK densi-

ties were higher than in other lagoons

by an order of magnitude (summer

median value: 2.6 × 1010 cells l–1). In

other eutrophic and hypertrophic

lagoons (‘Palavasian’ series; Table 1),

median abundances ranged from 1.8 to

47 × 108 cells l–1 in summer. In many

lagoons, PEUK abundances increased

with chl b, as in the VE lagoon, which

stood out with high values of chl b

(up to 83 µg l–1) and undetectable

values of chl c for most of the year.

A strong positive correlation was

observed between PEUK abundances

and chl b (Table 2). In other lagoons,

PEUK increases also coincided with

chl c increases. Among the 4 phyto-

plankton groups, PEUK densities were the most

strongly correlated to turbidity (Table 2). The PEUK

community was numerically represented by cells of the

2–3 µm size class (59% of total picoeukaryote densi-

ties). This size class was dominant in eutrophic lagoons

(‘Palavasian’ series) and was composed mainly of Nan-

nochloris and Chlorella-like green algae. Picoeukary-

otes belonging to the <1 µm and the 1–2 µm classes

represented 16 and 25% of total PEUK densities,

respectively. These size classes were observed along

the eutrophication gradient. In the lagoon (VE) where

record PEUK densities were observed, the picoeukary-
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Fig. Log-log regression model r2 n p

Log(PPPabund) = 2.07 + 1.22 log(chl a) 0.60 606 <0.0001

4a Log(PE-CYANabund) = –0.87 + 0.77 log(chl a) 0.20 375 <0.0001

4b Log(PC-CYANabund) = 3.67 + 0.78 log(chl a) 0.35 80 <0.0001

4c Log(PEUKabund) = 1.62 + 1.23 log(chl a) 0.58 606 <0.0001

4d Log (NANOabund) = –0.38 + 0.88 log(chl a) 0.58 530 <0.0001

6a Log(PE-CYANchl a) = –3.47 + 0.01 log(chl a) 0.00 156 0.87

6b Log(PC-CYANchl a) = –2.90 + 0.78 log(chl a) 0.35 80 <0.0001

6c Log(PEUKchl a) = –2.91 + 1.21 log(chl a) 0.59 600 <0.0001

6d Log(NANOchl a) = –2.00 + 0.88 log(chl a) 0.59 530 <0.0001

7a Log(%PE-CYANchl a) = 1.13 – 0.99 log(chl a) 0.66 156 <0.0001

7b Log(%PC-CYANchl a) = 1.71 – 0.22 log(chl a) 0.04 80 0.07

7c Log(%PEUKchl a) = 1.67 + 0.22 log(chl a) 0.05 600 0.0001

7d Log(%NANOchl a) = 2.61 – 0.12 log(chl a) 0.04 530 <0.0001

Table 3. Summary of relationships between total biomass (chl a, µg l–1) and

phytoplankton abundances (cells l–1) for the 24 Mediterranean coastal lagoons.

PPP = total picophytoplankton, PEUK = autotrophic picoeukaryotes, PE-CYAN =

phycoerythrin-rich picocyanobacteria, PC-CYAN = phycocyanin-rich pico-

cyanobacteria, NANO = nanophytoplankton. The linear model was studied,

including all data sets (annual periods and additional summer data) and is 

represented in Figs. 4, 6 & 7

Fig. 5. Relative contribution of picocyanobacteria and autotrophic picoeukary-

otes to total picoplanktonic abundances in summer in the 24 Mediterranean

coastal lagoons (see Table 1). Phycoerythrin-rich picocyanobacteria (light-grey

bars), phycocyanin-rich picocyanobacteria (medium-grey bars) and autotrophic 

picoeukaryotes (dark-grey bars)
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ote size was >2 µm. The smallest picoeukaryotes

(<1 µm) were dominant in oligo-mesotrophic marine

waters (T and D; Fig. 3), with summer median abun-

dances of an order magnitude of 1 × 107 cells l–1.

