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Abstract

To identify electrical vehicle (EV) distribution paths with high robustness, insensitivity to

uncertainty factors, and detailed road-by-road schemes, optimization of the distribution path

problem of EV with multiple distribution centers and considering the charging facilities is

necessary. With the minimum transport time as the goal, a robust optimization model of EV

distribution path with adjustable robustness is established based on Bertsimas’ theory of

robust discrete optimization. An enhanced three-segment genetic algorithm is also devel-

oped to solve the model, such that the optimal distribution scheme initially contains all road-

by-road path data using the three-segment mixed coding and decoding method. During

genetic manipulation, different interlacing and mutation operations are carried out on differ-

ent chromosomes, while, during population evolution, the infeasible solution is naturally

avoided. A part of the road network of Xifeng District in Qingyang City is taken as an exam-

ple to test the model and the algorithm in this study, and the concrete transportation paths

are utilized in the final distribution scheme. Therefore, more robust EV distribution paths

with multiple distribution centers can be obtained using the robust optimization model.

Introduction

The rapid development of e-commerce has a significant impact on our daily lives and has

driven the improvement of the logistics industry in cities. Vehicle path planning is the key link

in logistics distribution activities. Identifying a reasonable distribution path can reduce the

number of vehicles running, shorten transportation mileage to decrease enterprise cost, pro-

mote fast response to demands, and promote quality service to satisfy more customers.

Nowadays, most cities in China are experiencing serious air pollution. In the Copenhagen

Conference of Climate Change, the Chinese government declared that China would decrease

the ratio between GDP and CO2 emission to 40%–45% by 2020. The traffic industry, as a

major aspect of greenhouse gas resource, is facing strong pressure to decrease its CO2
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emission. According to the investigation, 60%–70% CO and 40% NOx come from car exhausts.

The Chinese urbanization process has increased the number of private car ownership in urban

cities and led to a remarkable rise in logistics distribution. Vehicles are the main transport

means of city logistics. The growing logistics distribution implies an increase in the number of

vehicles and distribution times. Consequently, both private cars and distribution vehicles can

worsen air pollution in urban areas.

Transportation and distribution directly affect the cost of good and city development.

Owing to the extension of the logistics transport scale, many problems, such as traffic conges-

tion and explosion pollution, hinder the economy’s development and threaten people’s daily

life. Logistics enterprises must take responsibility for converting to green and environment-

friendly distribution equipment because of the severe energy and environmental crisis. Electric

vehicles (EVs) play an important role in new strategic energy automobile reform, thanks to its

advantages, including high efficiency, little noise and explosion, low cost, and multiple energy

resources. Consequently, developing EVs and employing them in logistics distribution are of

practical significance.

An EV can be driven partially or totally by electricity. However, its limited continual driv-

ing mileage makes the EV path different from that of the traditional gasoline car due to battery

technology. Occasionally, power in the battery cannot cover the whole path mileage, and the

EV has to recharge at a given station halfway to its destination.

Research on the logistics distribution optimization of EV is still in the infancy stage. Arte-

meier et al. considered the minimized electricity cost as the goal and proposed an optimized

model of EV transport route based on the shortest path problem with constraints [1]. Conrad

and Figliozz studied rechargeable vehicle route planning and established the mixed integer

programming model, which took into account the limited continual driving mileage. No actual

charging instrument was provided, but vehicles could be charged at specified customer nodes

along the running route [2]. Ren used dynamic traffic network to establish a multi-objective

optimization model of a charging station layout and optimal scale based on hard time window.

Charging cost and investment of station cost were minimized in the model, which provided

basic theoretical support for future EV charging stations [3]. Han introduced operation plan-

ning and calculating methods for a pure electric bus charging station. The case study and sim-

ulation were used to test the method [4]. Worley et al. established the model that combined the

recharging station location with the EV route problem [5]. Sevgi et al. proposed a green vehicle

route with a time window for short continual driving mileage of EV and insufficient charging

facilities. Two heuristic algorithms were used to acquire the minimal driving distance solution

