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Summary. In this paper the observations are considered to be normally dis-

tributed with constant variance and means consisting of linear combinations
of certain trigonometric functions. The likelihood ratio criterion for testing the
independence of the observations against the alternatives of circular serial cor-
relation of a given lag is found to be a function of the circular serial correlation
coefficient for residuals from the fitted Fourier series (Section 4). The exact dis-
tribution (Section 5), the moments (Section 6), and approximate distributions

1 Included in Cowles Commission Papers, New Series, No. 42.
* Presented to the meeting of the Institute of Mathematical Statistics at New York,

December 30, 1947.

3 Fellow of the John Simon Guggenheim Memorial Foundation; Research Consultant

of the' Cowles Commission for Research in Economics.

59

The Annals of Mathematical Statistics. STO N,

www_jstor.org
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(Section 7) are given for the cases of greatest interest. From these results sig-
nificance levels have been found (Section 3). The use of these levels is indicated
(Section 2), and an example of their use is given (Section 3).

1. Introduction. Two mathematical models have been used extensively in
time-series analysis. In one model the observation is the sum of a “systematic
part” and a random error. The cyclical properties of this model result from the
cyclical properties of the systematic part, which is usually taken to be a short
Fourier series. The stochastic element is superimposed on the non-stocbastic
part, and the error at one time point does not affect a later observation. The other
model is the stochastic difference equation or “autoregressive model.”” An ob-
servation is the sum of a linear function of previous observations and a random
element. The eyclical properties follow from the properties of the difference
equation (i.e., the linear combination of observations), but are disturbed by the
random disturbance that is integrated into the system. A more general model
can be constructed that includes both of the two mentioned. The observation
can be taken as a linear combination of past observations and Fourier terms plus
a random element. ,

In this paper, the linear combination will be only a multiple of some preceding
observation. For lag 1, the model is of the form

03] Ty — pi = p(Ting — pi1) + s, t=12 ..+ ,N,

where 7y = =z, and gy = u, . In (1), the {2;} are the N observations; the {u;}
are N random disturbances, each assumed normally and independently dis-
tributed with zero mean and variance ¢°; the means {u;} are linear combinations

of some of the N functions of ¢: cos 2—},1—@ and sin g%h ForNodd,g=0,1, ---,

iN—-1);h=1,---,3N —1).ForNeven,g =0,1,--- ,4N;h =1, - -,
4N — 1. Hence,

2 Z 0lgr COS —2- 1r'Lg + Z B sth =5 2”"

where ¢’ and A’ run over certain values of the ranges of g and h, respectively.
Let K’ be the number of terms in (2). Usually the constant term, oy , is included
(in this case g = 0 and cos ?-N——m = 1). Of the N trigonometric functions available,
the terms in (2) are usually chosen so that terms with certain periods are in-
cluded and terms with other periods are excluded. It should be noted that (1)
defines a circular model.

The sample estimates of «,r and Bir are the usual regressions of z; on
cos 2mig’ and sin —— 2k’

. N N’
onometric terms, the estimates are

respectively. Because of the orthogonality of these trig-
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where the sums on ¢’ and ' are over the ranges in (2).
The serial correlation coefficient suitable for this model is

Z (x. - ml) (xt—l - ml—l)
(5) R — fum] ,
E (z: — ms’)2

where mq = m, . This statistic can be used to estimate p, or it can be used to
test hypotheses about p. In fact, for the circular model this statistic leads to the
best tests [3].

It is hoped that the mathematical model studied in this paper can be used in
the treatment of certain problems in economic time series. For example, the
seasonal variation in a series of data may be considered as a “systematic part”
made up of trigonometric components. In the next section we discuss in a more
detailed way how the use of this model may arise in the field of economics.

We have considered circular serial correlation, although in most statistical
problems it is non-circular serial correlation that is involved. The reason for
treating the circular case is the inherent mathematical simplicity. The circular
coefficient and Fourier series of the type (2) are “naturally” related. The relevant
fact is that the vectors

(cos 2———” cos il co8 2N1rg) and { sin — Zrh sin arh L sin 2——N1rh)
N ? ’ N N b N ’ b N

are characteristic vectors of the matrix of the quadratic form in (z; — m) of
the numerator of E. For this reason the distribution and significance points
are easily obtained.

In the usual applications the circular coefficient can be used even if the hypoth-
esis alternative to independence of observations is non-circular serial correla-
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tion. The circular coefficient may not have as good power against non-circular
alternatives as non-circular coefficients, such as
N

'g (i — mi) (@1 — Mi-y)
i (-’l?i - m.’)2 .

=1

(6

However, the difference between these two statistics is (z1 — m) (zn — my)/
Z(z; — m;)?, and it can be shown that this converges stochastically to zero (as
N increases and p remains fixed).

2. The use of fitted Fourier series. A linear combihation of trigonometric
terms may be used as a regression function when there is a ‘“‘systematic part”
(or “trend”) that is periodic. For instance, it may be reasonable to assume that
g series of agricultural data has a systematic component with certain periodicities
due to variation in weather. Then one may ask whether this regression function
“explains” all of the interrelations in the series.

An example taken from agricultural economics is a development of that given
by Koopmans [8]. Suppose p; and ¢; are the price and supply, respectively, of a
given farm product at time ¢. Let Q¥ be the quantity demanded at time ¢ if
pe = P, and Q¢ be the quantity supplied at time ¢ if p,_, = P, where P is an
arbitrarily selected point of reference on the price scale, serving to define the
Q's. Let the market equations be defined as follows:

7 pe — P = —8(g. — Q") + w,
(8) qg: — Q?) = 5(Pc—L - P) + ve,

where 4 and v are random disturbances. The first equation expresses the price
depressing tendency of an abnormally large supply; the second expresses the
supply-stimulating influence of abnormally high prices L time units earlier (the
time between planning the product and selling it). We can substitute from (7)
at time (¢ — L) into (8) and obtain

9 g — Q¥ = p(qes — Q%) + we,

which is of the form (1) for general lag L (¢ — 1 is replaced by ¢t — L) if
Q¥ — pQ¥. = u: — pps—z. Now we may wish to test the null hypothesis,
Hy : p = 0. If we assume that our alternative hypothesis is H, : p > 0, we can
test the null hypothesis by use of the positive tail of the distribution of R. Simi-
larly for H, : p < 0, we would use the negative tail of the distribution of R. In
other cases, if we believe p # 0, we might wish to estimate p.

