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We have been studying chaotic behavior and chaos-like behavior in continued fractions.
In this paper, such chaos-like behavior is investigated in detail. This behavior originates in
the complex numbers that determine the Cauchy distributions, where cyclic terms discretely
appear at isolated parameter values. The distributions are formed along with alternate
tangent functions that are dominated by the cyclic terms characterized by double-Markov
processes. Finally, the probability densities of the logistic map are analyzed based on the
Cauchy distributions, like state density calculations in solids.

§1. Introduction

In a separate paper,1) many types of chaotic and chaos-like behavior are ob-
served in continued fractions, which are represented by the corresponding fractal
structures like Bethe-Lattices (BL). In an electronic density calculation method em-
ploying a linear combination of atomic orbitals (LCAO), the Green’s function can be
formulated by a reverse matrix of a secular equation. The ij elements of the Green’s
function can be expressed in the form

Gij(E) =
1

E −Σij(x(E))
, (1)

where Σ is the self-energy and E is an energy parameter. Within a BL approxi-
mation, the terms x are equated as self-consistent continued fractions.1) These cor-
responding structures become fractal trees2) (Cayley trees), where the interactions
between ij elements, vij , become symmetric values: vij = vji.

In contrast to electronic interaction systems, interactions in other systems can
be represented by asymmetric matrix elements (vij �= vji). In such systems, the
iterated values of the self-energies exhibit chaotic behavior as a characteristic of
fractal structure systems. 2), 3) For example, a self-consistent continued fraction

xn+1 =
R

a− b

c− xn
− d

e− xn

(2)

becomes the expanded logistic map (LM). By fixing the parameters as a = 0, b =
1, c = 0, d = −1 and e = 1, one can obtain the LM equation. 3) - 5) On the contrary,
the parameters become b > 0, d > 0 in the electronic systems.
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Fig. 1. Chaos-like sequences in the parallel continued fraction equation in Eq. (4). Small differences

in starting values result in quite different sequences, as illustrated by (a) and (b), where a =

0.281, b = 1.01, c = 1.5 and d = 2.5 in Eq. (4). (c) The difference between the two sequences.

Fig. 2. The densities of the Cauchy distributions in the continued fractions. Figures (a) and (b)

are the densities of n = 2000 iterations in Fig. 1(a) and (b), respectively. (c) The calculated

distribution using the solution for the case ξ = 0.852464 and η = 0.70837.

To investigate chaos-like behavior in continued fractions for symmetric interac-
tion systems, the simple continued fraction

xn+1 =
a

b− xn
(3)

is analyzed in detail in §2. The iterated terms in this equation satisfy several beautiful
mathematical relations. The parallel continued fractions

xn+1 =
a

b− xn
+

c

d− xn
for a, c > 0 (4)

exhibit chaos-like sequences, where small changes in starting values yield completely
different distribution sequences, as seen in Fig. 1. These two sequences in Fig. 1 are
distributed according to the same Cauchy distribution (as shown in Fig. 2), which
is characterized by the complex number solution of the equation

xn+1 = xn = ξ + iη. (5)

This relation is satisfied in both equations (3) and (4).
In §2, a simple continued fraction is analyzed in terms of convergence, cycles and

distributions. It is shown that, in the cyclic terms, double Markov process-numbers
play an important role. The Cauchy distributions produced along with the tangent
curves are dominated by these cyclic terms. This type of distribution sometimes
appears in other chaos-like behavior.6)
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In §3, the logistic map is studied using the same method of analysis used for the
continued fractions. The chaotic areas are calculated using the attractor solutions
of the Cauchy distributions, where repellor solutions are destroyed. The density of
the map is calculated approximately in a theoretical approach based on the state
density calculations in solids.

§2. A simple continued fraction

In this work, Eq. (3) is analyzed because of its simplicity. In these results, we
can discover some beautiful relations inherent in continued fractions.

