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Distribution Optimization: An 
evolutionary algorithm to separate 
Gaussian mixtures
Florian Lerch1, Alfred Ultsch1 & Jörn Lötsch  2,3*

Finding subgroups in biomedical data is a key task in biomedical research and precision medicine. 

Already one-dimensional data, such as many different readouts from cell experiments, preclinical or 
human laboratory experiments or clinical signs, often reveal a more complex distribution than a single 

mode. Gaussian mixtures play an important role in the multimodal distribution of one-dimensional 

data. However, although fitting of Gaussian mixture models (GMM) is often aimed at obtaining 
the separate modes composing the mixture, current technical implementations, often using the 

Expectation Maximization (EM) algorithm, are not optimized for this task. This occasionally results 
in poorly separated modes that are unsuitable for determining a distinguishable group structure in 

the data. Here, we introduce “Distribution Optimization” an evolutionary algorithm to GMM fitting 
that uses an adjustable error function that is based on chi-square statistics and the probability 

density. The algorithm can be directly targeted at the separation of the modes of the mixture by 

employing additional criterion for the degree by which single modes overlap. The obtained GMM fits 
were comparable with those obtained with classical EM based fits, except for data sets where the EM 
algorithm produced unsatisfactory results with overlapping Gaussian modes. There, the proposed 

algorithm successfully separated the modes, providing a basis for meaningful group separation while 

fitting the data satisfactorily. Through its optimization toward mode separation, the evolutionary 
algorithm proofed particularly suitable basis for group separation in multimodally distributed data, 

outperforming alternative EM based methods.

Finding subgroups in biomedical data is a key task in biomedical research and precision medicine. In complex 
multifactorial data, this is achieved by various methods such as cluster analysis, principal component analysis 
or several implementations of unsupervised machine learning. However, simpler one-dimensional data, such as 
many different readouts from cell experiments, preclinical or human laboratory experiments or clinical signs also 
often reveal a distribution that is more complex than a single mode. Indeed, various tests for multimodal distribu-
tions of one-dimensional data have been proposed (for a review, see1), emphasizing the relevance of the problem.

Given the frequency of normally distributed biomedical data, Gaussian mixtures play a particularly important 
role in the multimodal distribution of one-dimensional data that are composed of different subgroups generated 
by the influence of various biological factors on the research readout. A Gaussian mixture model (GMM), 
expressed as |Θp x( ), is defined as the weighted sum of M >1 components θ|p x( )m  in ,

∑ α θ|Θ = |
=

p x p x( ) ( ), (1)m

M
m m1

where ∈ = …x X x x{ , , }N1  is a data sample and α α θ θΘ = … …( , , ; , , )M M1 1  the parameterization of the GMM 
with am corresponding to the weight of each component = …m M1, , . Each component θ|p x( )m  is represented 
as a normal distribution with parameters θ µ σ= ( , )m m m , i.e., mean value und the standard deviation.

However, although GMM fitting is often aimed at obtaining the separate modes composing the mixture, 
current technical implementations are not optimized for this task. The common approach to model GMM 
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is maximizing the likelihood for a given dataset, using some variant of Expectation Maximization (EM)2,3 or 
Markov-chain Monte-Carlo algorithm4. However, one problem with maximizing only the model’s likelihood is 
that there may be multiple models with high likelihood that pass statistical tests but are structurally different and 
may be more suited for modelling classes. A possible solution has been proposed as restricted EM5, which can 
lead to different solutions, but tends to be complicated and restrains are limited to relations within the parameters 
of a GMM, instead of general properties of the GMM as whole. Thus, maximizing the likelihood, or an equiv-
alent measure, of the GMM is a common approach to GMM fitting that has several limitations that have been 
incompletely addressed. Moreover, it does not directly address the separation of the modes of which the GMM 
is composed.

Therefore, we propose an evolutionary algorithm for GMM fitting that uses an adjustable error function that 
is based on χ2 statistics and the probability density function. The algorithm can be directly targeted at the separa-
tion of the modes of the mixture by employing additional criterion for the degree by which single modes overlap. 
Using Bayesian decision borders6, a simple and effective classifier can be created that allows a valid association of 
data set members to distinct groups defined by the mode of the Gaussian mixture.