It is of particular interest to consider using the Fourier series for seasonal
variation. The most important cases are given below with indications of the
appropriate tables of significance points for testing the hypothesis p = 0. (a)
Annual data. Here only a constant is fitted; this is the sample mean. The tables
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given in [2] or [5] are to be used. (b) Semi-annual data. To “correct” for varia-
tion of period two we fit a constant and cos 7t = (—1)*. The table given in Sec-
tion 3 for P = 2is to be used (c) Quarterly data. The four terms to be fitted are

1, cos ot = (—1), cos — 2 , and sin = 3 . The table given in Section 3 for P = 2
and 4 is to be used. (d) Bzmonthly data The six terms to be fitted are 1, cos #t, cos

2nt , 8in —- 2t cos mt , and sin = . The table given in Section 3 for P = 2, 3, and

3 3" 3 3
6 is to be used. () Monthly data. The twelve terms to be fitted are 1, cos lg,
at at t wt 2nt 2nt 5t St

wl
sm—t,)—,coasg,:sm3 5 5

(—1)¢. The table given in Section 3 for P = 2, 12/5, 3, 4, 6, and 12 is to be used.
It is assumed here that the data are given for each time interval in a certain
number of years. Then the residuals are the same as the residuals taken from
means for each month or season. That is, if the data are monthly, one may com-
pute the sample means for January, February, etc., and residuals are to be taken
from the corresponding monthly means. The fitted Fourier coefficients are cer-
tain linear functions of these means.

, €08 —, §in 5 €08 3,asm 3 Cos sin 6,sa.ndco:s-:rt

3. Tables of significance points of R.

3.1. Significance poinis of R using a seasonal trend for annual, semi-annual, bi-
monthly, and monthly data. The calculations of significance puints of B (lag 1
only) have been subdivided according to the number of terms included in the
estimating equations, m; . The significance points for only a constant in m; have
been tabulated in [2] and [5]. Since the main use for m; equations involving sine
and cosine terms seems to be for semi-annual, quarterly, bimonthly, and monthly
data, for which N is even, the results presented in this paper are for N
even. Then we will have all of the sine and cosine terms in pairs except for cos

= (~—1)! and the constant term. We shall find it convenient to refer to the
period P,» = N/¢’ or Py, = N/k' of the terms in (2).

We have calculated significance points R’ exact to 3 decimal places,
for PriR > R'} = a = .01, .05, .95, and .99. The values of R’ correspond-
ing to a@ = .01 and .05 are usually indicated as the positive significance points
and those corresponding to « = .95 and .99, the negative significance points. In
all of these cases, except for annual data, the distribution of R is symmetrical.
Hence only the positive significance points need be given, since the negative
points are simply the corresponding positive points with opposite sign; that is,
R (95) = —R’ (05), R’ (99) = —R’ (.01).

The significance points were calculated from the exact distribution of R
given in Section 5 for all N up to the values where the approximate significance
points using an Incomplete Beta distribution (Section 7) were the same as the
exact significance points. The Incomplete Beta significance points were used
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up to the value of N for which a normal approximation was satisfactory. For
some of the results, the normal points became sufficiently accurate to be used
following the exact points.

The values of R’ are given in Table 1 except for (a), for the following values
of N:

(a) Annual data—see the tables in [2] or [5].

(b) Semi-annual data (P = 2): N = 6(2)60. The exact points were needed
for N through 10(e = .05) and N through 22 (a = .01). The normal points
could be used for N = 60 (a« = .05) but were still too large by .003 for N = 60
(e = .01)

(c) Quarterly data (P = 2, 4): N = 8(4)100. The exact points were needed
for N through 20 (¢ = .05) and N through 32 (¢ = .01). The normal points
were adequate for all N above 20 (¢ = .05) but were still too large by .001 for
N = 100 (a = .01).

(d) Bimonthly data (P = 2,3, 6): N = 12(6)150. The exact points were needed
for N through 24 (@ = .05) and N through 30 (« = .01). Again the normal
points were adequate for all N above 24 (¢ = .05) but were still too large by .0005
for N = 150 (a = .01). ,

(e) Monthly data (P = 2, 12/5, 3, 4, 6, 12): N = 24(12)300. The exact points
were needed for N = 24 (a = .05) and N' = 24, 36 (¢ = .01). The normal points
were adequate for N > 24 (« = .05) and N > 300 (a = .01).*

Significance points for the Incomplete Beta approximation (See Section 7) are
tabulated in terms of 2p and 2¢. The values of 2p and 2¢ are the same when
p(R) = 0; for (c), (d), and (e) above these values are simply N — 3, N — 5,
and N — 11, respectively. Hence, for two-tailed significance points for these
cases, the ordinary correlationtables can be used with N — 3, N — 5,and N — 11
degrees of freedom, respectively. Also, our one-tailed significance points can be
approximated by use of the 10%, and 29, significance points for the ordinary
correlation coefficient. 10%, 5%, 2%, 1%, and 0.19, two-tailed significance
points have been tabulated by Fisher and Yates [6]. These significance points
are accurate to three decimal places for the serial correlation coefficients as
follows:®

(¢) n = N — 3 degrees of freedom: N > 24 (« = .05); N > 36 (« = .01),

(d) n = N — 5 degrees of freedom: N > 24 (a = .05); N > 30 (« = .01),

() n = N — 11 degrees of freedom: N > 24 (e = .05 and a = .01), where
« is the one-tailed significance point. For semi-annual data (b), 2p = 2¢ =

2
l—;véﬁl—_i_é , which is not an integer for N > 12. When N = 12, 2p =
2¢ = 14, for which the ordinary correlation significance point is adequate
for « = .05.

4 It should be noted that for (¢), (d), and (e), an approximation given by Cochran [4)
is easily computed and is more accurate than the normal approximation for the « = .01
significance points, :

§ In [6] n is 2 less than the number of pairs used in computing the ordinary correlation
coefficient when the sample means are first subtracted.
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Details of computing techniques using the exact distribution are given by
R. L. Anderson [1] for computing values of R’ when u; = 0.

3.2. Significance points of R for other single-period trends. Significance pointshave
also been obtained forP = 3, P = 4, P = 6, and P = 12, for which K’ = 3.

