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An indirect effect implies a causal relation in which an 
independent variable generates a mediating variable, which 
in turn generates a dependent variable (Sobel, 1990). Indi-
rect effects are important in basic and applied research. 
For example, the effect of attitude on behavior is hypoth-
esized to be mediated by intention (Ajzen & Fishbein, 
1980). Parental education level affects the child’s educa-
tion, which then affects the child’s potential income (Dun-
can, Featherman, & Duncan, 1972). Likewise, neighbor-
hood degradation affects neighborhood cohesion, which 
then affects crime rates (Sampson, Raudenbush, & Earls, 
1997). Applied health promotion and disease prevention 
programs provide many other examples of indirect effects, 
and such programs are designed to change mediators that 
are hypothesized to be causally related to an outcome (Judd 
& Kenny, 1981; MacKinnon & Dwyer, 1993).

The statistical properties of estimators of the indirect 
effect and its standard error have received much research 
attention recently. MacKinnon, Lockwood, Hoffman, 
West, and Sheets (2002) and Shrout and Bolger (2002) 
demonstrated the low power of some tests of the indirect 
effect. Methods of computing confidence limits for the in-
direct effect often have substantial imbalances, in part due 
to the assumption that the indirect effect follows a normal 
distribution (MacKinnon, Lockwood, & Williams, 2004). 
Simulation studies and other research have demonstrated 

that confidence limits for the indirect effect based on the 
distribution of the product method (MacKinnon et al., 
2002; Pituch, Whittaker, & Stapleton, 2005) or resampling 
methods (MacKinnon et al., 2004) are more accurate than 
other methods. In particular, the confidence limits com-
puted using the distribution of the product method are 
asymmetric, consistent with the nonnormal distribution 
of the indirect effect. MacKinnon et al. (2004) demon-
strated that the method used to construct confidence lim-
its based on the distribution of the product, described in 
MacKinnon et al. (2002), was more accurate than other 
methods. For example, the distribution of the product con-
fidence limits have more power than the normal-theory 
confidence limits. Most recently, Pituch et al. provided 
another demonstration of the improvement obtained by 
confidence limits derived using the distribution of the 
product method described in MacKinnon et al. (2002). 
The purpose of this article is to describe a computer pro-
gram called PRODCLIN, which computes confidence 
limits for the indirect effect based on the distribution of 
the product but is more precise than the distribution of the 
product programs used in prior research. PRODCLIN has 
not been described in the published literature until now. 
Other programs that compute indirect-effect measures 
(Lockwood & MacKinnon, 1998; Preacher & Hayes, 
2004) have proven useful for researchers.
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Estimation of the Indirect Effect 
and Standard Error

The indirect-effect model is shown in Figure 1 and 
is summarized in these three equations (MacKinnon & 
Dwyer, 1993):

 Y Xˆ ˆ ˆ
01 1  (1)

 Y X Mˆ ˆ ˆ ˆ
02 2 (2)

 M Xˆ ˆ ˆ .03 3
 (3)

In these equations, Y is the dependent variable, X is the 
independent variable, and M is the mediating variable.   is 
the coefficient relating the independent variable and the de-
pendent variable, and   is the coefficient relating the inde-
pendent variable to the dependent variable adjusted for the 
effects of the mediating variable. , and represent 
the intercept in Equations 1, 2, and 3, respectively, and , 

and  represent residuals. The residuals are assumed 
to be independent across equations and have an expected 
mean of zero.

This article focuses on a computer program for a prod-
uct of coefficients method of assessing the indirect effect 
that involves estimation of Equations 2 and 3. First, the co-
efficient relating the mediating variable to the dependent 
variable is estimated, , in Equation 2. Second, as shown 
in Equation 3, the coefficient, , relating the independent 
variable to the mediating variable, is estimated. The product 
of these two coefficients, , is the estimator of the indirect 
effect. The coefficient relating the independent variable to 
the dependent variable, adjusted for the mediating variable, 
 , is the estimate of direct effect.