Distribution and community structure of

nanophytoplankton and microphytoplankton

Nanophytoplankton (NANO)

NANO abundances were lower than those of PEUK

and PC-CYAN by 2 or 3 orders of magnitude, but were

near those of PE-CYAN (Fig. 4a,d). NANO densities

showed a significant positive relationship with total

chl a biomass (Table 3). NANO abundances were neg-

atively correlated to salinity and, in contrast to

picoplanktonic groups, were positively correlated to

concentrations of DIN and DIP (Table 2). Typically,

NANO expanded after floods that induced a nutrient

increase in lagoonal waters in the cold season. Thus,

the highest densities were generally observed in

lagoons under freshwater influence (‘Palavasian’

series). NANO numerically dominated the phytoplank-

ton community in only 1 shallow lagoon subjected to

river floods (C; Fig. 3). In terms of size, the NANO com-

munity was numerically dominated by the 3–6 µm size

class (49% of NANO abundances) composed mainly of

centric and pennate diatoms, and various phytoflagel-

lates (cryptophytes, chrysophytes, prymnesiophytes).

NANO abundances were positively correlated with

chl c and chl b (Table 2). The 6–10 µm and >10 µm size

classes represented 29 and 22% of NANO abun-

dances, respectively. Freshwater taxa such as Scene-

desmus, Monoraphidium (chlorophytes) and Trache-

lomonas (euglenophytes) were observed in a lagoon

(CA) subjected to permanent freshwater inputs.

Microphytoplankton

In a way similar to the NANO, microphytoplankton,

composed mainly of chain-forming diatoms (Chaeto-

ceros, Rhizosolenia, Pseudo-Nitzschia), were observed

after inputs of freshwater following rain events on the

watersheds in oligo-mesotrophic lagoons (GR, BS and

T; Table 1). In these lagoons, dinoflagellates (Prorocen-

trum, Dinophysis and Gymnodinium) appeared, in

general, in summer after the spring diatom blooms. On

the contrary, in oligotrophic marine lagoons, dinofla-

gellates dominated throughout the year, as in Lagoons

U (Dinophysis, Ceratium), D (Prorocentrum) and L

(Prorocentrum, Dinophysis). A particularly confined

lagoon (BI) stood out by a biomass dominance of chain-

forming diatoms (Chaetoceros, Nitzschia) all year

round. In addition, filamentous Cyanobacteria were

sporadically observed in lagoons exposed to continu-

ous inputs of freshwaters (Anabaena and Spirulina in

PO and CA, respectively) and in the wetland-like

lagoon (Gloeotrichia in BA).

Contribution of the phytoplankton community

to chl a biomass

In order to assess the relative contribution of the dif-

ferent phytoplankton groups to biomass, in more

quantitative terms, abundances were converted to

chl a (see ‘Materials and methods’) and were com-

pared to total chl a biomass. The estimated biomass of

PE-CYAN was lower than that of other groups

(Fig. 6a), with a maximum value of 0.47 µg chl a l–1,

and was not related to total chl a biomass (Table 3).

By contrast, the estimated chl a biomass reached 22

µg l–1 for PC-CYAN (Fig. 6b), 144 µg l–1 for NANO

(Fig. 6d) and 402 µg l–1 for PEUK (Fig. 6c). For these

groups, there was a significant positive relationship

between estimated chl a biomass and observed total

chl a biomass (Table 3). The relative contribution of

PE-CYAN and PC-CYAN to total chl a biomass

reached 34% (Fig. 7a) and 100% (Fig. 7b), respec-

tively. These maximum values were observed in sum-

mer in a marine lagoon (L, <1 µg chl a l–1) and a wet-

land-like lagoon (BA, 10 µg chl a l–1), respectively. In

the latter, the contribution of PC-CYAN to biomass

was particularly high (>40%), except during partial

lagoon drying, when it fell to 2.7%. Overall, the rela-

tive contribution of picocyanobacteria tended to de-

crease as total chl a biomass increased, but the rela-

tionship was significant only for PE-CYAN (Table 3).

Among eukaryotic algae, the relative contribution of

NANO (Fig. 7d) decreased while the relative contri-

bution of PEUK to total chl a biomass (Fig. 7c) tended

to increase as total chl a biomass increased. For both,

the contribution to biomass could reach 100%. In the

lagoon where record PEUK abundances were ob-

served (VE), these picoalgae could contribute from 80

to 100% of total chl a biomass. Other phototrophic

organisms could sporadically contribute to total chl a

biomass. The highest measured biomass (630 µg chl a

l–1) was related to the presence of filamentous

Cyanobacteria that lead to a marked drop in the con-

tribution of picoplankton and nanoplanktonic to total

chl a biomass. In shallow lagoons, partial dry-up,

caused by evaporation, could favor the resuspension

of microphytobenthos (cyanobacteria or diatoms)

because of the reduced water depth — leading to an

exceptional increase of chl a in the water column and,

consequently, a decrease in the relative contribution

of phytoplankton biomass.
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DISCUSSION