TABLE 1
Exact significance poinis, B’, for different fitted series*
P=2 P=24 P =236 P =2,12/5,3,4,6,12
N\ea .05 01 | N\« .05 01 [N\«a| 05 01 |[N\a| .05 .01
6 | .495 | .499 8| .636 | .693 | 12| .592 | .744 | 24 | .441| .592
8 ! .484 | .607 | 12| .515 | .661 | 18 | .442 | .592 | 36 | .323| .445
10 | .453 | .601 | 16 | .439 | .582 | 24 | .369 | .504 | 48 | .267| .371
12 | 426 | .572 | 20 | .388 | .523 | 30 | .323 | .445 | 60 | .233| .325
14 | 402 | .544 | 24 | .351 | .478 | 36 | .291 | .403 | 72 | .209| .293
16 | .382 | .519 | 28 | .323 | .441 42 | .267 | .371 84 | .191| .268
18 | .364 | .496 | 32 | .300 | .414 | 48 | .248 | .346 | 96 | .177] .249
20 | .348 | .476 | 36 | .282 | .391 | 54 | .233 | .325 | 108 | .166| .234
22 | .334 | .458 | 40| .267 | .371 | 60 | .220 | .308 | 120 | .157 .221
24 | .321 | .442 | 44 | .254 | .354 | 66 | .209 | .293 | 132 | .149| .210
26 | .310 | .427 | 48 | .243 | .338 | 72| .200 | .280 | 144 | .142} .200
28 | .300 | .414 | 52 | .233 | .325 | 78 | .191 | .268 | 156 | .136| .192
30 | .200 | .402 | 56 | .224 | .313 | 84 | .184 | .258 | 168 | .131| .184
32| .282 | .390 | 60 | .216 | .302 | 90 | .177 | .249 | 180 | .126| .178
34 | .274 | .380 | 64 | .209 | .293 | 96 | .172 | .241 | 192 | .122| .172
36 | .266 | .370 | 68 | .202 | .284 | 102 | .166 | .234 | 204 | .118| .166
38 | .260 | .361 | 72| .197 | .276 | 108 | .161 | .227 | 216 | .115| .162
40 | .254 | .353 | 76 | .191 | .268 | 114 | .157 | .221 | 228 | .111] .157
42 | 248 | .345 | 80 | .186 | .261 | 120 | .153 | .215 | 240 | .108| .153
44 | 242 | .338 | 84 | .182 | .255 | 126 | .149 | .210 | 252 | .105| .149
46 | .237 | .331 | 88| .177 | .249 | 132 | .145 | .205 | 264 | .103| .146
48 | .233 | .324 | 92| .173 | .243 | 138 | .142 | .200 | 276 | .101| .142
50 | .228 | .318 | 96 | .170 | .238 | 144 | .139 | .196 | 288 | .099| .140
52 1 .224 1 .313 | 100 | .166 | .234 | 150 | .136 | .192 | 300 | .097| .136
54 | .220 | .307
56 | .216 | .302
58 | .212 | .297
60 | .209 | .292

* P = Periods Used in Fitted Series.

In these cases, the distribution of R is asymmetrical. The Incomplete Beta
approkimation is symmetrical for P = 3, with 2p = 2¢ = N — 2, even though
the exact distribution is not.

The significance points for these single-period trends are given in Table 2.
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The exact distribution was required to compute the « = .01 and .99 significance
points for N through 48 in all cases and also for most cases with « = .05 and
.95. For N > 48, the Cochran approximation [4] gave the same results as the
Incomplete Beta approximation. Since this Cochran approximation can be com-
puted more rapidly, it should be used if other significance points are desired.
The normal approximation is not recommended beecause it is less accurate than
the Cochran approximation and requires almost as much calculation. For « = .01
and .99, the significance points using the normal approximation were too large
(in absolute value) by from .0005 to .001 for the last entries in Table 2. The two-

TABLE 2
Ezxact significance points, R', for single periods > 2
P=3 P=6
o [+3
N N
99 95 .05 01 99 95 .05 .01
6 | —.970 | —.854 | .496 | .500

12 | —.690 | —.522 | .475 | .619 | 12| —.766 | —.651 | .296 | .506

18 | —.558 | —.409 | .392 | .526 | 18 | —.630 | —.509 | .277 | .440
24 | —.480 | —.348 | .340 | .463 | 24 | —.540 | —.427 | .254 | .393
30 | —.428 { —.309 | .304 | .417 | 30 | —.482 | —.373 | .236 | .359
36 | —.389 | —.280 | .277 | .382 | 36 | —.438 | —.335 | .220 | .332
42 | —.360 | —.257 | .256 | .356 | 42 | —.403 | —.306 | .207 | .311
48 | —.336 | —.240 | .240 | .334 | 48 | —.375 | —.283 | .197 | .294

54 | —.316 | —.226 | .226 | .316 | 54 | —.352 | —.264 | .188 | .279
60 | —.300 | —.214 | .214 { .300 | 60 | —.333 | —.248 | .180 | .266
66 | —.286 | —.204 | .204 | .286 | 66 | —.316 | —.235 | .173 | .255

72 | —.274 | —.195 | 195 | .274 | 72| —.301 | —.224 | .167 | .246

78 | —.263 | —.187 | .187 | .263 | 78 | —.288 | —.214 | .161 | .237

84 | —.254 | —.181 | .181 | .254 | 84 | —.277 | —.205 | .156 | .229

90 | —.245 | —.175 | .175 | .245 ] 90 | —.267 | —.197 | .151 | .222

96 | —.237 | —.169 | .169 | .237 | 96 | —.258 | —.190 | .147 | .216
102 | —.230 | —.164 | .164 | .230 | 102 | —.250 | —.184 | .143 | .210
108 | —.224 | —.159 | .159 | .224 | 108 | —.242 | —.178 | .140 | .205
114 | —.218 | —.155 | .155 | .218 | 114 | —.235 | —.173 | .137 | .200
120 | —.212 | —.151 | .151 | 2127} 120 | —.229 | —.168 | .134 | .195
126 | —.207 | —.147 | .147 | .207 | 126 | —.223 | —.163 | .131 | .191
132 | —.202 | —.144 | 144 | .202 | 132 | —.218 | —.159 | .128 | .187
138 | —.198 | —.141 | .141 | .198 | 138 | —.213 | —.155 | .125 | .183
144 | —.194 | —.138 | .138 | .194 | 144 | —.208 | —.152 | .123 | .180
150 | —.190 | —.135 | .135 | .190 | 150 | —.203 | —.148 | .121 | .177
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TABLE 2—Continued

