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DISTRIBUTION OF ZEROS OF ORTHOGONAL
POLYNOMIALS1

BY
PAUL G. NEVAI

Abstract. The purpose of the paper is to investigate distribution of zeros of
orthogonal polynomials given by a three term recurrence relation.

Let a be a nondecreasing and bounded function on the real line such that
the range of a is infinite and x" E L2(da) for every n £ N. Then there exists
a unique system of polynomials {pn(da)}™=0 such that

p„(da, x) = yn{da)xn + • • • ,        y „(da) > 0,

and
/oo pn(da, t)pm(da, t) da(t) = 8nm.

- 00

Such a system of polynomials satisfies the three term recurrence relation
v      i da i

xpn-iida, x) =   ""' p„{da, x) + a„_l(da)p„_l(da, x)

+-JT\ Pn-li^a, X),

n = 1, 2, . . . , wherep0(da, x) = y0,p_l(da, x) = 0 and
/oo xp2n{da, x) da{x).

-oo

This recurrence relation completely characterizes orthogonal polynomials in
the following sense. If a system of polynomials {p„(x)}^=0 satisfies the
recursion formula

xp„-Ax) = 2s=i Pn(x) + «„_,/>„_,(*) + ^ A.,2«
In In—I

for « = 1, 2, . . . with p_i =0, p0 = y0, yn > 0 and a„ e R then {/>„} is
orthogonal with respect some weight a. This beautiful result was proved by J.
Favard. (See e.g. [5].) In many instances a is uniquely determined by the
recurrence relation. This is the case when both {yn-\/y„} and {|a„|} are
bounded sequences or, in other words, when the support of da is compact.
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342 P. G. NEVA!

Let us recall that supp(da) is always closed, therefore compactness is equiv-
alent to boundedness.

Although a great number of results are known on specific orthogonal
polynomials, the general theory of orthogonal polynomials still hides its little
and big secrets. For example, the behavior of Christoffel functions is a little
secret and Steklov's conjecture is a big one. There exist, however, a few
classes of weight functions when one can prove nice results for the corre-
sponding orthogonal polynomials. Such classes are S and M which are
defined as follows: a G S if supp(da) = [— 1, 1] and log a'(cos 0) is integra-
ble on [0, 7t]. a G M if the coefficients in the corresponding recurrence
relations satisfy the conditions

lim   a„(da) = 0, lim ,,,   »Í-
n^oo    " n^oo     y„(da)        2

Let us remark that if a G 5 then

<  00,

therefore S c M. (See [9].) Other examples of weights belonging to M are the
Pollaczek weight [10] and ß defined by supp(rf/?) = [— 1, 1], ß is absolutely
continuous and

ß'(x) - expí -    _L_ ]

for — 1 < x < 1 [9]. The class S has been thoroughly investigated by G.
Szegö, S. Bernstein, N. Akhiezer, M. Krein, A. Kolmogorov, Ya. Geronimus,
G. Freud and others during the last sixty years. (See [5], [6], [7] and [10].)
Much less work has been completed concerning M. For the last few years it
became known that those weights a which belong to M play an important
role in applications of the theory of orthogonal polynomials since in many
cases systems of orthogonal polynomials arise from difference equations. For
a subclass of M, K. Case has obtained surprising results [3]. The whole class
M has been thoroughly investigated in [9].

The purpose of this paper is to investigate the distribution of zeros of
orthogonal polynomials corresponding to weights which belong to M. Let us
recall that all the zeros of orthogonal polynomials are real. We denote them
by xkn(da):

xln(da) < x2„(da) < ■ ■ ■ < x„„(da).

It was G. Szegö [10] who proved that if a G S and/is continuous on [— 1, 1]
then

i f(xkn(da)) = I  /"/[cos 9) d9 + o(n) (1)

¡(da) +
k=\ yk(da)    ~2
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DISTRIBUTION OF ZEROS OF ORTHOGONAL POLYNOMIALS 343

an n -* oo. Later P. Erdös and P. Turan [4] showed that (1) still holds if the
condition a G S is replaced by supp(¿/a) = [— 1, 1] and a'(x) > 0 for almost
every x G [ — 1, 1]. In [9] we proved (1) when a G M.

Before going into more details let us note that the zeros of orthogonal
polynomials are eigenvalues of very specific Toeplitz matrices. The eigenvalue
distribution of Toeplitz matrices has been investigated by several authors. Let
us refer to [2], [7], [8], and [9].

In this paper we are going to find the meaning of o(ri) in (1) when a is a
relatively nice weight. Furthermore, we will give conditions assuming the
existence of

lim
n—>oo

2 f(xk„(dß)) - S finida))
k=í /t = l

and we will also calculate this limit.
Let us remark that R. Askey is largely responsible for the birth of M. Had

he less conjectures (see e.g. [1, p. 46]) the class M would never have been
born.