Methods
Distribution optimization algorithm. “Distribution Optimization” minimizes a given distribution error 
by utilizing an evolutionary algorithm. Hence, a “population” of GMMs is processed through many iterations 
with multiple phases, which mutate, filter (select) and recombine the GMMs (Fig. 1). In general, after randomly 
initializing a first “generation” of GMM components, in iteration GMM parameters are randomly changed and 
recombined and individuals with better fitness are chosen, to finally form a new “generation” of GMMs.

The first phase, the initialization step, creates the population of GMMs and draws a value for every parameter 
of every GMM. It therefore depends on the minima and maxima of every structural model parameter. The indi-
viduals are drawn from a uniform distribution within those limits. The mean and standard deviations are drawn 
within the minimum and maximum of the original data. The weights of each component are randomly drawn 
from [0,1] and divided by their sum so that they add up to a value of 1.

The core of the “Distribution Optimization” algorithm is its error function, which in its negated form also 
serves as the fitness function. It is defined as the χ2 value, which can be used to compare a theoretical and an 
empiric distribution. The data space is split into B adjacent intervals (B being derived from standard deviation7,8 
for our datasets) with kj being the fraction of empirical data points falling into the jth interval and Pj being the 
density of the GMM on the same interval. The error is then defined as:

∑χ =
−

=

k p N

p N (2)
j

B j j

j

2

1

In addition to the χ2 value, a second error term is included as the so-called “overlap error”. It approximates the 
fraction of the area overlapped between modes, relative to the total area under the total density curve. The overall 
overlap error of a GMM is the highest overlap error among all components, given as

Figure 1. Workflow diagram of the “Distribution Optimization” evolutionary algorithm.

https://doi.org/10.1038/s41598-020-57432-w


3SCIENTIFIC REPORTS |          (2020) 10:648  | https://doi.org/10.1038/s41598-020-57432-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑
θ α

θ
=






|






=

∈ ..
⁎

⁎

( )
OverlapError

max x

p x a
min

,

( )
, 1

(3)

m i

N j M m
i j j

i m m
1

{1 }\

= = .. .OverlapError max OverlapError( )
(4)

m M m1

During the selection step, the individuals with high fitness values are chosen. The selection is not limited to 
just the best individuals but uses the tournament selection algorithm9 that allows a broader choice of individu-
als. A random number of individuals form a tournament to that one of them will win at random but weighted 
with the individual’s rank of fitness. Therefore, some less-fit individuals will be drawn into the next generation 
to enforce broader diversity of potential solutions. The selection will be repeated until the size of a generation is 
reached. The same individual can be selected repeatedly.

The mutation and recombination steps modify the individuals in each generation. During the mutation step, 
random individuals are selected and their parameters changed. Here, a random uniform mutation is employed. 
Therefore, a random number of parameters of an individual are chosen and then randomly drawn again within 
their respective minimum and maximum values. This process introduces the variety of solutions. The recombina-
tion step modifies individuals by choosing two random individuals and replacing them with their “children”. A 
pair of children c c,1 2 is defined by the weighted average of their parents p p,

1 2
 with a uniformly drawn weight α 

out of [0,1].

α α= + −c p p(1 ) (5)1 1 2

α α= − +c p p(1 ) (6)2 1 2

The recombination operation mainly fulfills the role of local optimization, which is why we have chosen the 
weighted average operation, while the mutation operation is used for introducing the variance.

Finally, the algorithm finishes after a fixed number of iterations by returning the GMM with the highest 
fitness.

Implementation. Implementation of the “Distribution Optimization” evolutionary algorithm into the sim-
ilarly named R library (https://cran.r-project.org/package=DistributionOptimization) makes use of the genetic 
algorithms provided by the R package “GA” (https://cran.r-project.org/package=GA10). The functionality can be 
accessed by the function of the same name: “DistributionOptimization()”. As input a data vector and the desired 
number of Gaussians are expected. As a balance between”OverlapError” and χ2 value is desired, a ratio between 
both in favor of the χ2 value may be set through the hyperparameter “OverlapTolerance”, which when set at its 
maximum value of 1 results in pure optimization of fitness. The general parameters defining the evolution can 
be set as provided by the “GA” package. Parameters for population size and the number of iterations may be 
chosen, depending on the difficulty of the task, and increased manually when necessary. The output consists 
of all parameters necessary to reproduce the final GMM, and of the seed needed to reproduce the evolutionary 
algorithm. The user can monitor the process through the “Monitor” parameter, which either silences the call 
or outputs stepwise fitness improvements. Further utilities needed for clustering, such as likelihood ratio test 
or the Akaike information criterion (AIC11), require the R Package “AdaptGauss” (https://CRAN.R-project.org/
package=AdaptGauss12).