Phytoplankton community structure along the

trophic chl a gradient

The 24 Mediterranean coastal lagoons present a wide

range of chl a biomass (0.21 to 630 µg l–1), varying from

values reported for oligotrophic Mediterranean coastal

waters (Thingstad et al. 1998) to those for hypertrophic

lakes (Vörös et al. 1998, Bell & Kalff 2001). This wide

range reflects the variability in the amplitude of the nu-

trient enrichment and efficiency of assimilating nutrients

into phytoplankton biomass (Cloern & Jassby 2008). In

the lagoons, nutrients are efficiently converted into

planktonic primary producers, particularly during the

warm season in which maximum chl a biomass leads to

low nutrient concentrations due to continuous uptake of

nutrients by massive phytoplankton blooms. In the cold

season, light and temperature limitation induces a re-

duction in biomass, and consequently, an accumulation

of nutrients that is particularly high when floods occur.

Picoplanktonic abundances exhibit a seasonality similar

to total chl a biomass. The temperature-dependence of

growth and density of PE-CYAN (Agawin et al. 1998,

Murrell & Lores 2004, Collos et al. 2009) and PEUK (Bec

et al. 2005) has been demonstrated. However, the rela-

tive and absolute importance of prokaryotic and eukary-

otic autotrophic components, in terms of abundance and

biomass, differ along the trophic gradient of lagoonal

waters.

PE-CYAN and PC-CYAN

The abundance of picocyanobacteria significantly

increases with increasing total chl a biomass. Maxi-
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Fig. 6. Relationship between picophytoplankton and nanophytoplankton biomass (µg chl a l–1) to total phytoplankton biomass (µg

chl a l–1) in the 24 Mediterranean coastal lagoons. (a) Phycoerythrin-rich picocyanobacteria (PE-CYAN), (b) phycocyanin-rich

picocyanobacteria (PC-CYAN), (c) autotrophic picoeukaryotes (PEUK) and (d) nanophytoplankton (NANO). Fitted linear 

regression lines are described in Table 3
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mum abundances of PE-CYAN (3 × 108 cells l–1) and

PC-CYAN (5 × 109 cells l–1) are close to maxima

observed in lagoonal and estuarine systems (Caroppo

2000, Ning et al. 2000) and in hypertrophic lakes

(Camacho et al. 2003), respectively. The numerical

dominance of PE-CYAN is restricted to marine oligo-

trophic lagoons (≤3 µg chl a l–1; Lagoons, L, D and U).

Because of their small size and high surface-to-volume

ratios, these picocyanobacteria appear to be more

competitive than PEUK and the larger phytoplankton

in acquiring nutrients in resource-limited systems

(Raven 1986, Weisse 1993). The numerical dominance

of PE-CYAN can thus reflect oligo-mesotrophic condi-

tions in marine coastal waters (Jacquet et al. 1998,

Caroppo 2000, Gin et al. 2003). This dominance could

be related to the ability of PE-CYAN, such as Syne-

chococcus, to acquire phosphorus (P) when concentra-

tions are very low (Collos et al. 2009 and references

therein) because P is the limiting nutrient in the olig-

otrophic lagoons where PE-CYAN dominate (Souchu

et al. 2010). Conversely, the numerical dominance of

PC-CYAN observed in brackish lagoons is consistent

with previous studies showing their predominance in

estuarine and freshwater systems (Pick 1991, Camacho

et al. 2003, Murrell & Lores 2004). In terms of chl a, the

decreasing contribution of the 2 types of picocyano-

bacteria to total biomass along the trophic gradient

(Fig. 7a,b) supports the conclusions drawn for marine

systems (Agawin et al. 2000, Bell & Kalff 2001) and

freshwater systems (Takamura & Nojiri 1994, Callieri &

Stockner 2002). The maximum chl a contribution of

PE-CYAN observed in summer in an oligotrophic

lagoon (34%; Lagoon L) confirms that their relative

importance is greatest in warm and nutrient-poor
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Fig. 7. Relationship between the percentage contribution of picophytoplankton and nanophytoplankton to total phytoplankton

biomass (µg chl a l–1) in the 24 Mediterranean coastal lagoons. (a) Phycoerythrin-rich picocyanobacteria (PE-CYAN), (b) phyco-

cyanin-rich picocyanobacteria (PC-CYAN), (c) autotrophic picoeukaryotes (PEUK) and (d) nanophytoplankton (NANO). Fitted 

linear regression lines are described in Table 3
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waters of oceanic and coastal zones (Agawin et al.