[6]. Liu focused on joint distribution scheduling optimization based on EV technology. Ant

colony algorithm was used to solve the model as the continual driving time was limited and

the charging time was constrained. Similarly, no actual charging equipment was found, and

runnable time was considered the main constraint [7]. Li researched the electric bus schedul-

ing problem with limited running mileage, changeable battery, and fast charging. Two algo-

rithms were designed to solve this model, namely, the branch-and-price algorithm of small-

scale search and the heuristic algorithm with column generation and local generation for

medium- and large-scale applications respectively [8]. Schneider et al. studied the last-mile

application in an electric logistics vehicle by considering constraints of customer time, goods

weight, and continual driving. The optimization and scheduling model of the electric logistics

vehicle are established to avoid long distribution time and useless route, and suitable recharg-

ing stations were chosen when the remaining mileage was not enough to meet the distribution

demands [9]. Lu and Chen established including “the shortest total distance and the largest

remaining power after arriving destination” multi-objective programming with two objects to

research the problem of path optimizing of EV [10]. Xiu et al. presented two-phase mathematic
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programming model based on power station center and adaptive genetic algorithm to solve

the real-time dynamic vehicle routing problem [11]. Anagnostopoulou Afroditi et al. intro-

duced and analyzed the one-to-many vehicle routing and scheduling problem with EV, and

emphasized that the optimal or approximate optimal solution for large and medium-sized

instance problems can be determined by a large number of calculations [12]. Liu et al. aimed

at the problem about EV navigation system multiple charging in a long O-D trip, provided

Improved Chrono-SPT (ISC) to derive the optimal decision sequence, to achieve the purpose

of finding out an optimal routing and charging policy [13]. He et al. were in order to solve the

problem of battery electric vehicles (BEVs) drivers select routes, formulated three mathemati-

cal models to describe the resulting network equilibrium flow distributions and then found the

optimal path [14]. Huang et al. considered the EV load scheduling problem as the robust short-

est path problem and used the Simulation-based Policy Improvement algorithm to solve it

[15]. Liu et al. established two mathematical models separately with the equivalent path length

and the minimum cost as its object function, and used the traditional ant colony optimization

algorithm containing punishment factor to solve the models, to achieve the purpose of selecting

the optimal path quickly [16]. Okan et al. pointed out that in order to find the minimum cost

path for Plug-in Hybrid EV (PHEVs) in a road network with refueling and charging stations,

optimal path can be obtained by using the mixed integer quadratically constrained formulation,

the discrete approximation dynamic programming heuristic and the shortest path heuristic

[17]. Jane Lin et al. considered the vehicle load effect on battery consumption, produced a gen-

eral EV Routing Problem (EVRP) that found the optimal routing strategy [18]. Yang et al. pre-

sented an EV route selection and charging navigation optimization model, in order to reduce

the travel costs of EV users and improving the load level of the distribution system concerned

[19]. Martin et al. developed a vehicle shortest routes model, which is the shortest path problem

for convertible resources and charging stations. And the solutions of the model can be studied

by classifying several types of cycles that may occur in the optimal route [20]. Xie and Jiang pro-

posed a new equilibrium traffic assignment problem with side constraints, and a gradient pro-

jection algorithm and a labeling algorithm are adopted to solve the problem [21]. Chiara et al.

used second-by-second Global Positioning System (GPS) commute data and traffic micro-sim-

ulation data to study the energy consumption effect of route selection on BEVs, also, captured

the impact of transient behavior on BEV energy consumption (BEVEC) and recovery while

braking in a crowded network based on the microscopic BEVECmodel [22]. Gao constructed

an EV route model with the goal of minimizing the total distribution cost [23]. Geoke and

Schneider adopted the adaptive large neighborhood search algorithm in large-scale applications

to solve the route planning problem of mixed traffic platoon with time window; the effects of

different objectives and share of EV cost of the obtained results were analyzed as well [24].

Apparently, most of the path optimization research mentioned above focused on certainty

conditions but seldom analyzed the EV distribution path with uncertainty conditions, an

approach that depended mostly on a hypothesis of a priori knowledge and obeying the proba-

bility distribution [25–27]. These kinds of models are too sensitive to uncertain data changes

[28]. Moreover, the traditional EV distribution path optimization usually considers the distri-

bution sequence of demand nodes as the final result instead of the road-by-road path scheme.

In the current study, the EV distribution robust optimization model with multiple distribution

centers considers the minimal changeable uncertainty transport time as the goal, where the

charging facilities in the network are considered and genetic algorithm is designed to achieve a

more robust optimal path scheme.

This paper is organized as follows. The next section presents the robust optimization model

of the EV distribution path. The third section proposes the optimization algorithm. The fourth

section discusses the case study. The last section presents the conclusion.