Data sets and analyses. To assess the suitability of the “Distribution Optimization” for automated separa-
tion of the components of a GMM, the algorithm was applied on four different data sets available from published 
reports as specified below.

Data set 1 is used as the main example data set to demonstrate the function of the algorithm and the usage of 
the associated R library. It comprises cold pain thresholds acquired from in n = 148 healthy volunteers13. Noxious 
cold stimuli had been applied using a 3 × 3 cm2 thermode placed on the volar forearm. The thermode was cooled 
down by −8 °C/s, starting from 32 °C. Following establishment of the individual cold pain threshold to stimulus 
with slower cooling (1 °C/s), where the subject had to indicate when the sensation changes from cool to painful, 
11 stimuli with fast decreasing temperature were applied, ranging from −5 to +5 °C, in steps of 1 °C, from that 
threshold. Stimuli were applied at randomized order and the subjects rated each stimulus with respect to its 
painfulness. The “yes”/”no” responses were submitted to binary logistic regression to obtain the phasic cold pain 
threshold. The obtained pain thresholds to fast-cooling (“phasic”) thermal stimuli had been analyzed with respect 
to modal distribution. Specifically, the parameters of the GMM were optimized using the EM algorithm as imple-
mented in our interactive R package “AdaptGauss”. The analysis had resulted in a trimodal distribution of phasic 
cold pain thresholds, with Gaussian modes located at mean temperatures of 24.5, 18.1 and 7.5 °C in decreasing 
order of cold pain sensitivity.

To determine the optimum number of components, model optimization had been done for M = 2 to 4 com-
ponents, i.e., one mode less or more than in the original analysis. The final model was reestablished based on the 
Akaike information criterion. To test the robustness of the results, the “Distribution Optimization” algorithm was 
run 100 times using different values of “seed”. The 95% confidence intervals of the GMM parameter estimates 
were obtained as the 2.5th and 97.5th percentiles of the estimates from the 100 runs. This was compared to GMM 
fits in which the EM algorithm was used for model adaptation.
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Data set 2 consists of heat pain thresholds that had been used for the original publication of the interactive 
“AdaptGauss” R library12. The data had been obtained by locating a thermode at the skin of the forearm of n = 127 
healthy volunteers and raising the temperature at 1 °C/s until the subject indicated a painful sensation. Interactive 
GMM analysis optimizing, based on the EM algorithm but with visually guided correction of the fit versus the 
observed PDE of the data, had identified a distribution pattern with M = 4 Gaussian modes located at tempera-
tures of 32.3, 37.2, 41.4, and 45.4 °C.

Data set 3 has been acquired in a cohort of n = 31 healthy subjects in whom the cortical excitability had 
been modulated by applying transcranial magnetic stimulation14. Following inhibitory stimulation of the primary 
motor cortex, the changes in the amplitudes of motor evoked potentials displayed a trimodal distribution with 
modes located at 69.7, 115.1 and 158.4%.

Finally, data set 4 contains a sample of n = 10,000 microarrays derived gene expression values, observed in 
subjects with and without leukemia15. A total of 7,747 different Genes where assessed on 554 subjects, of whom 
109 subjects where healthy while 445 patients were diagnosed with some kind of leukemia. Every sample repre-
sents the logarithmic intensity of a gene expression.

Figure 2. Fit of a GMM with M = 3 modes to data set 1(pain thresholds to cold stimuli acquired from healthy 
volunteers13). The distribution of the data is shown as probability density function (PDF) estimated by means 
of the Pareto density estimation (PDE23; black line) and overlaid on a histogram. The GMM fit is shown as 
a red line and the M = 3 single mixes are indicated as differently colored dashed lines (M#1, …, M#3). The 
Bayesian boundaries between the Gaussians are indicated as perpendicular magenta lines. At the right of the 
distributions, the respective QQ-plots are shown. Top: Original fit as published previously, obtained with an 
interactive EM based GMM adaptation13. Middle: Fit obtained with the automated “Distribution Optimization” 
algorithm. Bottom: Fit obtained using the EM algorithm without manual interaction. The figure has been 
created using the R software package (version 3.5.3 for Linux; http://CRAN.R-project.org/24) and the R libraries 
“AdaptGauss” (https://cran.r-project.org/package=AdaptGauss12) and “DistributionOptimization” (https://
cran.r-project.org/package=DistributionOptimization).
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The automated “Distribution Optimization” GMM algorithm was run on these data sets and the obtained fits were 
compared with the original fits and with fits using the non-interactive standard EM algorithm implemented in the R 
library “mclust” (https://cran.r-project.org/package=mclust16). In addition, the quality of the fit was assessed by visual 
inspection of the fit and of a derived quantile-quantile (QQ) plot of the observed and predicted data distributions.