P=4 P=12
N ’ N :
99 95 05 o1 .99 95 05 01
8 | —.889 | —.768 | .503 | .637 12| —.778 | —.671 | .096 | .245
12 | —.742 | —.608 | .420 | .585 24 | —.555 | —.444 | .197 | .330
16 | —.643 | —.502 | .369 | .522 36 | —.447 | —.348 | .188 | .208
20 | —.576 | —.441 | .333 | .474 48 | —.383 | —.293 | .175 | .270
24 | —.519 | —.396 | .306 | .437 60 | —.339 | —.257 | .163 | .249
28 | —.477 | —.361 | .285 | .407 72 1 —.307 | —.231 | .153 | .231
32 | —.445 | —.334 | .268 | .383 84 | —.283 | —.212 | .145 | .217
36 | —.418 | —.312 | .253 | .363 96 | —.263 | —.196 | .138 | .206
40 | —.395 | —.293 | .241 | .345 | 108 | —.247 | —.183 | .132 | .196
44 | —.375 | —.277 | .230 | .330 | 120 | —.233 | —.173 | .126 | .187
48 | —.358 | —.264 | .221 | .317 | 132 | —.221 | —.164 | .121 | .180
52 | —.343 | —.252 | .213 | .305 | 144 | —.211 | —.156 | .117 | .173
56 | —.330 | —.242 | .206 | .294 | 156 | —.202 | —.149 | .113 | .167
60 | —.319 | —.233 | .199 | .285 | 168 | —.194 | —.143 | .110 | .162
64 | —.308 | —.225 | .193 | .277 | 180 | —.187 | —.138 { .107 | .157
68 | —.208 | —.218 | .188 | .269 | 192 | —.181 | —.133 | .104 | .153
72 | —.280 | —.211 | .183 | .262 | 204 | —.175 | —.128 | .101 | .149
76 | —.281 | —.205 | .178 | .255 | 216 | —.170 | —.124 | .099 | .145
80 | —.274 | —.199 | .174 | .249 | 228 | —.165 | —.121 | .097 | .141
84 | —.267 | —.194 | .170 | .243 | 240 | —.161 | —.117 { .094 | .138
88 | —.261 | —.189 | .166 | .238 | 252 | —.157 | —.114 | .092 | .135
92 | —.255 | —.184 | .162 | .233 | 264 | —.153 | —.111 | .091 | .132
96 | —.249 | —.180 | .159 | .228 | 276 | —.149 | —.109 | .089 | .130
100 | —.244 | —.176 | .156 | .223 | 288 | —.146 | —.106 | .087 | .127
108 | —.234 | —.169 | .150 | .215 | 300 | —.143 | —.104 | .086 | .125
120 | —.221 | —.160 | .143 | .205
132 | —.210 | —.152 | .136 | .196 |
144 | —.201 | —.145 | .131 | .187

tailed significance points cannot be obtained from the ordinary correlation
tables except for P = 3.

3.3. Example of use of significance points. As an example of the use of these
" significance points, B’, we shall consider the following data [17] on the receipts
of butter (in units of 1,000,000 pounds) at five markets (Boston, Chicago, San
Francisco, Milwaukee, and St. Louis). The figures in parentheses are deviations
from the average of the given months over the 3 years.
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Year Total
Month ’ Average

1935 1936 1937 *
Jan. 48.9(2.4) | 48.3(1.8) 42.4(—4.1)| 139.6 | 46.5
Feb. 43.4(—0.6)| 47.1(3.1) | 41.4(—2.6)| 131.9| 44.0
March 43.8(—4.6)| 52.4(4.0) | 49.0(0.8) 145.2 | 48.4
April 50.8(—1.5) 55.3(3.0) 50.8(—1.5)] 156.9 | 52.3
May 67.6(1.6) 64.7(—1.3)| 65.8(—0.2)] 198.1 | 66.0
June 83.7(0.7) 79.5(—3.5)| 85.9(2.9) | 249.1 ] 83.0
July 82.7(10.7) | 62.6(—9.4)| 70.6(—1.4)] 215.9 | 72.0
Aug. 60.8(4.8) 51.3(—4.7); 55.8(—0.2){ 167.9 | 56.0
Sept. | 55.4(3.6) | 51.0(—0.8) 49.1(—2.7)! 155.5 | 51.8
Oct. 48.4(—1.0)] 54.0(4.6) | 45.7(—3.7)] 148.1 | 49.4
Nov. 37.7(—4.5)] 45.2(3.0) | 43.8(1.6) 126.7 | 42.2
Dec. 41.0(—3.2)| 44.9(0.7) | 46.7(2.5) 132.6 | 44.2
Total 664.2(8.4) 1656.3(0.5) [647.0(—8.8)} 1967.5 | 655.8
Average 55.35(0.70) | 54.69(0.04) 53.92 163.96 | 54.65

(—0.73)

We assume that the trend is composed of the 12 terms having periods that
divide 12. We shall test the null hypothesis that the deviations from the trend
are independently distributed against the alternative that there is positive
serial correlation. The fitted series is of the form

5 . o2
m; = by + 3. (b;,~_1 cos %” + bs; sin ﬂ) + bl cos i

(10) 24 6

here we find it convenient to use the notation, bs , by, -- - , by, for the coef-
ficients (with a different relationship between the, subscripts and the trigono-
metric functions than in (4)). We find that the m; are simply the average receipts
given for each month in the above table (46.5, 44.0, - - - , 44.2). Hence the devia-
tions (z; — m;) are given by the figures in parentheses (2.4, —0.6, - - - , 2.5). The
calculated lag 1 circular serial correlation coefficient is

_ @4)(—06) + (—=06)(—46) + -+ + (L6)(25) + (25)(24)
@47 + (—067 F - + @5y

Ry

(11)
_ 23218
474 51

Entering Table 1 for P = 2, 12/5, 3, 4, 6, and 12 and N = 36, we find that
R’ (.05) = 0.323 and R’ (.01) = .445. Hence, at either the 59, or 19, level the
null hypothesis of zero serial correlation (p = 0) is to be rejected (against the
alternative single-tail hypothesis, p > 0). If we had been interested in the two-

= 0.489.
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tailed alternative hypothesis, p # 0, we would use the ordinary correlation tables
with N — 11 = 25 degrees of freedom and we would find that for the two-tailed
test R’ (.01) = 0.487. Our value is significant at the 59, level and barely signifi-
cant at the 197 level.