For a given weight da the Christoffel function \(da) is defined by

/oo 2\ir„(t)\   da(t)
-00

where P„ is the set of all algebraic polynomials of degree less than n. The
numbers \(da, xkn(da)) are called Cotes numbers and are denoted by
Xkn(da). By the Gauss-Jacobi quadrature formula for every polynomial -n G
P2„

£   v(xk„(da))\kn(da) = f°°  ^(t)da(t). (2)
k=\ ■'-co

The fundamental polynomials of Lagrange interpolation corresponding to da
are denoted by lkn(da, x) (k = 1,2,...,«). We have

/  (A    *a     yn-i(da) i   , . v       , , ( , ^   Pn(da,x)
lkÁda' X) = -üdaY K*WP*-¿**> xkÁda)) x _ XkÁda) .        (3)

We will often make use of the following relations:

K \da, x) = "2 pl(da, x) - ±   ^^- (4)
*-o fc-i    Kn(da)

for x G R and

CWl *<'>-'•       0--<*»W *"«>-0.     (5,
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344 P. G. NEVAI

The expression K„(da, x, t) defined by
n-\

Kn(da, x, t) -  2  Pk(da, x)pk(da, t)
k = \

is called Dirichlet kernel. By the Christoffel-Darboux summation formula

via        a      yn-\(da)   Pn(da, x)p„__t(da, t) - />„_,(<&*, x)pn(da, t)
KAda'x'i)m^Jd7)-~t-•   (6)

For proofs of (2)-(6) see [5].
In the following A will always denote a closed interval. It is an easy exercise

to show that from supp(da) c A the inequality

y„.l(da)/yn(da) <\A\/2 (7)
follows.

Let a be a given weight and let g (> 0) G L\da). Define ß by dß = gda.
If g behaves nicely then ß is also a weight function. If, for example, supp(ifa)
is compact and g-1 G Lx(da) then ß is a weight. We will denote this weight
ß by dag, that is dag = gda.

Let h (> 0) be defined on [— 1, 1] and assume that log h(cos 9) is integra-
ble on [0, ir\. Then the Szegö function D(h, z) corresponding to h is defined
by

D(h, z) = exp J ¿ jT2* log Ä(cos 9) ■ j ^ Z*~*m d9 J

for \z\ < 1. Recall that D(h) G H2 in the unit disc, D(h, z) =£ 0 for \z\ < 1,

lim D(h, re*') = D(h, e")
rîl

exists for almost every / G [0, 2vr] and \D(h, e'')\2 = /¡(cos i) for almost every
t G [0, 2tt]. The argument of D(h, e") will be denoted by T(h, t). T(h, t) can
be calculated by the formula

J_   r.   log^)-log^)       sin/      dx
2ir J-, x - y a/i _ v-2

(7 = cos 0- Therefore T(Ä, í) - - T(h, -1) and Y(hxh2, t) = r(/i„ 0 +
r(/i2, i). If supp(c/a) D [- 1, 1] and log a'(cos 9) is integrable then D(da, z) is
defined by D(da, z) = D(a', z). For further properties of Szegö's function we
refer to [5] and [10].

A weight function is called a Jacobi weight if it is absolutely continuous
with support [-1, 1] and its derivative w = w(6e) is defined by

w(x) = (1 - x)s(l + x)c       (8 > -1, e > -1)

for — 1 < x < 1. Let us recall a few simple properties of Jacobi polynomials
which we will need later. One can explicitly compute the coefficients in the
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DISTRIBUTION OF ZEROS OF ORTHOGONAL POLYNOMIALS 345

recurrence formula for Jacobi polynomials. Once the computation has been
done it becomes clear that

as n —> oo. Furthermore, the inequalities

\p„(w, x)\ < C(l - x)-Ä/2"1/4(l + x)-£/2-'/4        (1 - x2 > 1/10«) (9)

and

K>,*)<lCn2S+2   Ci-!/»<-< IX (10)
[C«2£+2     (-Kx< -1+ 1/«)

for n = 1, 2, . . .  are satisfied with constants depending only on 5 and e. We
will also use the estimate

Pn(W> z) \n21
(11)

(n -» oo) which holds uniformly on every compact set lying outside any ellipse
with foci at — 1 and 1. Here Vz2 — 1 denotes that branch which is positive
for z > 1. For S = e = — ¿, that is in case of the Chebyshev weight, we write
v instead of w. All these properties of Jacobi polynomials can be found in
[10]. In the following Tn and U„ will denote the Chebyshev polynomials of
first and second kind respectively, that is

Tn(x) = cos n9

and
(     _ sin(« + 1)0

U"{  ' sin 9
where x = cos 9.

Now we can formulate the main result of this paper. They are stated in the
following two theorems.