Results
Comparison of GMM fits using DistributionOptimization or the EM algorithm. The GMM fit of 
data set 1 using M = 3 modes as in the original publication13 resulted in mean values of m1,…,4 = 24.8, 14.7, and 
8 °C. The “Distribution Optimization” algorithm well separated the three Gaussian modes, however, the Bayesian 
decision limits slightly differed from those obtained by either interactive or non-interactive GMM fit based on 
the EM algorithm (Fig. 2). In this data set, the interactive EM based fit had provided the best model solution 
according to an Akaike information criterion of AIC = 988.81. “Distribution Optimization” and non-interactive 
EM based fits were associated with values of the AIC of 994.96 and 992.36, respectively.

Fitting various GMMs to data set 1 showed that the “Distribution Optimization” algorithm always aims at least 
overlap among Gaussian modes (Fig. 3). The present experiment also indicted that reassessment of the originally 
trimodal distribution of cold pain thresholds verified the original M = 3 modes since this provided the lowest 
value of the AIC (Fig. 3 lower right panel). The focus of the “Distribution Optimization” algorithm on the sepa-
ration of the Gaussian modes, disfavoring overlaps, became more evident in data set 2, where the non-interactive 
algorithm produced a solution with a counterintuitive separation of the subjects into clusters of the heat pain 
thresholds (Fig. 4). This is indicated by the location of the Bayesian decision limits that indicated a narrow second 
cluster not corresponding to the displayed data distribution. By contrast, the “Distribution Optimization” algo-
rithm produced a GMM with means close to the original result obtained with the interactive EM based GMM fit, 
located at temperatures of 35, 37.2, 41 and 44.2 °C. Of note, while the solution provided by the non-interactive 
EM algorithm was unusable for topical interpretation, it provided nevertheless the lowest AIC criterion of 
AIC = 651.01, while the better grouping obtained with the interactive EM or “Distribution Optimization” based 
fits were associated with slightly higher values of AIC of 654.64 and 659.2, respectively.

Fits of data set 3 again showed that the “Distribution Optimization” algorithm produced results comparable to 
those obtained with the alternatives tested in this analysis (Fig. 5). For data set 4, using M = 3 modes and aiming 
at their separation, “Distribution Optimization” terminated with Gaussian modes located at −44.1, −3.2 and 29% 
relative gene expression, whereas the raw EM based fit found almost superimposed modes with means at −1.1, 
−0.2 and 3% relative expression, and non-meaningful Bayesian decision limits (Fig. 6).

Figure 3. Assessment of a possible the number of modes in the distribution of data set 1. Fitting of a Gaussian 
(mixture) model (GMM) with M = 2, …, 4 modes (similar panels throughout the figure) to the distribution, 
shown as PDE (black line) and overlaid on a histogram. The GMM fit is shown as a red line and the M = 2, …, 4 
single mixes are indicated as differently colored dashed lines (M#1, …, M#4). The Bayesian boundaries between 
the Gaussians are indicated as perpendicular magenta lines. The best fit was obtained with M = 3 modes (dots) 
as indicated by the lowest value of the Akaike in formation criterion. The figure has been created using the R 
software package (version 3.5.3 for Linux; http://CRAN.R-project.org/24) and the R libraries “AdaptGauss” 
(https://cran.r-project.org/package=AdaptGauss12) and “DistributionOptimization” (https://cran.r-project.org/
package=DistributionOptimization).
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Robustness of the distribution optimization results. When running 100 fits of data set 1 with M = 4 
modes and setting the seed parameter at i in the ith run, the “Distribution Optimization” algorithm produced 
parameter values of the GMM that varied between 3.3 and 12.9% (Table 1). By contrast, the EM algorithm pro-
duced the same results in every run, i.e., the between runs variance of the GMM parameter values was 0%.