The values of b* in (10) are computed as follows

12
= > T:/36,

=1

by = Z T cos "”J 18,

F=1

by = Z T, sin MJ/IS

=]

(12)

12
by = > T cos ni/36.
fam]

The computed values of by to bi; are 54.65, —14.82, —2.02, 6.60, 1.23, —3.98,
0.30, 2.21, 1.73, —0.61, 0.60, 0.15, respectively. However, it is not necessary to
compute these values in order to obtain m;. The problem of estimating the
variances of these b’s will be discussed in Section 4.

4. Testing the hypothesis of lack of serial correlation.

4.1. Statement of the problem. Consider the N random variables u,, - - -, ux,
each normally and independently distributed with mean 0 and variance o°.
Define the N variables z;, - - - , zx by the equations
(13) T; — ui = p(:t.'_L - Ih'—L) + u (z = 1; Tty N):
where
(14) Tej = Tn—j, bej = PN—j G=20,1,--- :N -1

and u; is the linear combination of trigonometric functions given in (2). If L
and N are relatively prime (in particular, if L = 1), the Jacobian of the trans-
formation from {u;} to {z;} is 1 — ", and the probability density of {z;} is

(15), 1 - PN e—in«r’
(2mwo2)¥¥ !

where @ = (1 + PZ) Z (x; — #1) — 2p Z (@i.— p)(@icp — piw). T L =

the covariance betweenx, and z; is ¢ [p"_’I + M = MO = ) T
L = qa and N = pe, where p, ¢, and « are positive integers and ¢ and p are
relatively prime, then the Jacobian is (1 — p”)* and the density of {z.} is

e

(16) @ra?)i¥
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We shall now obtain the likelihood ratio test of the hypothesis Hy : p = 0 on
the basis of a sample consisting of one observation on each z; .

4.2. Preliminary transformations. We shall find it convenient to express u; in
terms of fixed variates ¢;; , having certain properties. Later we will verify that
the ¢’s are simply constant multiples of the trigonometric terms in (2). We sup-
pose now that

x’
(17 pi = Zl¢ij’h' (t=1,---,N),
e

where K’ < N, the {v;} are parameters, and the ¢;; are known functions of 7 and
j satisfying

(18) bi-ri + birni = 2\ i ¢G=1,---,N; j=1,---,K,
N
(19) 3 duda = o Gk=1,--,K),
(20) Diyj = ¢N—i.i (1: = 0) 1) e ’N =~ 1),
and &;; is the Kronecker delta. Let
xl
(21) m; = ’Z; i C;
where
N
(22) ¢ = ; Zi dij .
Then by usual regression theory we have
N
(23) 21 (®: — migs; = 0,
N N . K’ .
(24) Z:l (w: — p)’ = 21 (x: — ms)" + Zl (¢ — i)
g p— i

because c; is the least squares estimate of v; . Let us evaluate
N
LC' = Zl (@ — p)@icp — pi-z)

- f, @ — m) + (ms — wdl(@ios — Mmics) + (Mics — ey

(25) = Zi:; (s — m) (@i — mir) + 'Z_; Z:l $iri(ci — vi)(w:i — my)
+ Z; ;_31 $ii(c; — vi) (@iwr — Mi-r)

+ Z Z bicdi—rilcr — )i — v5).

il jk==1
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Call the first term on the right hand side of (25) .C. In view of (20) the next two
terms are
N

(26) 2 2 (@ — m)(bivri + irr)Ci — Vi)

jml fwml

This is seen to be zero by consideration of (18) and (23). The last term can be
written

(27) 2 E Z (¢1lc di—1,i + ¢i+L:¢zk)(ck - ‘Yk)(c; - ’YJ) = Z )\LJ(C) - ’Y:)

=] §, k=l
by use of (18), (19), and (20). Thus
(28) LC Z-; (x; - mi)(xl—-L - m‘l—L) + Z XL.f(c,; 'Yi)z-

It follows that

Q= (L4 % = md = 20 2 o — m)aics — mid)
(29) ) =
+ 20 (1 + 6 = 2ohz)c; — )™

=1
We can complete the matrix ® = (¢;;) so that ® is an N-th ordersquare matrix
with elements satisfying (18), (19), and (20). If we make the transformation

N
(30) z; = Z;qs.-,-cj G=1,---,N),
=
then
N N
31) 2 (@ —m)i= 2 o,
i=1 j=KT+1
N N
(32) 2 (@ — m)(@icp — mir) = D Agics.
f==] j=E 41

4.3. The likelihood ratio criterion. To obtain the likelihood ratio test of the
hypothesis Ho : p = 0 against alternative hypotheses H, : p # 0, we divide the
maximum of the likelihood assuming H, by the maximum of the likelihood as-
suming H, . It is clear from (15) and (29) that if H, is true, the maximum like-
lihood estimates of v, and o* are ¢; and

(33) =3 Z (x; — my)

respectively. If H, is true, the maximum likelihood estimate of v; isc¢; . Tostate
the maximum likelihood estimates of ¢° and p under H, it is convenient to define
LR, the sample serial coefficient of lag L, as

(34) R = 2 Z (w5 — mi)(zi—z. — mi_p).

89 =1
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Then the maximum likelihood estimate of ¢° under H, is

(35) & = si(l + #* — 25.R),

where 3 is the maximum likelihood estimate of p and satisfies
(36) R(L4 3" — 31+ 5" =0,

if L and N are relatively prime and satisfies

(37) R+ 57 — (1 + 57 =0,

if L = ga, N = pa, and p and q are relatively prime.
Upon substituting these estimates into the hkehhood function we find that
the likelihood ratio criterion is

(1+ 5 — 2. R
1—

(38) A=

?

if L and N are relatively prime and

[(1 + b 2;»LR)*"}“’

1~ p?