Theorem 1. Let a G M and let g > 0 be continuous on supp(da). Assume
that f is twice continuously differentiable on A D sapp(da). Then

lim
n—>oo

2 f{xkn(dag)) -  2 finida))
k=\ k=\

= _L    C   C -i/g(COSlr;)       /(COS 4>) - /(COS A)
2tt2 -A)   -A)    \ gg(cos 9)       (cos ^ _ cos gf

■ {cos[T(g, *)]cos[r(g, 9)](\- cos ^ cos 9)

+ sin[r(g, «p)]sin[r(g, 0)]sm ^ sin 9} tfy d9
where the integral is understood in the Cauchy-Lebesgue sense.
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346 P. G. NEVAI

This theorem follows immediately from Theorems 9 and 13. If a is a Jacobi
weight then Theorem 1 can be improved.

Theorem 2. Let w = w(a,e) be a Jacobi weight. Let g > 0 be such that g±]
belongs to L00 on [— 1, 1]. Suppose that f is twice continuously differentiable on
[-1, I]. Then

£ f(xkn(gw)) = 2n + \+£+l   rf(cos9)d9

2m2 Jo   Jo    V 8
(g(cOS \¡s)       f(CQSxp) - /(COSA)

g(cos 9)        (cos ^ _ cos Qf

■ {cos[T(g, xP)]cos[T(g, 9)](l - cos ^ cos 9)

+ sin[T(g, ^)]sin[r(g, 0)]sin ^ sin 9} cfy d9 + o(l)
as n -* oo where the integral is defined in the Cauchy-Lebesgue sense.

Theorem 2 is a direct consequence of Theorems 9, 14 and 17.
As mentioned earlier, in [9] we investigated orthogonal polynomials corre-

sponding to weights which belong to M. In particular, the following six
lemmas were proved in [9]. These lemmas play a key role in proving the
results of this paper.

Lemma 3. Let a G M. Then the support of da can be written as the union of
[ — 1, 1 ] and B where B is denumerable, bounded and the only possible points of
accumulation of B are — 1 and 1. Furthermore, if Q is the set of all zeros of all
p„(da) then all the points of accumulation of Q belong to supp(da).

Lemma 4. Let a El M. If D is any domain in the complex plane such that
D n supp(ifa) = 0 then

lim -Z&fL- — x—=
"^°°   Pn+\(da,z)       z + yz2 _ j

uniformly for z G D. If x G supp(¿/a)\[— 1, 1] then
pn(da, x) r-2--

lim   -—-r = X + V x   — 1  .
"-^ Ptt+i(da,x)

Lemma 5. Let a G M and let I be a fixed integer. Iffis bounded on supp(rfa)
and continuous on [ — 1, 1] then

lim    r f(t)p„(da, t)pn+l(da, t) da(t) - ^ /' f(t)T,(t) dt
VT^ .2
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DISTRIBUTION OF ZEROS OF ORTHOGONAL POLYNOMIALS 347

Lemma 6. Let a G M and / G Z. Assume that f is bounded o/iAd supp(rfa)
and Riemann integrable on [ — 1, 1]. Then

n

lim    2   hn(da)Axkn(da))pn_x(da, xkn(da))pn+l(da, xkn(da))
k=\

2 r\= -sign/^J   A0t/|/|-i(0Vl - t2 dt.

Lemma 7. Let

2* = i \ak(da)\ +
yk-Áda)      1

2

Then for every x G (— 1, 1) (x = cos 0)

< oo.

)

1/2

<     2    M¿«> *) - 2xPk-i(da, x) + pk-2(da, x)\.
k = n+\

Lemma 8. Let a G M. Let g (> 0) be such that g±1 is bounded on supp(da)
and g is Riemann integrable on [— 1, 1]. Then ag G M. Furthermore, if K C C
U (oo}\supp(iza) is an arbitrary closed set then

p„(da   z)
lim = z)(g,z-VzT^T)

-1

"^°°     Pn(d«,z)

uniformly for z G K.
Now we will prove a number of auxiliary results.

THEOREM 9. Let a G M. /// ¿s rwz'ce continuously differentiable on Ad
supp(rfa) i/ien

£  /(*,„(</«))- r j(i)K\da,i)da(t)
L   =    1 *     —    m

lim
rt—>oo

= _L f     /(0
2w '-i vT^T 2 4 4 (12)

Proof. Let

4(/) =  £ /(**„)- Cf(t)K\t)da(t).
* = 1

First we will show that

|L„(/)|<i^ maxL/"(0|- (13)
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348 P. G. NEVAI