An estimator of the variance of the indirect effect, 2 , is 
based on the variance of the product of the  and  regres-
sion coefficients. The exact variance of the product of two 
independent random variables (Mood, Graybill, & Boes, 
1974, p. 180), such as  and , derived using a second-order 
Taylor series, is

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ .2 2 2 2 2 2 2  (4)

The independence of  and  for this recursive model is 
described in Sobel (1982) and MacKinnon, Warsi, and 
Dwyer (1995).

Sobel (1982, 1986) derived the approximate variance 
of the indirect effect using the multivariate delta method 
(Bishop, Fienberg, & Holland, 1975) and showed its ap-
plication to research data (see also Folmer, 1981). The for-
mula based on the multivariate delta method,

 ˆ ˆ ˆ ˆ ˆ ,2 2 2 2 2  (5)

is used to calculate the standard error of the indirect ef-
fect in many statistical software packages, such as EQS 
(Bentler, 1997) and LISREL (Jöreskog & Sörbom, 1993). 
The approximate variance in Equation 5 is based on first 
derivatives, so it does not include the 2 2 term found in 
Equation 4, which is usually small in comparison with the 
other two terms. An unbiased estimator of the variance 
subtracts 2 2 from Equation 5, as shown by Goodman 
(1960). All three of these estimators assume that the coef-
ficient vector containing  and  is consistent, efficient, 
and asymptotically normal.

These variance estimators can be used to calculate stan-
dard errors and confidence limits for the indirect effect. For 
nonzero values of both  and , Monte Carlo studies suggest 
that all three variance estimators appear to have relative bias 
of less than 5% for a sample size of 100 or more in a simula-
tion study of the single indirect-effect model (MacKinnon 
et al., 1995) and a sample size of 200 for the multivariate delta 
standard error in a simulation study of a recursive model with 
seven indirect effects (Stone & Sobel, 1990). In many stud-
ies, the indirect effect is divided by its standard error and the 
resulting ratio is then compared with the normal distribution 
to test its significance (Bollen & Stine, 1990; MacKinnon 
et al., 1991; Wolchik, Ruehlman, Braver, & Sandler, 1989). 
Confidence limits for the indirect effect lead to the same con-
clusion with regard to the null hypothesis. Confidence limits 
are constructed using Equation 6,

 ˆ ˆ * ˆ ,/z1 2  (6)

where z1 /2 is the value on the z-distribution correspond-
ing to the desired Type I error rate, .

Although the variance and standard error estimates of 
the indirect effect may be unbiased, confidence limits 
based on these values are often inaccurate. Simulation 
studies (MacKinnon et al., 2004; MacKinnon et al., 1995; 
Stone & Sobel, 1990) have shown an imbalance in the 
number of times a true value falls to the left or right of 
the confidence limits. For an indirect effect where  and 

 are both positive or both negative, the confidence limits 
are more often to the left rather than to the right of the true 
value. Bootstrap estimation of the indirect effect confi-
dence limits leads to similar imbalances (Bollen & Stine, 
1990; Lockwood & MacKinnon, 1998; MacKinnon et al., 
2004). An explanation for the imbalance in confidence 
limits is that the confidence limit estimation assumes a 
normal distribution of the indirect effect, when in fact the 
distribution of the product is skewed for nonzero indirect 
effects and has different values of kurtosis for different 
values of the indirect effect (MacKinnon et al., 2004).
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Figure 1. The indirect effect model.
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The Distribution of a Product
The indirect effect divided by its standard error does 

not have a normal sampling distribution in many situ-
ations. MacKinnon, Lockwood, and Hoffman (1998) 
developed an alternative method to test for the indirect 
effect based on the distribution of the product of two nor-
mally distributed random variables (Aroian, 1944; Craig, 
1936). Because the indirect effect is the product of regres-
sion estimates that are normally distributed (Hanushek & 
Jackson, 1977), the distribution of the product can be ap-
plied to the use of the product  as a test of the indirect 
effect based on the product z z , where z  / and 
z  /