Distribution path robust optimization of EV
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Robust optimizationmodel of the EV distribution path with
multiple distribution centers

An EV distribution path with multiple distribution centers can be defined as a distribution ser-

vice connecting multiple distribution centers to several client demand nodes after an EV is

fully charged at the centers in a given area. Each vehicle can provide distribution service to

multiple clients. However, each client can only receive one vehicle service. When the remain-

ing electricity in the vehicle is not enough for the next client, the client must visit the closest

charging equipment first prior to moving on to the next destination after charging. The vehicle

service is completed when it returns to the original distribution center. Each client can receive

service from any EV in any distribution center. The optimal distribution path should be deter-

mined to minimize the total distribution time.

Hypothesis of the model

The following hypotheses are proposed to simplify the problem.

1. The amount of goods stored of distribution centers can meet all client node demands.

2. The amount of goods demanded at any client node is not more than the maximum carrying

capacity of the EV responsible for this node.

3. The EV does not lose any electricity during loading and unloading operations at the client

nodes.

4. The distribution problem is a pure dispatching goods problem, and these goods are of the

same type.

5. Sufficient EVs are available at the distribution centers.

6. In one complete transport mission, an EV can serve multi-client demand nodes, but each

node can only receive service from one EV, and each EV can pass through the nodes that

have already finished the service numerous times.

7. In one transport mission, the total demand of the EV distributing to client nodes is not

more than the permissive carrying capacity of the EV.

8. The EV is fully charged before departing from the distribution center or after visiting the

charging facility. Moreover, the charging time is fixed.

9. The ratio of consumed electricity of the EV is standard, and the amount of power consump-

tion is proportional to the distance.

10. The EV runs at a fixed velocity, and the running time is proportional to the running

distance.

Index system

Undirected connecting network G = (N,A) represents the EV transport network with multiple

distribution centers, and the property information of all nodes are described by an adjacency

matrix.

Set definition. P1 = {p|p = 1,2,. . .n0}—set of demand nodes of good

P0 = {p0|p0 = n0 + 1,n0 + 2,. . .n0 + m}—set of distribution centers of goods

P2 = {p@|p@ = n0 + 1,n0 + 2,. . .n0 + m + h}—set of charging equipment

Distribution path robust optimization of EV
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P3 = {p|p = n0 + m + h + 1,n0 + m + 2,. . .n}—set of common nodes in the transport network,

excluding distribution centers, demand nodes, and charging equipment

N = P0 [ P1 [ P2 [ P3—set of all nodes

W—set of paths in the transport network

Vp
0 ¼ fkjk ¼ 1; 2; . . .Kg—set of EVs, p0 2 P0

Parameter definition. sij—running distance between nodes i and j, (i,j) 2 W

f—power consumption ratio of the unit distance of EV

v—running velocity of EV

h—full charging time of EV

F—battery capacity of EV

F1

ikp`—remaining electricity in battery after EV k runs from distribution center p0 to node i,

i 2 W; p
0
2 P

0
; k 2 Vp

0

F2

ikp`—remaining electricity in battery of EV k from distribution center p0 when it leaves from

node i, i 2 W; p
0
2 P

0
; k 2 Vp

0

M—total amount of EV finishing all transport missions of goods

Q
p
0

k —maximum carrying capacity of EV k, p
0
2 P

0
; k 2 Vp

0

qi—demand amount of client node p, p 2 P1

tij—nominal value of road link ij, (i,j) 2 W

δij—deviation value of road link ij according to the nominal one, δij � 0, (i,j) 2 W

~t ij—changeable value of road link ij, ~t ij 2 ½tij; tij þ dij�, (i,j) 2 W

load
p
0

ijk—carrying goods weight of EV k from distribution center p running on road link ij, (i,j)

2 W, p0 2 P0, k 2 Vp
0 , loadp

0

ijk � 0

Definition of other related parameters

x
p
0

ijk ¼

(
1 EV of distribution center p0

chooses road link ij and ði; jÞ 2 W; p
0
2 P

0
; k 2 Vp

0

0 otherwise

y
p
0

ik ¼

(
1 EV of distribution center p

0
services for client nodes i; i 2 P

1
; p

0
2 P

0
; k 2 Vp

0

0 otherwise

Objective function

The interval value used in this study represents the uncertainty road link time of the EV distri-

bution path problem with multiple distribution centers, that is, ~t ij, ~t ij 2 ½tij; tij þ dij�, where the

nominal value of road link ij is generated from the ratio of road distance sij and EV running

Distribution path robust optimization of EV
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velocity v. Parameters T(T 2 [0,|W|]) and E are also introduced. The former controls the

uncertainty conservative factor showing the fluctuation information of tij, whereas the latter is

the set of changing road links due to the uncertainty time. |E| is the number of set E. Assigning

different values of T can help acquire the variable robustness distribution scheme to control

the model robustness. When T = 0, tij is the constant neglecting time deviation, and the model

is the most sensitive to uncertainty time. Specifically, the previous optimized result may

change when the uncertainty time of a given road link in the distribution network changes.