(39)

if L = ga, N = pa and p and ¢ are relatively prime. The maximum likelihood
estimate of p is the root of (36) or (37) that makes (38) or (39), respectively, a
minimum. It should be noticed that throughout this section p could be replaced
by 1/p (and changing o’ by a factor 1 4 p°). To make the maximum likelihood
estimate unique, we require that | 5 | < 1. It can be shown that there exists one
and only one root of (36) or (87) that satisfies this requirement and minimizes
A. (There is a peculiarity to this solution in that if N is odd, L = 1, and R <
~1 + 2/N, then 3 = —1 is the root minimizing A). In any case, A is a function
of .R. We have shown that for 0 < B < 1, it is a monotonic decreasing func-
tion; and for —1 < R < 0, it is a monotonic increasing function. A critical
region defined by A < )\ can, therefore, be defined by ;R < Ry < 0and0 < R, <
LR. (The probability that . = —1 or 41 is 0.) Thus we can use R to test the
null hypothesis H; : p = 0 instead of the likelihood ratio criterion (against one-
sided alternatives they are equivalent). The strongest justification for the use
of LR in testing Hy : p = 0 is that for circular distributions the uniformly most
powerful tests against one-sided alternatives and the B, test against two-sided
alternatives are given in terms of inequalities on R [3].

We can also use R as an estimate of p. In fact, R is asymptotically a root of
(36) or (37). This is proved by showing that ;R(1 + RY) — R(1 + R"™®) =
RY M1 — LR? converges stochastically to zero. We shall use R both to esti-
mate p and to test hypotheses about this parameter.’

Now we shall define ¢;; used in Section 4.2 in terms of the trigonometric terms
indicated in Section 1. In the rest of the paper we shall let the index g run from

¢ W. J. Dixon [5] arrived at 1R as the maximum likelihood estimate for u; a constant by
neglecting the Jacobian in (15).
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0 to 2N for N even and from 0 to 3(N — 1) for N odd; we let the index A run
from 1 to 4N — 1 for N even and from 1 to (N — 1) for N odd. We shall use a
prime to denote an index running over those values corresponding to fitted terms
and a double prime to denote an index running over those values corresponding
to terms not fitted.

Let the N trigonometric functions of 7, namely cos 2—%;.—!! and sin 2-——‘";}" be num-
bered from 1 to N such that the fitted terms are numbered from 1 to K’ and the
non-fitted terms from K’ + 1 to N. According to this numbering we define ¢4 to

bin a8

= /2 02T
(40) éij 1/]; cos ==

or

_ 2 . 2mwih
(41) di; = ,‘/]% sin N

Defined this way, the ¢,; satisfy (18) and (19) and (20). It can be shown by using
the addition formulas for sines and cosines that

2x Lf
(42) AL; = CO8 Ak
where f = g or f = h depending on whether j refers to a term (40) or (41). We

shall assume that the numbering of trigonometric functions is such that
(43) ALkl 2 Apgrgz 2 *00 2 ALw.

It can easily be seen that (2) is of the form (17) except that o;- and Bx mus®
be multiplied by v/ZN unless ¢/ = 0 or N and by+/N for ¢’ = 0, 3N to obtain
v; . The regression coefficients a,- and by- are similarly related to the ¢; .

It can be seen from (29) that the a; and by are independently distributed with

variance %Naz/(l +p° — 2pcos —f) forf # 0, 1N and variance No*/(1 — p)’

for f = 0 and for f = N if L is even and No°/(1 + p)’ for f = 3N if L is odd.
In these variance formulas we can estimate ¢ from (35) using R for  and p.

6. The exact distribution of .R.

5.1. Introduction. Under the null hypothesis Hy : p = 0 the observations {z;}
are normally and independently distributed with variance ¢° and means Ex; = u, .
The variables ¢; defined by (22) and (29) are normally and independently dis-
tributed with variance ¢° and means v;. For j > K’, v; = 0. It follows from
(31), (32), (33), and (34) that

N

i ;-H Mas ]
(44) B =",

2
Ci
jmE 41
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where the \.,; are given by (42) corresponding to the K"/ = (N — K') trigo-
nometric terms not fitted. Thus to obtain the distribution of LR we need only
consider the joint distribution of {c;},7 = K’ + 1, ---,N. If H, is true, the
joint density of all the ¢; is (15), where

xl
(45) Q=ﬂ+ﬁV—%ﬂ+§U+f—%MMrw%

and
N N
V= 3 ¢ and 0= 2 Aci.
j=K'+1 J=K 41
5.2. Some special distributions of 1R = R. If the constant term (¢ = 0) is
fitted and the other terms are fitted in pairs (cos %‘"\']__’f and sin ?_Xr_"tf), then K’

is odd. If N is odd, then K” is even; the Ai; occur in pairs and we can define
M as
Axrt1 = Mgz = M > Anxrds = A

(46) ” ! n
=Xz > o > Miw—1 = My = Nyxrv .

This also holds if N is even and if, in addition to the constant term and paired

cosines and sines, we fit cos 7z = {—1)*(¢’ = N/2). If N is even and we donot

fit cos i, we have K” odd. Then

4n Agril = Mrrge = AL > ALgr4s = Mgrd = A > e > Av-a

= My = 7\’},(1:"—1) > My = )‘;’(x"+1) = —L

The general expression for the distribution of R in these cases has been found

by one of the authors [2]. In this case the cumulative distribution function is

1 minus
Pr{R > R’} = >, (=D | Vi | — RO

) 2 | Ve | ’
Atz < R < M,

where V3 is found from a result of Lehmann [9] to be

J(v41) " " R
(49) Vk = gw— Sin 2—1rN.i—' Sin T—].f_\;— g (A],;’ - Al,‘l),

1/

2xf

N
Aij», excluding Aij» = 1. Hence, A1;- takes on K — 1 values in $(K’ — 1) pairs
if K’ is odd and in $(K’ — 2) pairs plus a single A,;; = —1 if K’ is even. We can
also write V3 as

and the product onj’ is over the K’ terms

where f” is such that M = COS
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Qp(WHE’) f 7|"f (g 77 ; 77
= g + ) . wlg — )
Vi S N N ,,I,Io /‘/sm 7 sin j04

. . w(h + f”) . x(h —f”)
Ih’]: sSin N S N .