The distribution of the product of two normal variables 
is not normal (Lomnicki, 1967; Springer & Thompson, 
1966). In the null case, where both  and  (or z  and z ) 
have means equal to zero, the distribution is symmetric 
with predicted kurtosis of six (Craig, 1936), even for very 
large sample sizes. When the product of the means,  
or z z is nonzero, the distributions are skewed and have 
excess kurtosis, although Aroian, Taneja, and Cornwell 
(1978) showed that the product approaches the normal 
distribution as either z , z , or both get large in absolute 
value. The four central moments of the product of two cor-
related normal variables were given by Craig and Aroian 
et al. Below are the central moments of z z  when the vari-
ables are uncorrelated, as is the case here.

 M Mean z z1  (7)

 M Variance z z2
2 2 2 1  (8)

 M Skewness
z z

z z
3 3

2 2 3 2

6

1
/

 (9)

 M Kurtosis
z z

z z
4 4

2 2

2 2 2

12 6

1
 (10)

Although the general analytical solution for the distri-
bution of the product of two independent standard nor-
mal variables does not approximate familiar distributions 
commonly used in statistics, Aroian (1944) showed that 
the gamma distribution can provide an approximation in 
some situations. The analytical solution for the distribu-
tion of the product is a Bessel function of the second kind 
with a purely imaginary argument (Aroian, 1944; Craig, 
1936). Springer and Thompson (1966) provided a table 
of the values of this function when     0 (or z   
z   0). The formula for the case when     0 (or z   
z   0) is equal to (1/ )K0, which can be programmed in 
the Mathematica (Wolfram, 1996) computer program, and 
the general formula for any value of z and z is shown at 
the bottom of this page (Craig, 1936; Hayya & Ferrara, 

1972: Equation 10), where K is the Bessel function and 
where  is a Laurent series equal to
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r
. . .  (12)

where r is the order of the Laurent series (e.g., for 2, r 
equals 2) and

 ( ) ( )( ) ( ).r k r k r k rk 1 1. . .  (13)

Meeker, Cornwell, and Aroian (1981; see pp. 129–144) 
presented tables of the distribution of the product of two 
standard normal variables based on an alternative formula 
more conducive to numerical integration. These tables 
of fractiles of the standardized distribution function for 
( )/ are given for different values of , , , and 

. The tables assume that the population values of , 
, and  are known, but the authors suggest that sample 

values can be used in place of the population values as an 
approximation.

Confidence Limits
For the 95% standard normal confidence limits for the 

indirect effect, a critical value of 1.96 is used for z1 /2 
and the standard error, such as the multivariate delta so-
lution in Equation 5, is used. For the distribution of the 
product confidence limits, there are different critical val-
ues for the upper and lower confidence limits because of 
the asymmetry in the distribution. Using the Meeker et al. 
(1981) tables, the upper and lower limits are obtained 
using a table of critical values from the distribution of the 
product using the sample values z  and z  for probability 
values of .025 and .975. Once the critical values are found 
from the tables, they must then be converted back into 
the standardized metric of the original values for  and  
using Equation 14:

Standardized Critical Value
Critical Value z z

z z2 2 1
.  (14)

The standardized critical values are then substituted into 
Equation 6 in place of z1 /2 to create confidence limits for 
the indirect-effect estimate , where the standard error is 
the square root of Equation 5. Note that the critical val-
ues for confidence limits based on the distribution of the 
product are not the same as those for the  normal-theory 
confidence limits, and they are not identical for the upper 
and lower limits, as they are for the  normal-theory limits. 
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Also, for cases in which the mediated effect is negative, the 
upper and lower critical values are reversed and multiplied 
by 1. This operation is necessary because the tables in 
Meeker et al. give only positive values for  and .