Using (4) and (5) we obtain
u     roo l2(ñ

L„(f)=  2    [    [f(xj - /(0]-Y^ da(t).
k=l   J - oo Afcn

By Taylor's formula

A /-oo ll(t)L„(f) =  2 /'(**») f    (**„ - 0^ ¿«(0
fc = 1 J - oo A*n

- ^   Z / (>-*«) I     (' - xkn) -t— i/a(0
z    A = 1 ^ - oo Afcn

where v^„  are some points belonging to A.  Here the first sum on the
right-hand side equals 0. Furthermore by (3)

i00  ('  -   ̂ )24^  *<*>  -  (^^nPÎ-AXkn)-
•'-oo \n \  yn )

Hence

i4(/)i4(^)V-i/'w
Now (13) follows from (7). Inequality (13) and linearity of L„ suggest that (12)
has to be checked only when / is of the form f(t) = tN (N = 0, 1, . . . ). If
N = 0 then (12) is clearly true. Let TV > 1 be fixed. Then - L„(f) can be
written as

N- 1       n
¿X0=2     S   *Ín[     t»-^(t - xkn)^f± da(t),

y = 0     fe-1   ■•'-00 A£n

that is by (3)
v      ,    N~x       " roo

-¿„(/) = V 2   2;.-iWi     ^-'-x(OUO^C).
Yn       y=0     fc=l •'-co

Expanding tN~l~jpn(t) into Fourier series in /?,(*) and using orthogonality
relations for/?, we obtain

tN-l-JPn(t)=     +2 r xN-^Pn(x)Pl(x)da(x)Pl(t).
l=n- N+\+jJ-<x>

Therefore
n + N - 1 -j

Ln(f) = -^  2
Yn     ^ = 0

2      f°° *"-'>„(*)/>,(*)<**«
/ = «-A'+l+j/-'-co

£ Pn-\{Xkn)Xln f" />/(')'*»(') «MO
i-1 «^ —  (VIA:=l
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DISTRIBUTION OF ZEROS OF ORTHOGONAL POLYNOMIALS 349

Using again orthogonality relations this expression for — L„(f) reduces to

Y„- N-2

-4(/) = ̂ i 2
In     j = 0

"S r xN-l-JPn(x)Pl(x)da(x)
l=„-N+l+jJ-°°

JL /-oo
•   2  Pn- l(Xkn)Xin /        />/(04„(0 <M0

k = l •'-co

Because / is always less than « and the degree of lkn is n — 1 we can apply the
Gauss-Jacobi quadrature formula in the last integral. We get

Ln(f) =
Y„-i N-2

In     7 = 0
£'        r xN-^Pn(x)Pl(x)da(x)

l=n-N+\+jJ~œ

•   2   KnPn-l(xk„)P,(xk„)x¿
k=i

kn

Finally, changing / into « - / we obtain

Ln(f) =
N-2Y„-i

In      j = 0

N-l-j
2       i*0 xN-l-JPn(x)Pn_,(x)da(x)
/=1       •'-co

ft

2j  \nPn-\\Xkn)Pn-I\Xkn)Xk
k = \

Lemmas 5 and 6 show that lim,,^^ Ln(f) exists and equals

- -2 2    2  / x»-*-%(x)—£==- V t^MVY^T2 dt.
7TZ  y = 0        /=1     -'-1 VI  - X2   ^-'

(14)
Instead of calculating this expression let us note that it is independent of
a G M. Therefore if we calculate lim„^00 L„(f) (f(t) = tN) for one particular
weight a G M we will know the value of (14). Let us choose a = v to be the
Chebyshev weight. Then Xk„(v) = tr/n for k = 1,2, . . ., n. Hence by
Gauss-Jacobi quadrature formula

£**»*-■£ /v-7=-
k=\ IT J-\        yi   _   (2

for 2« > N. Furthermore, by a simple calculation

\-\v,x) = (\/v)[n-2- + 2:U2n_2(x)].

Consequently

/' t»K*{v, t)v(t) dt = ̂ lf t»-ß==;
J-i ¿m    J-\     \J\ _ t2

+ 'rt^B^VY^72dt.
2-rrJ-i        1 - t2
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350 p. G. NEVAI

Hence in this case

Ln(f) = -L ¡lt»--Ê=r -± (V ^MvY^T2 dt

(/(/) = tN, 2n> N). If N is odd L„(f) = 0. If N is even then note that
tN — tN~2 can be divided by 1 - t2. Therefore

"u;      2tt J_i      v737       2-7T J_,     l _ t2
But

27ry_!     1 - f2 27T y0 sin í 2

Hence we obtain that (14) equals

1    ri /T~ I / dt ~2ttJ-,   a/7^
Lf    **   „ (ir (-i)N

■ vr 4 4

Therefore (12) holds if/is a polynomial.
It is easy to see that Theorem 9 is much stronger than Szegö's result on the

distribution of zeros of orthogonal polynomials corresponding to weights
which belong to S. (See [10, Chapter 12.7].) Actually, Theorem 9 implies the
following result which improves Theorem 5.3 of [9].