2000, Collos et al. 2009). In contrast, the large contribu-

tion of PC-CYAN to biomass (up to 100%) observed in

a hypertrophic wetland-like lagoon (BA) tends to stand

out from the general trend. A similar pattern of PC-

CYAN dominance (>90%) has been observed in the

Pensacola Bay estuarine system (Murrell & Lores

2004). The large contribution of PC-CYAN in these

systems could be controlled by factors other than nutri-

ent availability and/or temperature (Agawin et al.

2000).

Eukaryotic algae

The abundance of PEUK increases along the

anthropogenic trophic gradient. PEUK are numeri-

cally dominant in most lagoons, contrasting with

many coastal waters (Jacquet et al. 1998, Grégori et

al. 2001, Gin et al. 2003). Their abundance ranges

from values reported in Mediterranean coastal waters

(106 to 107 cells l–1; Jacquet et al. 1998, Grégori et al.

2001) to values similar to those measured in hyper-

trophic freshwater lakes (>109 cells l–1; Hepperle &

Krienitz 2001). To our knowledge, the record densities

(>1010 cells l–1) measured in the most hypertrophic

lagoon (VE) have never been observed in other

aquatic systems. Along the trophic gradient, PEUK

become numerically dominant in mesotrophic lagoons

(3 to 10 µg chl a l–1) where densities are of the same

order of magnitude as those previously measured in

the Thau lagoon (107 to 108 cells l–1; Vaquer et al.

1996, Bec et al. 2005). This numerical dominance

could be explained by the growth capacities of

PEUK — which have growth rates higher than those of

picocyanobacteria (Bec et al. 2005). With increasing N

and P loads, the difference in size between eukaryotic

picoplankton (ca. 2 to 3 µm) and prokaryotic pico-

plankton (ca. 1 µm) could favor nutrient uptake by

PEUK (Raven 1986, Weisse 1993). This PEUK size

class exhibits the highest growth rates (up to 3.3 d–1)

within the ultraphytoplankton (<10 µm) under both

nutrient sufficiency and deficiency (Bec et al. 2008),

and appears particularly adapted to steady-state

nutrient conditions in most lagoons. In terms of size,

dense PEUK blooms are represented mainly by small

chlorophytes (2 to 3 µm) in eutrophic and hyper-

trophic lagoons, while smaller PEUK (<1 µm) are

restricted to marine oligo-mesotrophic lagoons (U and

T). In the Thau lagoon (T), the picophytoplankton is

dominated by Ostreococcus tauri (Prasinophyte), the

smallest-known autotrophic eukaryote (Courties et al.

1994). These results show that the size-dependence of

nutrient acquisition could shape the phytoplankton

size structure even among the PEUK community.

Continued nutrient uptake by massive blooms of

PEUK can lead to permanent nutrient exhaustion,

particularly in summer, preventing the development

of larger microalgae (Sorokin et al. 1996). This is rein-

forced by the relative contribution of PEUK and

NANO to total chl a biomass (increasing and decreas-

ing trend, respectively) with increasing trophic status

of lagoons (Fig. 7). For the PEUK fraction, these

results contrast with the general trend of many marine

and freshwater systems (Agawin et al. 2000, Bell &

Kalff 2001, Callieri & Stockner 2002). An especially

important contribution of the PEUK (>80% of total

chl a biomass) is estimated here in hypertrophic

lagoons, whereas the contribution of the picophyto-

plankton to the phytoplankton biomass is generally

reduced in hypertrophic systems (Takamura & Nojiri

1994, Sommaruga & Robarts 1997). A similar result is

observed in hypertrophic freshwater lakes where

PEUK numerically dominate (Hepperle & Krienitz

2001). NANO are decreasingly important as lagoon

eutrophication proceeds, similarly to freshwater lakes

(Masson et al. 2000). The growth of large phytoplank-

ton (>3 µm) is strongly regulated by nutrient avail-

ability (Chisholm 1992, Bec et al. 2005). The relative

importance of NANO increases in lagoon waters

when these microalgae are released from the limita-

tion of nutrient diffusion (e.g. allochthonous nutrient

pulses). As reported in productive estuarine systems

(Gobler et al. 2002), the large phytoplankton (>3 µm)