Generation of the Critical Values for the 
Distribution of the Product

The most important aspect of the PRODCLIN program 
(see Archived Materials) is the use of a Fortran program 
to compute the critical values for the distribution of the 
product. Because the tables provided by Meeker et al. 
(1981) contained critical values for combinations of z  
and z  only from 0 to 4 by .4 increments, and then for 6, 9, 
and 12, it was desirable not only to find a more accurate 

method of obtaining critical values that did not involve 
extensive rounding but also to have the ability to find 
confidence limits for any Type I error rate, not just .05. 
This was accomplished by editing a Fortran program by 
Alan Miller (1997) called FNPROD. Given specific mean 
values of z  and z , along with their correlations (equal to 
zero for the indirect effect from Equations 2 and 3), and a 
value for z z , FNPROD returns the cumulative percentile 
for that value of z z  using numerical integration based on 
an algorithm by Meeker and Escobar (1994) and work by 
Morris (1992). Rather than using trial and error to find the 
value of z z  for confidence limits, the FNPROD program 
was edited so that, given values for , , , ,  (the 
correlation between  and ), and a Type I error rate, the 
program iteratively finds the corresponding critical val-
ues. The program was further edited so that the values of 

, , , and  could be imported from various statistical 
packages, and the critical values could then be returned to 
the statistical software so that the asymmetric confidence 
limits could then be computed.

Program Description
PRODCLIN is presented here for the SAS macro pro-

gramming language (SAS Institute, 2005), as illustrated 
in Figure 2, although versions for R (R Development 
Core Team, 2005) and SPSS (SPSS Inc., 2005) are also 
available from the authors at the Web site www.public.asu 
.edu/~davidpm/ripl/Prodclin/. To begin, the correlation be-
tween  and  is entered into the program, as is the desired 
Type I error rate. For most examples, the correlation be-
tween  and  is zero, but the correlation may be nonzero 
for some indirect-effect models. Next, the observed values 
for , , , and  are entered in the “%PRODCLIN” line 
in the SAS program and the program is run. SAS then 
exports these values to a text file, “raw.txt,” which is used 
by the PRODCLIN Fortran program to generate the corre-
sponding critical values. After finding the critical values, 
PRODCLIN outputs the values to a text file, “critval.txt,” 
that SAS reads in; SAS then standardizes the critical val-
ues using Equation 14. The program then computes con-
fidence limits for the distribution of the product (lower 
limit  “prodlow”; upper limit  “produp”) and the nor-
mal distribution (lower limit  “normlow”; upper limit  
“normup”) from the standardized critical values (lower 
standardized critical value  “low,” and higher standard-
ized critical value  “high”) and the standard error of the 
indirect effect using Equation 5 (see Figure 2).

Examples
PHLAME (Elliot et al., 2004) was a program designed 

to increase the physical fitness and health behaviors of 
firefighters. One part of the program targeted the mediat-
ing variable of tracking food. It was hypothesized that the 
act of tracking food intake would reduce body weight by 
drawing attention to the amount and types of food eaten. 
The  coefficient relating program exposure to tracking 
food intake was .3937 with a standard error (SE) of .1872 
for a t value of 2.10. The  coefficient relating tracking 
food to body weight was equal to .8798 with an SE of 
.1910 for a t value of 4.61. These values are entered in the 

1. Read in values for , , , , ,
and the Type I error rate. 

2. SAS outputs these values to a file
named “raw.txt”. 

3. Prodclin.exe read the values from
“raw.txt”, finds the corresponding critical
values, and then outputs them into a file
named “critval.txt”.  

5. Compute lower and upper confidence
limits based on the distribution of the
product based on Equation 6 and the
asymmetric distribution of the product
critical values. 

4. SAS reads in the critical values from
“critval.txt” and then standardizes them by
subtracting the true values of z z  from
the numerator and dividing by the square
root of (z 2 + z 2 + 1). 

6. Compute lower and upper confidence
limits based on normal-theory standard
error and Equation 6 using ±1.96 for z1 – /2.

7. Print out normal distribution and
distribution of the product confidence
limits.

Figure 2. Flow chart for the PRODCLIN program SAS.
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PRODCLIN program at this line: “%prodclin(a .3937, 
sea .1872, b .8798, seb .1910);”. These values were 
entered into PRODCLIN to yield lower and upper 95% 
confidence limits of .738090 and .028209 that did not 
contain zero, consistent with a statistically significant me-
diation effect. Interestingly, the normal-theory confidence 
limits were .701230 and .008480, suggesting that the 
mediated effect is not statistically significant.