Theorem 10. Let a G M and let f be continuously differentiable on Ad
supp(Ja). Then

lim
n—»oo k=\ k=\ -I/'jM-T^.    05)mJ_\ a/i       ,2

Proof. If/" is continuous then (15) follows from Lemma 5 and (12). Thus
the theorem holds if we can show that

¿=i *=i
«C-[max|/(x)| + max|/'(x)|l

(16)

where C is independent of / and n. But this is an immediate consequence of
the mean value theorem and the fact that the zeros of Pn(da) and p„_ x(da)
interlace. We have
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DISTRIBUTION OF ZEROS OF ORTHOGONAL POLYNOMIALS 351

k=\
^f(xkn(da))-  2/U,n-.W)

k=\

£' [f(xkn(da)) - f(xKn_x(da))] +f(xm(da))
C=I

n-\

< max|/'(x)| 2 \xkn(da) - xkt„_1(da)\+max\f(x)\
jEA k = l jteA

= max|/'(x)|
x£A

n-1

2 xkn(da) - 2 »m-iW - xnn(da)
k=\ k=\

max|/(x)|.

Now by (4) and (5)

2, **„W = Z    I     '   x   / . x   da(t)
k=\ k~\   •'-oo       **:„("«;

/oo jV'C*.') <Mf)
-oo

/CO i*0O
#2_ ,(<fa, /) £fa(0 + I     íV-'.(^«> 0 «MO

- CO •'— rYl

""'    /-oo        /,2= a„_l(da)+  "2, S     t-f
v — i J — c*\        A/,\»-iW <fa(/)

«-1
= «„_,(</«) +   2 4,,-iW^

/t=l

Therefore (16) is satisfied with C depending on supp(da).

Lemma 11. Let a G M and let I be a fixed integer. Suppose that g > 0 is
continuous on supp(da). Then for every function f which is continuous on
[ — 1, 1] and bounded on supp(da) the limit relation

/oo Pn(da, t)p„ + !(dag, t)f(t) da(t)
- 00

J     çit       /(COSÖ)= i r■ïï J0
yg(cos 9)

cos[T(g,9) + ¡9]d9 (17)

holds.

Proof. First let/ be an entire function. Let Q be the set of all those points
x for which p„(da, x) = 0 for some n. By Lemma 3, ß\[-l, 1] is
denumerable. Therefore we can choose a sequence [rm}™=i such that rm|l as
m -> oo and, for every m = 1,2, ... ,   Tm n Q =0 where the ellipse Tm is
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352 P. G. NEVAI

defined by

rM«{*:z = l(rMe»+^),Q<#<2,rj.

Now fix m and let z G r„. Because (p„(da, t) — p„(da, z))/(t — z) is a
polynomial of degree less than n in / we have

I     p„(da, t) -——- da(t) = 0,
•'-co I Z

that is

,co    p„(da, t) i /-co    p2(da, t)
L -T^T da^ = JJd^T) L t^t *<'>■

Multiply here both sides by f(z)Pn+l(dag, z) and integrate over Tm. Using
Cauchy's formula we obtain

fTmPn(da, t)Pn+l(dag, t)f(t) da(t)

n   ka   J   i     r    fWp*+'(darz) Aa~,a   n«= 1     />;(¿a, f)    —   I     ——--dz)da(t)    (18)
^_oo y[ 2ot   ^rm   P„(da, z)(z - t)       J

where rm = \(rm + r~x). Here we used the fact that for \t\ > rm the function
f(z)Pn + i(da, z)(z — t)~l is analytic inside Tm. Now we can apply Lemmas 4,
5, and 8. We obtain that the right side in (18) converges as n -» oo and its
limit equals

1 f1 !
77 J_

■ {¿ Lj> («•* - ̂ ^ )" W VT^T )>(.) ¡^} A.

But

1/1 <//«
1   (z - f)Vl - /2 Vz2- 1

Hence the previous expression can be written as

By Lemma 5

limf     p2(dß,t)dß(t) = 0 (19)"^•°°-'|/|>i
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DISTRIBUTION OF ZEROS OF ORTHOGONAL POLYNOMIALS 353

whenever ß G M. Therefore if /is an entire function then

lim    r Pn(da, t)Pn+l(dag, t)f(t) da(t)
n—*oo   j _

C   r2"    I 1     i       ,n I rme" + r-le-'H\

Let us recall that T(g,9) is an odd function of 9. Consequently, letting
m -» oo and using Lebesgue's dominated convergence theorem we easily
obtain (17). Applying continuity arguments we see that (17) remains valid
whenever / is continuous on Ad supp(da). The general case follows
immediately from (19).