Discussion
The proposed method of fitting GMMs with a focus on maximum separation of the single mixes while allowing 
least overlap, was successful in providing satisfactory fits of the probability density distributions of the data. The 
results were comparable with those obtained with classical EM based fits, except for data sets where the EM algo-
rithm produced unsatisfactory results. The observation of such results as shown with data set 2 where the GMM 
provided no meaningful basis for group separation in a biomedical context had been the motive of the devel-
opment of the present alternative GMM analysis method. Hence, differences to the automated EM based fit are 
expected. Of note, when using visually guided EM based GMM fitting, results were similar to those obtained with 
“Distribution Optimization”. Main advantages of the latter algorithm, however, are that it excludes the subjective 

Figure 4. Fit of a GMM with M = 4 modes to data set 2. (pain thresholds to heat stimuli acquired in healthy 
volunteers12). The distribution of the data is shown as probability density function (PDF) estimated by means 
of the Pareto density estimation (PDE23; black line) and overlaid on a histogram. The GMM fit is shown as 
a red line and the M = 4 single mixes are indicated as differently colored dashed lines (M#1, …, M#4). The 
Bayesian boundaries between the Gaussians are indicated as perpendicular magenta lines. At the right of the 
distributions, the respective QQ-plots are shown. Top: Original fit as published previously, obtained with an 
interactive EM based GMM adaptation12. Middle: Fit obtained with the automated “Distribution Optimization” 
algorithm. Bottom: Fit obtained using the EM algorithm without manual interaction. The figure has been 
created using the R software package (version 3.5.3 for Linux; http://CRAN.R-project.org/24) and the R libraries 
“AdaptGauss” (https://cran.r-project.org/package=AdaptGauss12) and “DistributionOptimization” (https://
cran.r-project.org/package=DistributionOptimization).
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component of visually guided fitting, is better suited for automated GMM fitting of many data sets, and makes the 
results better reproducible.

The present algorithm has been developed to replace algorithms that aim at maximizing the GMM’s likeli-
hood, such as EM2,3, or an equivalent parameter of goodness-of-fit, such as used in Markov-chain Monte-Carlo 
algorithms4. EM is divided into an expectation and a maximization step, which are repeated to incrementally 
improve the likelihood of the model. The algorithm stops when the improvement falls under a certain threshold. 
During the expectation step, the priori likelihood is calculated based on the current model parameters. A like-
lihood function can therefore be constructed, based on a classification of every data point to one of the GMM 
components with the highest Bayesian probability. The maximization step then maximizes the parameters, given 
this information. For the general problem of local maxima, many different modifications of the algorithm have 
been proposed. For example in CEM2,17 and ECM18, only a single component is maximized in each iteration. 
SMEM19, SSMEM19 and Competitive EM20 are variants of EM that include split and merge operations on GMM 
components. Randomly mutating EM algorithms are the Random Swap EM21 or the genetic based EM. However, 
these algorithms do not aim at replacing the EM algorithm but rather at reducing one of its weaknesses, the risk of 

Figure 5. Fit of a GMM with M = 3 modes to data set 3 (amplitudes of muscle potential evoked in healthy 
volunteers14). The distribution of the data is shown as probability density function (PDF) estimated by means 
of the Pareto density estimation (PDE23; black line) and overlaid on a histogram. The GMM fit is shown as 
a red line and the M = 3 single mixes are indicated as differently colored dashed lines (M#1, …, M#3). The 
Bayesian boundaries between the Gaussians are indicated as perpendicular magenta lines. At the right of the 
distributions, the respective QQ-plots are shown. Top: Original fit as published previously, obtained with an 
interactive EM based GMM adaptation14. Middle: Fit obtained with the automated “Distribution Optimization” 
algorithm. Bottom: Fit obtained using the EM algorithm without manual interaction. The figure has been 
created using the R software package (version 3.5.3 for Linux; http://CRAN.R-project.org/24) and the R libraries 
“AdaptGauss” (https://cran.r-project.org/package=AdaptGauss12) and “DistributionOptimization” (https://
cran.r-project.org/package=DistributionOptimization).
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ending in local and not global optima. An alternative to EM are the Markov-chain Monte-Carlo algorithms4. They 
nevertheless follow the same idea as EM by alternately determining weightings, using Bayesian classification, and 
deriving expectation values and standard deviations from those weightings. Instead of maximizing those values 
in each iteration, Monte Carlo sampling is used, and the final GMM is given by the stationary distribution of the 
Markov chain. This, however, equals in a maximization of likelihood as in the EM algorithm. All covered methods 
ultimately only differ in in their way of searching the maximal likelihood, which we argue is not necessarily the 
best or most appropriate measure.