Along with the continual increase of T, the model sensitive degree will decrease with the

uncertainty time. As a result, the resulting robustness can be improved. The function of T = |E|

means that all the deviations of uncertainty time of all paths are considered. In addition, the

model is the most insensitive and the result is the most conservative. According to the robust

discrete optimization, robust optimization model of EV distribution path with multiple distri-

bution centers is established as follows:

minT ¼
X

p
0
2P0

X

k2fV
p
0 jp

0
2P0g

X

ði;jÞ2W

tijx
p
0

ijk þ max
fTjT�W;jTj¼Gg

X

p
0
2P0

X

k2fV
p
0 jp

0
2P0g

X

ði;jÞ2W

dijx
p
0

ijk ð1Þ

X

i2P1

y
p
0

ik qi � Q
p
0

k ; 8p
0

2 P
0
; 8k 2 Vp

0 ð2Þ

X

p
0
2P0

X

k2V
p
0

y
p
0

ik ¼ 1;8i 2 P
1

ð3Þ

X

ði;jÞ2W

xp
0

ijk
�

X

ði;jÞ2W

xp
0

jik
¼ 0;8i 2 N; p

0

2 P
0
; k 2 Vp

0 ð4Þ

F2

ikp` ¼ F; i 2 P
0
=P

2
; 8p` 2 P

0
; k 2 Vp` ð5Þ

F1

ikp` ¼ F2

ikp`; i 2 W; 8p` 2 P
0
; k 2 Vp ð6Þ

F1

jkp` � F2

ikp` � f � Sij � x
p`
ijk þ F � ð1� x

p`
ijkÞ; 8ij 2 W; i 6¼ j; p` 2 P

0
; k 2 Vp ð7Þ

F1

ikp` � 0; i 2 W; 8p` 2 P
0
; k 2 Vp ð8Þ

Where the objective function (1) minimizes the EV distribution time. Carrying capacity con-

straint (2) means that each EV cannot load more than its maximum carrying capacity. Client

demand node constraint (3) shows that any node can only receive service from one EV. Con-

straint (4) describes the EV running paths, that is, the EV must return to the original distri-

bution center after finishing all node services. Constraints (5) to (8) represent the battery

capacity, where in-car battery is the power source of the EV and its capacity is fixed. Constraint

(5) indicates that each EV has the maximum power capacity before departing from the distri-

bution center or just after visiting the charging equipment. Constraint (6) presents the remain-

ing power, which is kept the same before and after visiting the client node. Constraint (7)

represents that the ratio of power consumption along distribution path link (i,j) is f that is, the

power amount at node j is equal to it at node I minus the consumption amount along path (i,

j). Constraint (8) ensures that the remaining power is nonnegative and the transport is feasible

at any time.

Distribution path robust optimization of EV
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The “max” item observed in objective function (1) cannot be solved directly, further equiva-

lent transformation must be carried out. The above function (1) is conversed into (9) by the

robust discrete transforming principle [29].

HIJ ¼ min

(

X

p
0
2P0

X

k2fV
p
0 jp

0
2P0g

XfI:ðI;jÞ2Wg

fi¼1:ði;jÞ2Wg

XfJ:ði;JÞ2Wg

fj¼1:ði;jÞ2Wg

dijx
p
0

ijk þ
X

p
0
2P0

X

k2fV
p
0 jp

0
2P0g

XfI:ðI;jÞ2Wg

fi¼1:ði;jÞ2Wg

XfJ:ði;JÞ2Wg

fj¼1:ði;jÞ2Wg

ðdij � dIJÞx
p
0

ijk

)

þ TdIJ ð9Þ

Then, the optimal time objective is shown as T ¼ minðI;JÞ2W HIJ .

Optimization algorithm

The robust optimization model of the EV distribution path is a nonlinear programming

model. Therefore, the traditional simple algorithm cannot be used to solve the model effec-

tively. Genetic algorithm can avoid the constraints of problem features, such as linearity, conti-

nuity, differentiability, and multimodality. Several feasible results of the optimization problem

can be acquired by parallel operation on one chromosome, which is an effective algorithm for

large-scale combinational optimization problems [30]. The genetic algorithm is therefore

introduced to solve the EV distribution path optimization with multiple distribution centers.