Lemma 12. Let a G S, g > 0 and l GZ be given. Assume that ag G S and
f/V~g GL°°(- 1, 1). Then (17) holds.

Proof. It is an almost direct consequence of the definition of Szegö's
function D (dß, z) that from ß G 5

.      _ pr— 2

Jim /"k/sin tß'(co% t) Pn(dß, cos t) ~V~ cos[nt + T(v~ldß, t)] dt= 0

follows. (See e.g. [6, Chapter 9].) Therefore

}™f^P2n(dß,x)d[ßs(x) + ßj(x)]=0

must also be true since the Ljß norm of Pn(dß) equals 1 for every n. Now the
lemma follows from the previous two formulae and from the Riemann-
Lebesgue lemma.

Theorem 13. Let a G M and let g > 0 be continuous on supp(da). If f is
twice continuously differentiable »íiAd supp(¿/a) then

lim
n—+oo

r f(t)X„-x(dag, t) dag(t) - r f(t)\-l(da, t) da(t)
•* — QO *' — QO

. _L r rJ.
2t72 -A) Jo   V

g (cos i/0      /(cos )//) - /(cos 9 )
g (cos 9) (cos ^-cosö)2

• (cos[r(g,^)]cos[r(g,Ö)](l - COS ̂/ COSO)

+ sin[T(g, ^)]sin[r(g, 0)]sin ^ sin 9 ) cfy d9   (20)

where the integral is defined in the sense of Cauchy-Lebesgue.

Proof. We have
/oo Kn(dag, t)K„(da, x, t) da(x)

- an
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/•oo
\T ' (da, t)=        K„ (dag, x, t)Kn (da, x, t) dag(x).

J—as

Therefore

¡X f(t)K\dag, t) dag(t) - r f(t)X„->(da, t) da(t)
J — oo •' — 00

= r    r g(x)[f(x)-f(t)]K„(dag,x,t)Kn(da,x,t)da(x)da(t)
' — oo J — oo

which clearly equals

r roog(x)[/(x)-/(o-/'(x)(x-o]
•/ — oo   */ — CO

'Kn(dag, JC, /)AT„(</a, x, f) ¿a(jc) ¿/a(/)

gW/'W /   (*-o*«(«*v*.0*»(«k»*>0«MO <M*)-
- 00 ^ — oo

Using the Christoffel-Darboux formula and orthogonality relations we obtain

[°° (x- t)Kn (dag, x, t)K„ (da, x, t) da(t)
J — oo

yn_x(da) roo
=    v ia„\   p»(da> x)Pn-\(dag> x) I     Pn-i(d<*g, t)p„-i(da, t) da(t).

tn\aa) •'-oo

Consequently, using the Christoffel-Darboux formula again we get

/OO ,00
f(t)X~l(dag, t) dag(t) - f    f(t)K\da, t) da(t)

- 00 ■' — oo

Y„-l(¿«)Y„-.(¿«g)        roo      roo [f(x)-f(t)-f'(x)(x-t)]
=- • I       I     six)-

Y„(¿«)Y„(¿«g) J-ooJ-oo (x - t)2

■[p„(dag, x)p„(da, x)pn_x(dag, t)pn_x(da, t)

-P„-i(dag, x)pn(da, x)Pn(dag, t)p„_x(da, t)

-pn(dag, x)p„_t(da, x)Pn_l(dag, t)Pn(da, t)

+pn_l(dag, x)P„_i(da, x)Pn(dag, t)P„(da, t)] da(x) da(t)

y„_x(da)   roo
+ -r7T~ /      S(x)f'(x)Pn(da, x)P„-i{dag, x) da(x)

yn\"a)      •'-oo

/CO
Pn-M^t)Pn-Áda,t)da(t). (21)

-oo

Since by the conditons both a and ag belong to M and the function
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g(x)[f(x) - f(t) - f'(x)(x - t)](x - t) 2   is   continuous   on   A X A   we
immediately obtain from Lemma 11 that the left side in (20) exists and equals

rTT     rm
— Í     I   g(cos xp)
477     •'0    •'0

;/g(cost//)g(cos0)

[/(cos \p) - /(cos 9) - /'(cos ^)(cos \p - cos 9)]

(cos \p — cos 9 )2

{cos[r(g,^)]cos[r(g,ö)]

- cos[r(g, 4,) - i^]cos[r(g, 9) + 9]

-cos[r(g, ^) + xp]cos[T(g,9) - 9]

+ cos[r(g, ^)]cos[r(g, 9)]} dp d9

—- r^g(cos t) /'(cos ^)cos[r(g, 4>) - 4,] dp
S.17      •'O

/"IT

Jo y g (cos 9)
cos[r(g,0)]«#-

For simplicity, let us denote the expression between braces by A (9, \p). In
order to finish the proof of the theorem we should show that

hay g (cos \p) A(9,<p)
f'(cosxp) -¡-5 dpd9

Att1 Jo Jo   y  g(cosö) '  cos ^ - cos 9

= — j \/g(cOS <//) /'(COS t//)C0s[r(g, ip) ~ \p)] d\p
2<nz Jo

1
•'0 yg(cos~9)

cos[T(g,9)]d9.