In a classic sociology example, Duncan et al. (1972, 
p. 38) presented data collected during the early 1960s 
from a process model of achievement. One of the indi-
rect effects found in the study was the relation of father’s 
education to respondent education to respondent income. 
The coefficient relating father’s education to respondent 
education was .1701 with an SE of .0156, and the  coef-
ficient from respondent education to respondent income 
was .1998 with an SE of .0364. The lower and upper 95% 
confidence limits based on the distribution of the product, 
.021045 and .048214, were quite similar to the normal-
theory limits, .020400 and .047572. The similarity of the 
distribution of the product limits and the normal-theory 
limits is due to the large t values for the two effects (10.90 
and 5.49); as one or both of the t values get larger, the 
distribution of the product is more similar to the normal 
distribution (Aroian et al., 1978).

Simulation
A simulation study was conducted to compare the 

PRODCLIN confidence limits to the percentile and bias-
corrected bootstrap confidence limits. The simulation 
methodology was the same as that used by MacKinnon 
et al. (2004), in which data for a single mediator model 
were generated based on zero, small (.14), medium (.39), 
or large (.59) population parameter values. There was evi-
dence in the MacKinnon et al. (2004) study that statisti-
cal tests based on the bias-corrected bootstrap had excess 
Type I error rates for cases in which one path in the me-
diated effect was zero and the other path was nonzero. 
To investigate these results in more detail, we conducted 
an additional simulation study with sample sizes of 50, 
100, and 200 for the four parameter combinations (zero/
zero, zero/small, zero/medium, and zero/large) for the 
alpha and beta paths, respectively. For each combination 
of parameter value and sample size, 1,000 replications 
were obtained, and for each replication, 1,000 bootstrap 
samples were taken. As Table 1 shows, the PRODCLIN 
program returned Type I error rates comparable with those 
of the percentile bootstrap method and comparable with or 
smaller than those of the bias-corrected bootstrap method 
for all parameter combinations studied in this simulation.

Conclusion
Many research questions focus on indirect effects. Re-

cent work on the statistical properties of estimators of in-
direct effects indicates that confidence limits based on the 
asymmetric distribution of the product have properties su-
perior to those obtained with other methods. The PROD-
CLIN program computes asymmetric confidence limits 
based on the distribution of the product. New asymmetric 
confidence limits based on the distribution of the product 

are more exact than those based on the normal distribu-
tion. They are, therefore, more powerful and have more 
accurate Type I error rates, a conclusion supported by the 
findings of the simulation that was conducted and by prior 
research (MacKinnon et al., 2002; MacKinnon et al., 
2004; Pituch et al., 2005). We included normal distribu-
tion confidence limits in the PRODCLIN output so that 
the confidence limits from the distribution of the product 
and those from the normal distribution could be directly 
compared. Resampling methods are an alternative for 
obtaining asymmetric confidence limits, but resampling 
methods require raw data that is sometimes unavailable, 
as was the case for the sociology study described in this 
article. The programming and computational demands of 
resampling methods may be cumbersome for some re-
searchers. Resampling methods are included as part of co-
variance structure analysis programs such as EQS (Bentler, 
1997), LISREL (Jöreskog & Sörbom, 1993), and Mplus 
(Muthén & Muthén, 2004); however, there is some evi-
dence of inflated Type I error rates for resampling method 
tests of the indirect effect (MacKinnon et al., 2004). The 
PRODCLIN program is the only program available for 
computing asymmetric confidence limits for the indirect 
effect on the basis of the distribution of the product.

The main limitation of the PRODCLIN program is that 
confidence limits for indirect effects consisting of the 
product of more than two regression coefficients cannot 
yet be computed. The statistical theory for these critical 
values exists in several references but no statistical soft-
ware is yet available to compute the confidence limits.
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