5.3. Some special dzstmbutzons of LR for L > 1. We have noted in (44) above

(50)

that AL,; = cos 27'-][\;f , where 1" corresponds to a term not used in the estimation
equations for m, , which was a function of {cos 2—’;’# , Sin 27'# } If L, the lag, is

relatively prime to N, the distribution i s the same as that given above for L = 1,
except for the re-evaluating of the ¢ . In the artlcle by R. L. Anderson [2],
where only the constant term in m, was used, the A¢ for lag L were exactly the
same as the A for lag 1. However, this W111 not be the case for other terms
used in m;. For example, consider lag 2 and N odd with m; consisting of the con-

stant term plus terms in cos Zmi. and sin 2 In this case the N for lag 1 are

N N~
47 67 N — D= "
{cosN,cos—,-- ,cos—-—N—} and the i for lag 2 are
0032 s67r cos-SI cs(N — l)r}
NSNS S Ty

Next suppose the highest common factor of L and N is « (as befdre, L = qa
and N = pa, with p and ¢ relatively prime). In this case

”
(51) AL = cos 2rqf

Since p and g are relatively prime, the results are the same as for g replaced by 1
and L replaced by a. Each root is repeated « times.

N =2L(p =2
Ifwelet N = 2L, N = cosak = +1lor —1.2" = +1 corresponds to these
5!
fitted terms in m; : {1, cos ?1]"_\;1’ sin ?—7;}" } for ¢’, b’ even. \” = —1 corresponds
A
to these terms: {cos 21;,‘0 , sin 27;,}" } for ¢’, b’ odd. Let L — n; be the number
of terms pertaining to \” = +1 and L — n, be the number of terms for
A’ = —1. Then, as in [2], we have the density
1= (R 721 4 (R

52 D(Ro) =
(52) (B gitmiFng)= 3(Ln: , 3ng) ’

where LR, was the notation used for lag L and p = 2. The cumulative function
is the Incomplete Beta function, found by setting z = (1 — R').

N =3L(p = 3)
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”
If welet N = 3L, A = cos 2nf = +41, —1. The fitted terms in m; corre-

N
sponding to\” = 1 a {1 cos 27139 , 8in %{J:Tﬁ} for ¢/, K’ = 3m. Similarly, those
corresponding to N’ = —ihaveg, b = 3m — 1 or 3m — 2. Let the number

of fitted terms with " = +1be L — n, and with \” = 3 te 2L — m. Then
(1 - LR;)“"’—Z)(% + LRa)i(nl—z)
@3/ 078Gy, 3my)

where (B3 > —3%. This cumulative function is also an Incomplete Beta function,
found by setting x = 2(1 — R')/3.

(53) D(.Ry) =

’

N =4L(p = 4) .
If N = 4L, N, = cos %Af;_ = 41,0, —1. The fitted terms in m, corresponding
to \” = 1 have f” = 4m, those for A’ = —1 have f = 4m — 2; and those

for A" = Ohavef”’ = 4m — 1 or 4m — 3. Let the number of terms in m; of each
sort be L — ny, L — n., and 2L — n;, respectively. Then

(1 + R)i(n1+n3—2) fl y;(m—Z) (1 _ y)}(n1—2)

y=0

. [(1 = R) — y(1 + R4y forR <0,

1
(1 _ R)!(ﬂzﬂa—Z) f . yi(n;—2)(1 _ y)i(ng—z)

o

[+ R) —y(1 — RIF™ P4y for R > 0,

where R is 1Ry and ¢ = T'(}[n1 + 12 + na))/[T(3no) T (3ne) T (3ng)2H 2],

5.4. The exact distribution of LR when p # 0. The joint distribution of the ob-
servations for lag 1 when the null hypothesis is not true (p # 0) is (15), where
Qisgiven by (45) with L = 1 and ,C = RV.V, R, {¢;}(j=1,:--- ,K') are a
sufficient set of statistics for estimating ¢°, p, and {v;}(j = 1, - -+, K'). Using
the results given by Madow [11}, it can be shown that the simultaneous dis-
tribution of V and R is

(54) D(R) = c{

1— " V}x"—le—V(1+p=—2px)I2cl D(R)
69 e B :
25 TGK) 4/ TI (1 + o — 20M7)

=

where D(R) is the density function corresponding to (48). Integrating V from 0
to «, we obtain as the density for B
1-,"3GK" - 1) .
(56) ( X7 )@ (1 + o* — 20R)*™
I (1 + & — 20M50)

§7=1

(=DM - YT v,

k=1
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for Ams1 < R £ M, where V; are given by (50). In the same way, one obtains
the distribution of R for p # 0 when N = 2L, N = 3L, and N = 4L by multi-
plying (62), (563), and (54), respectively, by

2 _ }xll
(57) (1 _ pp)t. (1 4+ p 2PR)

V.

IT (1 + 6* — 20Ms50)

1'=1

where K” = n + ma or ny + n2 + ns. This method was used by Madow for
residuals from the sample mean [12].

)

6. Moments.

6.1. The exact moments of R. Most of the results of this section are straight-
forward adaptations of earlier results for the case of u; constant. Hence, we shall
omit the details of derivations. The moment generating function of ¥V and C
for o = 11is
1 —p¥

.
[1 + 0" — 26— 2(p + ?) xl,,-u]

5 D = B = —3

iK1

The A™ moment of B = C/V is given by
, 0 Vh-1 V1 ah h—1
(59) = [ [ 108w [,

o0 ath som]

with the {y;} restricted from being too large (not more than a certain amount
larger than zero). In the case of independence, (o0 = 0), we have the following
first two moments of R:

p 1 &
mB) = = 2 Mg

K" jo&Er1
(60 ’ 2 ul K"
! B e 2 14 ey : 2-
pa(R) = ) i"-zx'+1 AL + ) [u1(R)]
If the )\, ;- are symmetrical (ie. for each Ay ;//, there is a Ayzr = —Nyjrv), the

mean of R is 0. For example, if 1 and (—1)* are fitted for N even, the mean is 0.

6.2. Approximate moments of R when p = 0. Since B and V are independent
[8] when p = 0, ¢/ (B) = u'(C)/u’'(V). V is a sum of squares and its moments are
the same as for x* with N — K’ = K’ degrees of freedom. Using methods similar
to those given by Dixon (5], we see that the moment generating function for
Cis

(61) o) = a(t) - BQ) - ¥(),
where

i~
(62)° a() = (%) ,B() = AV /[AY — @20)7),

v@® = II;» @ — 2tAy;),and 4 = 1 + /1 — 48.
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’
In this case, A\.,;» = cos gjﬂ\'rj; includes all K’ terms corresponding to those in m; .

Since the first N derivatives of 8(f) are zero at { = 0, we can use
2% 1T, (1 — 28 a0t
1+ V1 — 4epy

as an approximation to (61). This expression yields the exact moments of C
up to order N.