This follows from

j   çW cos[r(g, 9) + 19]

77 ̂  V'g (cos 9)
d9

cos 9 — cos \p

2   r* cos[r(g, 9)]

77 ■'o     y/g(cos9)

if/ = 0, - 1,

if/= 1, (22)
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for almost every \p G [0,77]. To prove (22) let us recall that T is an odd
function of 9. Therefore the left-hand side of (22) equals

-Í- i^fg-1 e-»)"9 _^_
277 J0 y ' '        COS 9- COS!//'

For almost every \p G [0,77] this expression can be written as

Hm   I toig^   -±)(re«>)1-1  _*_.

Using the fact that D(g~x) is an H2 function in the unit disc we easily obtain
(22).

Theorem 14. Let a G S and let g > 0 be such that g±1 G L°°(-l, 1).
Suppose that fis twice differentiable on [- 1, 1] andf" G L°°(- 1, 1). Then (20)
holds.

Proof. Apply Lemma 12 to (21) and repeat the arguments used in the
proof of Theorem 13.

Lemma 15. Let w = w(6'E) be a Jacobi weight. Then for every entire function f
the asymptotic exPression

2« + 8 + e + 1
J\XknKW)) =

k = \

28 + 1  „,,      2e + 1

2 /(**„(-)) = 2n + 82te+   P(C0S ö) »
k = \ ¿-T ->o

/0)-aEX1/(-l) + o(^) (23)

(n —» 00) Ao/d!s.

Proof. Multiplying the identity

P'n(w'z)   .. f 1
/>„(w.*)      t-i z - x,kn

by /(z) and integrating over an arbitrary ellipse Y with foci at — 1 and 1 we
obtain by Cauchy's theorem that

Our next step is to find a simple expression forP'„(w, z). To do this let us note
that any Jacobi weight w = w(i,e) satisfies the condition

[(1 - x2)w(x)]' =[e - 8 - (8 + « + 2)x]w(x).

Therefore, when expanding (1 - z2)P'n(w, z) into Fourier series in [Pk(w, z)}
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we get

(1 - z2)P'n(w, z) = (n + 8 + e+l)
Y„-.(hO

A-i(".î)Y,(w)

+ i [8 - e + (8 + e + 2)a„(w)]Pn(w, z)

%i(w) ,       ,
Mw*)p«+»(w*z)' (25)

Here the first two coefficients on the right side can be calculated by
integration by parts and the third one follows from comparing leading
coefficients. Putting (25) into (24) we obtain

2/(^W)-iX
1 -z2

(n + 8 + e+ I)
Y„-i(w)    P„-x(w,z)

Y„(w)        p„(w, z)

+ {[6 - e + (8 + e + 2)a„(w)]

Y„("0      />„+i(w, z)
Y„+i(hO      P„(w,z)

dz.

Now applying (8) and (11) we see that

2/<*.<»»-££
k=\

m
r 1 -z2

« + a + e + i
2(z + Vz2- 1 )

i(5-e)-f(z+VzT^T) <fe

°U).
that is,

£ /(**») =
*=i

2» + 8 + s + 1
477/

477/  Jr

Here the first integral can easily be computed by putting z = \(re'6 +
r~ xe~i9) (0 < 9 < 2t7) and letting r -> 1. Using
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1        +        »
1   - z2 1  - Z 1  + Z

we can also calculate the second integral by Cauchy's theorem. Thus (23) is
true.

For 8 > — \ and e> -\ the following two results were proved in [2].
Our approach to the problem is different from that in [2].

Lemma 16. Let w = w(S'e) be a Jacobi weight. Then there exists a positive
constant C = C(8, e) such that for every n = 1, 2, . . . and x G [— 1, 1] the
inequality

(l-x2)w(x)Xn-i(w,x) 2n + 8 + e + 1
277

VY^x2 < C      (26)

holds.

Proof. Fix x G [- 1, 1] and let x = cos 9 (0 < 9 < tt). By the Christoffel-
Darboux formula we have

(l-*2)V'(w,*) =
Y«-i(w)

7n(W)

[(1 - x2)p'H(w, x)pH_x(w, x) - (1 - x2)p'n_x(w, x)pn(w, x)].

Thus by (25)

(\-x2)KX(^,x) =
Yh2-,(hQ

Y2(w)
(n + 8 + e+ l)P2_x(w,x)

£ [8 - e + (8 + e + 2)an(w)]Pn_x(w, x)p„(w, x)

— n

2y„(w)

ViM
Y„+i(w)

Y„-2(M;)

/>*-i(w> ■*)#,+i(w> x)

Y„(w)

Y„-i("0
2y.(w)

+ («-!)