The flow diagram of the algorithm is shown in Fig 1, where Tmax is the maximum number of

iterations.

Encoding and decoding

The algorithm needs to consider three problems for the EV distribution path problem of mul-

tiple distribution centers. The first is choosing the appropriate demand points for each

Fig 1. Flow diagram of the algorithm.

https://doi.org/10.1371/journal.pone.0193789.g001
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distribution center chooses; next is determining the distribution order of each distribution

center; and finally, establishing the path selection of the distribution to demand points and the

return to distribution centers. Therefore, the genetic algorithm in this section adopts a hybrid

coding method that combines distribution centers, customer demand points, and distribution

paths.

Specifically, a chromosome is divided into three segments. Chromosome segment 1 is the

demand points selected from the service by the distribution center. The length of this segment

is the quantity of demand points, and its genetic value is the number of each distribution cen-

ter. Chromosome segment 2 represents the distribution service order of the customer demand

points. The length of this segment is the number of customer demand points, and its genetic

value is the number of each demand point. Chromosome segment 3 has three components:

distribution center–demand point encoding, demand point–demand point encoding, and

demand–distribution center encoding. This segment indicates the distribution path, whose

length is determined by the number of path nodes (if s demand points are serviced by a total of

t EVs, then the length of chromosome segment 3 is s+t and whose genetic value is each node

quantity. Chromosome segments 1 and 2 conduct greedy choice according to the loading

capacity of EV, and segment 3 conducts neighbor selection between nodes to implement the

coding and decoding algorithm of the EV distribution problem with multiple distribution cen-

ters. Suppose there is a transport network with 12 nodes (Fig 2). Two distribution centers

(nodes a and b) participate in distribution tasks between five demand points (node 1, node 2,

node 3, node 4, and node 5). The demands of points are 1.5, 2, 2, 1.5, and 2.5 tons. Vehicle

load is 5 tons. A hybrid coding chromosome with three segments is then produced as follows:

Chromosome segment 1: a-b-a-b-a

Chromosome segment 2: 3-1-4-2-5

Chromosome segment 3:

7� 5� 10� a� b� 1� 8� 2� 6� 3� 4� 9; 8� 6� b � � � 5
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

12

� � � ; 9� 4� 10 � � � 2
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{

12

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

8

From segment 1, demand points 1, 3, and 5 are serviced by distribution center a, while

demand points 2 and 4 are serviced by distribution center b. In segments 1 and 2, the

Fig 2. Diagram of the transportation network.

https://doi.org/10.1371/journal.pone.0193789.g002
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distribution order of center a is 3-1-5. Demand points are assigned to appropriate EVs by

adopting greedy strategy to meet the conditions of load constraints. Therefore, the distribution

order of the first car is a-3-1-a, and the order of the second car is a-5-a. Similarly, distribution

center b needs one EV for distribution, and the distribution order is b-4-2-b.

Chromosome segment 3 has eight sub-segments, each of which has 12 genes. These sub-

segments are nodes in the network, representing the distribution path between distribution

center–demand point, demand point–demand point, and demand point–distribution center.

Chromosome segments 1 and 2 show that a center should first provide service to demand

point 3. In this study, the coding and decoding processes are described in detail by taking the

distribution path between distribution center a and demand point 3 as examples. The coding

and decoding schematic of chromosome segment 3 is shown in Fig 3. First, generate an initial

sequence of length 12 (7-5-10-a-b-1-8-2-6-3-4-9), traverse the series to find the distribution

center a, and find and delete it from the sequence. The length of the sequence is 11. Then, take

a as key point, traverse the sequence from the front of the series according to the adjacency

relation of the nodes in the transportation network, find the node adjacent to key point a,

delete it and take it as key point, and continue to find the next node based on the adjacency

relation in the EV transport distribution network until demand point 3 is found. After a node

is regarded as a key point, no node in the sequence is found to be adjacent to the key point,

and demand point 3 still has not been found, which means that the decoding of the initial

sequence cannot acquire the correct distribution path. At this point, the sequence should be

re-generated and decoded until the distribution path between two demand points is acquired.

Finally, the path length calculates whether the power of the EV arriving at each node is positive

and determines whether the path is feasible. Based on the above coding and decoding pro-

cesses, the distribution path chromosome sub-segment maximum length cannot exceed 12.