are dominated in terms of abundance and biomass

(B. Bec unpubl. data) by small diatoms and phytofla-

gellates (ca. 3 to 6 µm), particularly in eutrophic and

hypertrophic lagoons. The pulses of NH4
+, the major

source of DIN entering lagoons from sewage treat-

ment plants (Souchu et al. 2010), could also favor the

significance of small eukaryotic algae because PEUK

(Boutière et al. 1982, Gobler et al. 2002) and NANO

(Collos et al. 2003, Wafar et al. 2004) have the ability

to use, and generally prefer, reduced forms of nitro-

gen for growth. Rain events may support chain-form-

ing diatom blooms in oligo- and mesotrophic lagoons

(L, T, GR, BS) where PEUK abundances are

restrained. Microphytoplankton are the main contrib-

utor to total chl a biomass in these lagoons (Collos et

al. 2003, Bec et al. 2005).

Influence of freshwater discharge

In coastal waters, freshwater inputs can affect hydro-

logical conditions, salinity and nutrient availability that

alter phytoplankton biomass and community structure

(Phlips et al. 2002, Puigserver et al. 2002, Paerl et al.

2003). Lagoons exposed to large and continuous inputs

of freshwater (CA and PO) were distinguished by par-
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tial consumption of nutrients and reduced phytoplank-

ton biomass. Repeated periods of instability of the

water column in systems exposed to high tides or con-

tinuous freshwater runoff lead to a decrease in chl a

biomass compared to less turbulent systems (Monbet

1992, Puigserver et al. 2002). Rapid changes in salinity

could also be a stress factor for phytoplankton commu-

nities (Phlips et al. 2002). In other lagoons, long resi-

dence time (several months), due to low tidal ampli-

tudes, could contribute to biomass accumulation and

high standing crops of phytoplankton (Knopper 1994)

and, in particular, to the accumulation of picoplank-

tonic populations (Sorokin et al. 1996, Phlips et al.

1999). Hydrological variations can also alter the phyto-

plankton community structure by differentially affect-

ing taxonomic groups depending on their growth char-

acteristics (Paerl et al. 2003). The relative importance

of NANO, composed of small diatoms and phytoflagel-

lates (ca. 3 to 6 µm), increases in shallow lagoons

exposed to high nutrient loads from continuous inputs

of freshwater or discontinuous floods. In contrast,

dinoflagellates (>20 µm) are observed mainly in deep

lagoons (>2 m) typified by the greatest water-column

stability and exposed to low inputs of nutrients, and

harmful dinoflagellates occur particularly in oligo-

trophic and mesotrophic lagoons (Collos et al. 2009). A

similar situation is observed in the Seto Inland Sea

where Alexandrium tamarense and Karenia mikimotoi

developed as nutrient levels decreased (Nishikawa et

al. 2010). As the development of harmful dinoflagel-

lates also occurred in nutrient-enriched conditions

(Anderson et al. 2002, Brand & Compton 2007), other

variables must play a role in such blooms. Water insta-

bility and pulsed inputs of nutrients related to high

river discharge favor fast-growing phytoplankton

(Margalef 1978) such as diatoms, chlorophytes and

cryptophytes (Paerl et al. 2003). In contrast, slower-

growing organisms such as dinoflagellates are better

adapted under low-nutrient, low-turbulence condi-

tions (Margalef 1978). In brackish lagoons, the periodic

development of filamentous or colonial cyanobacteria

(Spirulina, Anabaena and Gloeotrichia) could be

favored by reduced flushing and large inputs of nutri-

ents (Paerl et al. 2003). These cyanobacterial blooms

are often symptomatic of eutrophication of freshwaters

as well as estuaries and coastal lagoons subjected to

large nutrient loads (Knopper 1994).