(n + 8 + e)pn_2(w, x)pn(w, x)

[8 - e + (8 + e + 2)an_l(w)]pn_x(w, x)p„(w, x)

Yn2-,(w)

Y»
/»»(w,x).
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Now applying (8) we obtain

(l-x2)V'(w,x) = ^±|±l

" r „2

[pï-i(w, x) - p„_2(w, x)p„(w, x)]

+   4  [Pl("> X) - Pn-AW> X)Pn+l(W> X)]
n + l

+  \[Pn-i(^X)-Pn(^X)]   +   0(^)      2       Pl(y,x). (27)
^       'k=n—2

Let us simplify the expressions between the brackets above. We have

P£-l(w> X)  - Pn-2(W> X)Pn(W> X)

= PÍ-Á", x) - 2xp„_x(w, x)p„(w, x) + p2(w, x)

+PAw>x)[2xp„_l(w, x) - p„(w, x) - p„_2(w, x)].      (28)

By the recurrence formula

2xpn_x(w,x) -p„(w, x) - pn-2(w,x)

p„(w, x) + 2an_x(w)pn_x(w, x)

+ , T.-2W       ,1 .       ,2-;—r = 1   Pn-o(w, x).

Therefore by (8)

2xpn_x(w,x)-pn(w,x)-Pn_2(w,x)=o(\)    £    \Pk(w,x)\.    (29)
V «    Ik = n-2

Using (28) we obtain

AÎ-lO* *)  - Pn-li", x)Pn(w, X) =\P„(W, X) -  eWPn_x(w, X)\2

+ o(±)    £    \pk(^x)t-        (30)
V n    Ik = n-2

Applying the same argument one can show that

p2(w, x)-pn_1(w, x)pn+l(w, x) =\p„(w, x) - e%_x(w, x)f

+ o{±)   "2    \Pk(w>*)\2-       (31)

Furthermore, it is clear that

P2n-X(w, x) - p2(w, x) = \pn(w, x) - ewpn_x(w, x)\2

- 2pn(w, x)Re[pn(w, x) - eiePn_x(w, x)}.     (32)
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Putting (30H32) into (27) we obtain

/i        2w -i/       \      2n + 8 + e + I(1 - X)K '(*•» x)---
2

Pn(w,x)- ei9pn_x(w, x)\

+ 0(\)\pn(w,x)\ \Pn(w,x) - e%_x(w,x)\

n+\

k = n-2
+ 0{\)j    \Pk(w,x)f

By Lemma 7 and (29)

\p„(w,x) - e%_x(w, x)\ =

Consequently

(1 - x2)w(x)X„~l(w, x) =

1

2VY^c2   '
77w(x)

1/2
00       \pk(w, x)\+ o(i) 2    ^V^

2n + 8 + e + I
277

VY^x1
'/2.

+ 0(n)   2      ¿(w(x)Vl-x2)    |Ä(w,*)|

+ 0(n)

*=n-l     &

1
A: = rt-1

1/2.

'/2,

¿2
(w(x)Vl-x2)      |A(w,*)|

+ 0(l)(w(x)Vl-x2)     \Pn(w,x)\

+ 0(1) 1 (w(x)Vl - x2 )i/2\pn(w, x)\
Vl -x2

oo j _    1/2
2    j-2(w(x)VY^Y2)   \Pk(w,x)\

= n-\    *■

n+\

V " '   V 1  - X2      k = n-2

Using (9) we obtain that (26) is true whenever 1 — x2 > \/n. If 1 — x2 <
1/« then (26) follows immediately from (10).

Theorem 17. Let w = w(8,e) 6e a /aco¿>/' weight. Assume that f G L¿ n L0'
a«¿ /er [/(x) - /(± 1)](1 + x)~l be integrable. Then

lim
n—>oo /* /(0VV./M0*- ^^/' /(0-7=^=-

■'-l 277 7_, y/l   _  ¡2

-#/(-!)-f(-l). (33)
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Proof. It follows from Theorem 9 and Lemma 15 that (33) is true if/is an
entire function. By continuity arguments and Lemma 16 (33) still holds if/
can be written in the form/(x) = (1 — x2)g(x) where g G L1. To complete
the proof let us note that if/satisfies the conditions of the theorem then/can
be represented as

f(x) = (1 - x2)g(x) + h(x)

where g G L ' and h is an entire function.
Let us finish this paper with mentioning the following problem. Try to find

similar results for the eigenvalue distribution of Toeplitz matrices of the form

f °° <p(x)p„(da, x)pm(da, x) da(x)
^    -oo J n,m-0
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