Figure 6. Fit of a GMM with M = 3 modes to data set 4. (microarray derived gene expression data form 
patients with leukemia and controls15). The distribution of the data is shown as probability density function 
(PDF) estimated by means of the Pareto density estimation (PDE23; black line) and overlaid on a histogram. 
The GMM fit is shown as a red line and the M = 3 single mixes are indicated as differently colored dashed lines 
(M#1, …, M#3). The Bayesian boundaries between the Gaussians are indicated as perpendicular magenta 
lines. At the right of the distributions, the respective QQ-plots are shown. Top: Fit obtained with the automated 
“Distribution Optimization” algorithm. Bottom: Fit obtained using the EM algorithm without manual 
interaction. The figure has been created using the R software package (version 3.5.3 for Linux; http://CRAN.R-
project.org/24) and the R libraries “AdaptGauss” (https://cran.r-project.org/package=AdaptGauss12) and 
“DistributionOptimization” (https://cran.r-project.org/package=DistributionOptimization).

Parameter

Distribution 
Optimization EM

Mean SD CV [%] Mean SD CV [%]

µ1 8 0.3 3.3 7.2 0 0

µ2 15 0.9 5.9 13.5 0 0

µ3 24.9 0.5 2.1 24.3 0 0

σ1 2.8 0.3 9.6 2.4 0 0

σ2 3.2 0.4 11.4 3.3 0 0

σ3 3.6 0.4 11.3 3.2 0 0

α1 0.4 0 10.9 0.3 0 0

α2 0.3 0 11.1 0.3 0 0

α3 0.3 0 12.9 0.3 0 0

Table 1. Parameters of the GMM obtained for data set 1, using 100 runs with different values of seed and either 
the “Distribution Optimization” or the EM algorithm (means, standard deviations, SD, and coefficients of 
variation, CV).
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The reproducibility of the results, however, was lower than that obtained when using classical EM based fit-
ting, as shown in the robustness experiment. This owes to the genetic algorithm being naturally dependent on a 
degree of randomness. This however allows an overcoming of local maxima and has the advantage of approximat-
ing different solutions. This allows for an automated generation of multiple significant models, which can offer 
different interpretations and has the effect that the fits differ from those obtained with EM. Specifically, the effect 
demonstrated in the sample data sets is mainly caused by the choice of quality measures during the fitting process. 
We have shown that statistically sound GMM can be reached by optimization of a different quality measure than 
likelihood and that an additional quality can be introduced, producing a model that is significantly different for 
classification purposes than what is reached by EM. The problem search space for complex problems as GMM is 
not transparent and there is always explicit or implicit bias introduced through such optimizations, one can never 
ultimately conclude that there are no models that reach higher performance under the quality measures with a 
less desirable structure.

The preference of “Distribution Optimization” to EM based alternative methods for GMM fitting not only 
depends on the reproducibility of the results, the goodness of fit, and the robustness of the results, but has a clear 
contextual component. This is shown with data set 4. The EM fit of a GMM consisted in a mixture of almost 
superimposed Gaussian modes with nearly identical means but different standard deviations (Fig. 6). By contrast, 
“Distribution Optimization” produced three distinct modes with a main mode in the center and two modes of 
low weights at its margins. In biomedical research such represented in the leukemia derived data set 4, the usual 
criterion to define an effect is a difference in mean, for example as defined in the effect size measure of Cohen’s d22.  
Research aims often at the identification of subgroups in the data, and these subgroups are characterized by dif-
ferent central values of the selection parameter, such as different means. With the EM based fit, a useful group 
separation was impossible whereas the “Distribution Optimization” provided this readily. However, when group 
separation is not a topical focus and by contrast, the data are considered to represent groups with similar means 
but different variances, “Distribution Optimization” would be unsuitable while EM based GMM fitting may pro-
vide the desired result. Thus, the choice of the method should consider both, the statistical soundness and the 
topical context.

By its optimization toward mode separation, the proposed “Distribution Optimization” evolutionary 
algorithm for GMM fitting provides a suitable basis for group separation in multimodally distributed data. It 
introduces choice between multiple significant models, which would not have occurred by pure means of like-
lihood optimization such as in alternative approaches to GMM fitting. When group separation is intended, the 
“Distribution Optimization” algorithm may outperform alternative EM based methods in some data sets.

Data availability
The “DistributionOptimization” R package is freely available at https://cran.r-project.org/
package=DistributionOptimization.
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