The encoding and decoding of the other seven sub-segments are the same.

Fig 3. Coding and decoding schematic of chromosome segment 3.

https://doi.org/10.1371/journal.pone.0193789.g003
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Fitness function setting

The objective function in the model is always positive. Thus, the individual fitness function

can be set as follows:

SðxÞ ¼

(

M � TðxÞ; if TðxÞ < M

0; if TðxÞ � M
ð10Þ

where T(x) is the objective function value of the model, and M is a given larger number.

Genetic operator design

The selection operation of the genetic algorithm is performed by roulette selection method.

Crossover and mutation operation are designed based on the three-segment encoding style,

which can improve the efficiency of the algorithm to search a solution, as well as avoid the gen-

eration of a non-feasible solution and premature convergence.

Selection operator. This study adopts the roulette wheel selection strategy. In practice,

the chromosomes are ordered in accordance with the chromosome target value. Then, the rou-

lette is chunked and calibrated to an adaptive score by a certain distribution according to the

size of the population. In the end, a random number between 0 and 1 is generated, depending

on which probability region of the random number is present to determine whether each indi-

vidual is selected. After the selection process, elite law is used to transport the best individual

from the previous generation directly into the next generation. Thus, in every process of evolu-

tion, the best individual of the next generation must be better than that of the previous

generation.

Crossover operator. Two-point crossover is used to complete the crossover operation of

chromosome segments 1 and 2. First, two individuals are selected as paternal chromosomes by

certain probability, arbitrarily selecting two gene loci in the first segment of the selected chro-

mosome as the crossing points. Second, parts between two crossing points of two selected

chromosomes are exchanged to form the offspring chromosomes.

With regard to chromosome segment 3, which is transported from distribution center–

demand point chromosome sub-segment, demand point–demand point chromosome sub-

segment, and demand point–distribution center chromosome sub-segment, in this study, if

the first and last nodes of two sub-segments in chromosome segment 3 have the same genetic

value, then they are called equal sub-segments. As shown in Fig 4, two chromosomes S1 and S2

with equal sub-segments are selected as the parent. If the crossover probability is satisfied,

then equal sub-segments V1 and V2 of two chromosomes will be exchanged to obtain the off-

spring chromosome. This crossover method is used to ensure the diversity of the offspring

chromosomes produced after crossing, ensure its feasibility, and improve the efficiency of the

algorithm.

Mutation operator. Mutation operation of chromosome segments 1 and 2 is accom-

plished by the reverse transcription method. Two gene loci are randomly determined in the

chromosome segment. If the mutation probability is met, then the reversal operation will be

performed on the gene segment between the two gene loci. For example, chromosome seg-

ment 4-|3-5-2| is changed to 4-|2-3-5|.

Chromosome segment 3 is treated with an allelic variation, because chromosome 3 is the

specificity of the path chromosomes generated by the adjacent nodes. In this study, the allele

in the chromosome segment is defined as a gene whose start and end nodes have the same

genetic value. First, the two nodes k1 and k2 on chromosome R are determined to be mutated,

and the gene between the two nodes (including k1 and k2) is the mutation gene w, as shown in
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Fig 5. If the mutation probability is satisfied, then the corresponding allele w0 will be generated

by the coding and decoding methods of chromosome segment 3 to replace the original gene w

and acquire the new chromosome R0. To ensure the follow-up genetic operation, the actual

length of the mutated chromosome sub-segment should not exceed the allowed maximum

length (the total number of nodes in the EV distribution network is N). The use of this muta-

tion method can effectively avoid the generation of infeasible chromosomes.

Fig 4. Schematic diagram of equal sub-segment crossover.

https://doi.org/10.1371/journal.pone.0193789.g004

Fig 5. Variation diagram of chromosome segment 3.

https://doi.org/10.1371/journal.pone.0193789.g005
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Case study

A part of the road network in Xifeng District of Qingyang City is selected as the sample in the

case study. This road network has 47 nodes and 79 sections (|N| = 43, |W| = 79), where nodes

1 to 12 are demand points, nodes 13 to 15 are distribution centers, and nodes 16 to 18 are

charging facilities. The distribution center will send EVs to service these 12 demand points. In

the case of insufficient power, vehicles will go either to the nearby distribution center or the

charging facilities for charging. Demand points are serviced by EVs from distribution centers

with capacity tonnage = 5, battery capacity F = 800, average speed v = 10, and setting power

consumption coefficient per unit f = 0.2. The demand of each point is shown in Table 1, and

the distance of each section sij is shown in Fig 6. The nominal value of road travel time tij is the

Table 1. Transport task information.