(63) () = alt) -y(t) =

it
As a special case, consider K’ = 3, with A;,; = 1 and A2 = A3 = cos —2—1;\'77— .

In this case
- 2™\
(64) és(t) = (1 — 2t cos A $1(D.
Successive derivatives of (64) at ¢ = 0 show that
ok
(65) R = | Pui(R) — 20 000 2L uiu(m) |

where P = u(V)/un(Vs) = (N — 3 + 2h)/(N — 3), @ = uia(V2)/ua(Vs) =
2/(N —3),andh=1,2,---,N.

6.3. Approximatemoment generating function of C and V when p # 0. To obtain
an approximate moment generating function for C and V when p # 0, we utilize
an approximation method given by Leipnik [10]. The exact moment generating
function (58) with ¢° = 1 can be written as

27t

(66) ot t) = (1 — p™)fexp. {—‘ 3 glog[1 + p* — 2ty — 2(p + #) cos —ﬁ]}

where 8 =[],/ [1 + o° — 2 — 2(p + )M}, and j refers to the K fitted terms
in m; . If the sum in the exponent of (66) is replaced by

N
(67) fo log [1 4+ ot — 2t — 2(p + ) cos 22—1\?] dz,

and if (1 — p") is replaced by 1, we obtain the approximate moment generating
function
IL 11 + 0" = 26 — 200 + &) M1

(30 + o2 — 2t + V(T F o7 — 26" — 40 + D)

7. Approximate distributions of R.

7.1. The Pearson Type 1 (Incomplete Beta) distribution. The significance points
of K can be found exactly from equation (48) for L = 1 and by integrating
equations (52), (53), and (54) for N = 2L, 3L, and 4L, respectively. These exact

probability integrals for N = 2L, 3L, and 4L are simply sums of Incomplete
Beta functions, and the significance points can be found in Pearson’s T'ables of

(68) é=
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the Incomplete Beta-Function [14] or in the Thompson tables [16]. However, the
computation of the exact significance points for L = 1 and N > 4 by use of
equation (48) is quite tedious and actually impossible for large N with present
logarithm tables and readily available computing devices. Hence, approximate
distributions are called for.

The Type I approximation to the distribution of R is

(1+ R (1 — R
2v+e-1 B(p, q)

where p and ¢ are chosen so that the first two moments of this approximate dis-
tribution agree with the first two moments of the exact distribution. It can be
shown that each moment of the approximate distribution approaches the corre-
sponding exact moment quite rapidly as N increases. On the basis of the ap-
proximation, the probability « of the significance point B’ being exceeded can
be found from the Incomplete Beta function. Thus

(69) A(R) = y—1<R<Z1,

(70) a=Pr{R >R} =1-L{ g = L@ ),
where

. ]- * »—1 —_ g—1
(71) L(p,¢@) = oD fo ¥ (1 - ) dy,

andz=(Q1+R)/2,2=(0—2),p =¢q,and¢ = p. Hence, R’ = 2x — 1 =
1 — 22,
The p@rameters in (69) are taken to be

(72) = (14 ) — p2)/we, 2¢= Q0 — p)A — p2)/pe,

where pe = pz — (1)’ a.nd i — p.(R) given in (60). Hence, when the distribu-
tion of R is symmetrlc, wr=0and2p =2 = (1 — pa)/ s -

,In Section 3.1, we set up significance points for four special trends for which
ur = 0:

b) P = 2(c)P—24(d)P—236(e)P 2, 12/5, 3, 4, 6, 12.

The values of yz for these four trends are:
(b) N — 4)/INN — 2)], (e) 1/(N — 2), (d) 1/(N — 4), (e) 1/(N — 10).
Naturally the third moments for these symmetric distributions are 0. The fourth
moments are as follows:

Trend ) (b) (O] (d) (e)
Exact 3(Nt— 2N — 16) 3(N2 — 2N — 16) 3

80 NFHN+INN —-2) | (N+)WNHNV—-2)(N —4) (N—Z)(N —4) | V—-8)(N—10)
Incomplete 3(N — 4)2 3 3

Beta N(N-2)(N*—8) N(N -2 (N-2)(N—-4) (N —8)(N—10)

We.note that for (d) and (e), the fourth moments for the Incomplete Beta are
exact and for (b) and (c), they approach the exact values quite rapidly as N
increases.
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In Section 3.2, we considered some significance points for the following single-
period trends: P = 3, 4, 6, and 12. The values of 2p and 2¢ for these asymmetrical
cases are

_(N—-—4—-20F _(N—-24+20)E
where A = cos —1—5, E=WN-1)N-4)—4andD=N—-3)(N — 1+ 4\) —
(N — DA + 2032

Equation (69) has the drawback of using the range (—1, +1) instead of the

true range of R, which varies between the last (smallest) A, to the first (largest)

M . For example, if N = 12 and we fit the constant, cos —~ Zmi , and sin 2wt then

12 12’
_ _ V3 . 4r O
My =1, )\12—)\13—cos—l—-z——-z—,a.ndthera.?geoles -1, ) 008 75=5
However, if we fit the constant and cos xi = (—1)°, then \;,; = 1 and A2 = ~1,

\——g-3 ,+ l/z—g) From these examples we see that the
error in using the approximate range (—1, +1) varies according to the fitted
terms in m;, and that the error is worse on one tail than on the other, unless
symmetric terms are fitted. A more accuraté approximation could be obtained
by use of the exact curtailed range, but it was not thought desirable because the
exact range rapidly approaches the approximate range as N increases.

We might add that the significance point, R’, can also be calculated from the
Inverted Beta (F) distribution, for which tables are given by Merrington and
Thompson {13}, Snedecor [15], and Fisher and Yates [6]. Cochran [4] has provided
an approximate formula for 2 = % log.F when 7, and n, are not given in the
F-tables.

7.2. The normal approximation. It should be noted that R is asymptotically
normally distributed for p = 0, as shown by the form of the characteristic func-
tion. We have considered the normal approximation with mean u: (R) and
variance y; (R). The variance of B was given in the previous section for the four
special trends. For all single period trends, except P = 2, po= —(1 + 22/
(N — 3) and the variance is

the true range would be (—-

N =144 _ o

V-n@wv-3 ™

where, as before, A = cos (2x/P). Further terms in an asymptotic expansion of
the distribution would take account of higher moments of B as Hsu has done
for the case of fitting only the mean (m; = a constant) [7].

(74) ' M2 =
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