Influence of salinity

The 24 coastal lagoons exhibit a large salinity gradi-

ent that partly drives the dynamics of 2 types of pico-

cyanobacteria. PC-CYAN are sporadically observed,

except for a wetland-like lagoon (BA) that stands out

by its low salinity (<5) and massive PC-CYAN blooms

(5 × 109 cells l–1). In other lagoons, their development

coincides with decreases in salinity (salinity range:

6 to 20) following floods. PC-CYAN are commonly

observed in freshwater and estuarine systems (Vörös

et al. 1998, Collier 2000) where their distribution and

contribution to the picoplankton community have often

been associated with a salinity gradient (Tamigneaux

et al. 1995, Robineau et al. 1999, Murrell & Lores 2004).

In estuaries, a shift in dominance from PE-CYAN to

PC-CYAN is observed for a salinity below 20 to 25

(Robineau et al. 1999, Murrell & Lores 2004). PE-

CYAN numerically dominate the picoplanktonic com-

munity only in deep marine lagoons (L, D and U) pre-

senting low annual salinity variations and salinities

close to that of the Mediterranean Sea. Strong varia-

tions in salinity in other lagoons (e.g. the ‘Palavasian’

series) do not prevent their development, but maxi-

mum densities remain 10 to 40 times lower than PEUK

densities. These results point out the ubiquity and

resilience of picocyanobacteria and suggest the pres-

ence of different strains that are physiologically

adapted to lagoonal environmental conditions.

Influence of underwater light quality

The distribution of the 2 types of picocyanobacteria in

lagoons could be due to physiological adaptations to

other factors co-varying with salinity (Murrell & Lores

2004). In particular, their distribution patterns could be

driven by the underwater light field (Stomp et al. 2007).

PE-CYAN dominate in marine oligotrophic lagoons

whereas high densities of PC-CYAN are observed in

brackish and hypertrophic lagoons. PE-CYAN strongly

absorb radiation of wavelengths between 500 and

575 nm and are thus better adapted than other

cyanobacteria (PC-CYAN or the genus Prochlorococcus)

to benefit from green light in coastal waters (Kirk 1994,

Stomp et al. 2007). This leads to their predominance

within the picoplankton community in clear waters

where concentrations of suspended particles and dis-

solved organic matter are low (Tamigneaux et al. 1995,

Vörös et al. 1998, Gin et al. 2003). In contrast, PC-CYAN

strongly absorb radiation of wavelengths between 600

and 650 nm (Kirk 1994, Stomp et al. 2007) and are well

adapted to freshwater and coastal marine systems where

the spectral light quality is altered (from green to red) by

turbid waters that are loaded with dissolved and partic-

ulate organic matter or rich in chlorophyll (Vörös et al.

1998, Camacho et al. 2003). As a consequence, the shift

from PE-CYAN dominance in lagoons characterized by

low turbidity and low chl a (<3 µg chl a l–1) to PC-CYAN

dominance in waters rich in chl a (>30 µg chl a l–1) could

be driven by a high attenuation of light and a change in
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the underwater light quality along the trophic gradient

(Pick 1991, Vörös et al. 1998). Nevertheless, PC-CYAN

and PE-CYAN co-occur in low-chl a lagoons under

marine influence (U, AY and GR) as well as in brackish

turbid waters (the ’Palavasian’ series), as observed in

estuarine and coastal systems (Robineau et al. 1999,

Murrell & Lores 2004, Haverkamp et al. 2008) and fresh-

water lakes (Vörös et al. 1998, Mózes et al. 2006).

In summary, the wide anthropogenic and salinity

gradients observed in 24 Mediterranean coastal

lagoons showed that picocyanobacteria, PEUK and

NANO respond differently to environmental perturba-

tions (nutrients, salinity), and that nutrient availability

is a major factor in structuring the communities. The

cell size is a key morphological trait that impacts nutri-

ent acquisition and growth, and finally shapes the

structure of the phytoplankton community, even in the

picoplanktonic cell range. Steady-state nutrient condi-

tions observed in most eutrophic and hypertrophic

lagoons resulted in the dominance of small eukaryotic

algae. PEUK belonging mainly to the upper picoplank-

tonic size limit (ca. 2 to 3 µm) are the most competitive

group among pico- and nanophytoplankton. Their rel-

ative importance, in terms of abundance and biomass,

generally increases with increasing trophic status, con-

trasting with the general trend of many marine and

freshwater systems. These results confirm that PEUK

are able to thrive in coastal ecosystems, not only in

oligo-mesotrophic marine waters but also in eutrophic

and hypertrophic brackish waters.
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