Demand point Quantity demanded Demand point Quantity demanded

1 1.5 7 2

2 1.2 8 1.5

3 0.5 9 1

4 1.7 10 1.2

5 2 11 0.7

6 1 12 0.8

https://doi.org/10.1371/journal.pone.0193789.t001

Fig 6. Part of the transport network of Xifeng District in Qingyang, China.Note: Dxxx is the distance of the road.

https://doi.org/10.1371/journal.pone.0193789.g006
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ratio of section distance sij to average speed v of EV, where a certain deviation of the nominal

value of the road travel time occurs, assuming that the road travel time deviation δij(0� δij <

0.5rij) is a random real number.

The algorithm is realized in the VC++ 6. 0 platform, where setting population size is 100,

maximum evolutionary algebra is 200, reversal rate is 0.1, crossover probability is 0.6, mutative

probability is 0.1, and the risk robust control parameters T are 0, 20, and 50. The program is

run several times to acquire the following results.

Tables 2–4 show that the client nodes of both distribution centers and each EV servicing

are the same in all optimal, second-optimal, and third-optimal solutions with the correspond-

ing T value. However, their distribution sequences and paths are not the same at all. The total

distribution time of each solution also differs. The EV chooses the nearby distribution centers

or charging equipment to finish its mission because numerous client nodes are along its path.

Fig 7 shows that the optimal distribution time increases with the increase in robust controlling

parameters of path time. Thus, enhancing the solution robustness can, to some extent, cut

down the solution optimality. In balancing robustness and optimality, assigning the most suit-

able value to T is a vital issue that depends on the problem features and the judgment of the

decision-maker, and thus requires further research.

Table 2. Solution set when T = 0.

Distribution
center

Optimal solution Second-optimal solution Third-optimal solution

Demand

point

Distribution

path

Demand

point

Distribution

path

Demand

point

Distribution

path

Distribution center
1

(point 13)

(5,1,3) EV 2: 13-41-5-47-1-44-3-47-5-41-
13

(5,1,3) EV 1: 13-41-5-47-1-47-3-47-
5-41-13

(5,1,3) EV 1: 13-34-30-3-44-1-47-5-
41-13

(2,8) EV 2: 13-41-33-38-2-42-18-27-8-
42-2-38-13

(2,8) EV 2: 13-38-33-42-18-27-8-
42-2-38-13

(2,8) EV 2: 13-38-2-42-8-42-18-43-
33-41-13

Distribution center
2

(point 14)

(12,10,6) EV 1: 14-22-12-10-35-40-19-6-
17-24-19-14

(12,10,6) EV 1: 14-35-10-12-22-14-19-
6-19-14

(12,10,6) EV 1: 14-22-12-10-35-14-46-
6-46-14

Distribution center
3

(point 15)

(9,4,7) EV 1: 15-9-15-23-16-4-36-7-36-
23-15

(9,4,7) EV 1: 15-9-16-4-36-7-28-23-
15

(9,4,7) EV 1: 15-25-37-28-7-36-4-16-
9-15

(11) EV 2: 15-25-20-11-37-25-15 (11) EV 2: 15-25-37-11-37-25-15 (11) EV 2: 15-25-20-11-20-25-15

Total distribution
time

2067.3 2341.6 2438.5

https://doi.org/10.1371/journal.pone.0193789.t002

Table 3. Solution set when T = 20.

Distribution

center

Optimal solution Second-optimal solution Third-optimal solution

Demand

point

Distribution

path

Demand

point

Demand

point

Distribution

path

Distribution
center 1
(point 13)

(3,5) EV 1: 13-41-5-47-3-30-34-13 (3,5) EV 1: 13-41-5-47-3-47-5-41-
13

(3,5) EV 1: 13-34-30-41-5-47-3-47-5-
41-13

Distribution
center 2
(point 14)

(10,12,8,2) EV 1: 14-35-10-45-43-18-42-2-
42-8-27-12-22-14

(10,12,8,2) EV 1: 14-35-10-45-43-18-42-
2-42-8-27-12-22-14

(10,12,8,2) EV 1: 14-19-40-35-10-12-27-8-21-
2-42-18-10-35-14

(6,1) EV 2: 14-19-6-19-40-1-24-19-14 (6,1) EV 2: 14-46-6-17-24-1-40-
19-14

(6,1) EV 2: 14-46-6-17-24-1-40-19-14

Distribution
center 3
(point 15)

(9,4,7) EV 1: 15-9-16-4-36-7-28-23-15 (9,4,7) EV 1: 15-25-37-28-7-36-4-
16-9-15

(9,4,7) EV 1: 15-23-28-46-31-7-36-4-36-
23-16-9-15

(11) EV 2: 15-9-32-20-11-37-25-15 (11) EV 2: 15-25-20-11-20-25-15 (11) EV 2: 15-9-32-20-11-37-25-15

Total distribution
time

2298.2 2441.7 2503.6

https://doi.org/10.1371/journal.pone.0193789.t003
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In the traditional literature on the vehicle path problem, the algorithm can only work out

the client node service sequence. For instance, in this case, distribution center 1(located at

node 13) should service client nodes 1, 3, and 5 by the traditional algorithm, and the distribu-

tion sequence is 13-5-1-3-13. However, many possible road links are available between the two

nodes, such as road links 1-44-3 and 1-47-3 connecting nodes 1 and 3. Moreover, the bigger

the network scale is, the more possible path schemes can be chosen. Hence, the distribution

sequence is not enough to clarify the concrete transport path. The algorithm in this study can

deal with this problem successfully and work out the path with all detailed road links aside

from the node sequence. For example, the path scheme of 13-41-5-47-1-44-3-47-5-41-13 is the

optimal solution to the client nodes 1, 3, and 5.

Conclusion

In this study, robust optimization method is used to avoid the dependence that uncertain

transport time data are assumed by the probability distribution. The uncertain data are defined

Table 4. Solution set when T = 50.

Distribution
center

Optimal solution Second-optimal solution Third-optimal solution

Demand

point

Distribution

path

Demand

point

Distribution

path

Demand

point

Distribution

path

Distribution
center 1
(point 13)

(3,5) EV 1: 13-38-33-43-5-41-30-3-
30-41-13

(3,5) EV 1: 13-34-30-41-5-47-3-47-5-
41-13

(3,5) EV 1: 13-34-30-3-42-5-43-33-38-
13

(2,8) EV 2: 13-41-33-38-2-42-8-21-2-
38-13

(2,8) EV 2: 13-38-33-42-8-42-2-38-13 (2,8) EV 2: 13-38-2-42-8-42-33-41-13

Distribution
center 2
(point 14)

(12,10,6,1) EV 1: 14-19-6-17-24-1-47-45-
10-12-10-45-40-19-14

(12,10,6,1) EV 1: 14-35-10-12-10-35-40-19-
6-19-40-1-40-19-14

(12,10,6,1) EV 1: 14-22-12-27-18-10-35-14-
19-6-19-40-1-40-19-14

Distribution
center 3
(point 15)

(9,4,7) EV 1: 15-9-15-23-36-4-36-7-36-
23-15

(9,4,7) EV 1: 15-23-28-46-31-7-36-4-
36-23-16-9-15

(9,4,7) EV 1: 15-9-16-23-28-46-31-7-36-
4-16-9-15

(11) EV 2: 15-9-32-20-11-37-25-15 (11) EV 2: 15-25-20-11-20-25-15 (11) EV 2: 15-9-32-20-11-37-25-15

Total distribution
time

2421.3 2607.8 2682.4

https://doi.org/10.1371/journal.pone.0193789.t004

Fig 7. Total distribution time of solution set with different T.

https://doi.org/10.1371/journal.pone.0193789.g007
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in a reasonable interval, which reduces the requirement of the basic data. In the process of

solving this problem, a three-segment mixed coding method is designed according to the char-

acteristics of the problem, and the corresponding decoding method and genetic operation are

designed according to the coding method, thus avoiding the generation of an infeasible solu-

tion in the process of population evolution. On the basis of considering the charging facilities,

the robust optimization model of the EV distribution path with multiple distribution centers is

established with minimum transport time. The EV transportation and distribution plan is

obtained after solving the model and implementing it into the transportation process with the

detailed road-by-road path scheme, which has high applicability and economic efficiency. At

the same time, setting the different risk coefficients of robust control can obtain an EV distri-

bution plan under different transportation conditions, as well as provide decision support for

the choice of EV distribution path with multiple distribution centers.

The use of the geographic information system and construction of a visual optimization

platform of an EV distribution path using this method will be the main study objects in the

future.
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