2.1. The basic equation

At the k-th iteration from the n-th step, the simple continued fraction can be
transformed into

xn+k =
a

b− a

b− . . . a

b− xn

=
Ak − Ckxn

Bk −Dkxn
. (6)

At the i-th intermediate step of this transformation, the relation

Ai − Cixn

Bi −Dixn
=

a

b− Ai−1 − Ci−1xn

Bi−1 −Di−1xn

(7)

is obtained. In this equation, the terms are inductively related as

Ai = aBi−1,

Bi = bBi−1 −Ai−1,

Ci = aDi−1,

Di = bDi−1 − Ci−1. (8)

From these relations and the initial conditions

A1 = a, B1 = b, C1 = 0, D1 = 1, (9)

the expanded terms

Ci = Ai−1 = aBi−2,

Di = Bi−1 (10)

can all be rewritten in the double Markov sequence of Bi terms:

Bi = bBi−1 − aBi−2,

B−1 = 0, B0 = 1. (11)
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834 S. Obata and S. Ohkuro

The continued terms are expanded as

B1 = b,

B2 = b2 − a,

B3 = b(b2 − 2a),
B4 = b4 − 3ab2 + a2,

· · · . (11)′

This is an important result of the fundamental double Markov sequence. If we use
the values a = −1 and b = 1 in Bk, then the famous Fibonacci sequence appears
directly. In this way Eq. (6) can be rewritten as

xn+k = qk(xn) =
a(Bk−1 −Bk−2xn)
Bk −Bk−1xn

. (12)

Now, with the relations

xn+k = xn +∆k,

xn = x. (13)

Equations (12) and (13) can be transformed into the basic quadratic equation for
simple continued fractions:

∆k =
Bk−1(x2 − bx+ a)
Bk −Bk−1x

. (14)

Continued fractions can be analyzed using this equation.
The function q(x) in Eq. (12) is expanded as follows by considering the change

δ induced from a small shift ε:

xn+k + δ = qk(xn + ε) = qk(xn) + q′k(xn)ε+ · · · .
Using Eq. (10) and the value λk, this derivative is represented as

λk =
Bk−1

Bk
,

q′k(x) =
aλ2

k − bλk + 1
(1− λkx)2

. (15)

This equation is needed for checking the attractor terms.

2.2. Convergence (The case of ∆k = 0 for arbitrary k)

Under the condition Bk−1 �= 0 in Eq. (14), convergent sequences with respect
to x1 appear in the continued fractions, where the quadratic equation satisfies the
conditions

x2 − bx+ a = 0,
4a ≤ b2. (16)
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The solutions become real numbers:

x =
b±√

b2 − 4a
2

= ξ ± ζ

= x1, x2(|x1| < |x2|). (17)

Between these two real solutions, the stable convergent value becomes x1, which is
near 0. Under the condition δ < ε, substituting the value

λ1 =
B0

B1
=
1
b

(18)

into Eq. (12), we obtain the relation for the value of x1

a = −x1(b− x1),∣∣δ
ε

∣∣ = |q′1(x)| =
∣∣ a

(b− x1)2
∣∣ = ∣∣ x1

b− x1

∣∣
=
∣∣(ξ ± ζ)
ξ ∓ ζ

∣∣ = ∣∣x1

x2

∣∣ < 1. (19)

2.3. Cycles (The case of ∆k = 0 for some k)

In this section, the sequence λk in Eq. (14) is denoted by Λk as cyclic terms. We
can obtain equations for cyclic sequences with k-time periods in the case ∆k = 0.
Under the condition

x2 − bx+ a = (x− ξ)2 + η2 �= 0, (20)

the cycle equations are obtained from Eq. (14):

xn+k = xn,

Λk(a, b)(x2 − bx+ a) = 0, (21)

where
Λk = Bk−1/Bk = 0. (22)

The special equations Λk = Bk−1 = 0 (λk = 0) can be expanded in a and b through
iterations of Eq. (11):

Fig. 3. Values (1/a) of the cycle conditions for

b = 1.

Λ3 = (b2 − a)/b(b2 − 2a),
Λ4 = b(b2 − 2a)/(b4 − 3ab2 + a2),
Λ5 = (b4 − 3ab2 + a2)/B5,

· · · . (23)

Several values of a determining these cy-
cle conditions are listed in Fig. 3 using
r = 1/a for b = 1. The values of a are
restricted in the range defined by

0 < r =
1
a
< 4 (24)
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under the conditions of Eqs. (20)–(22). The value r has a similar role to that of R
in the logistic map.

Here, it is shown that the cyclic terms are stable in the continued fractions. The
fact that the quantity δ is equal to ε follows directly from λk = 0 in Eq. (15):∣∣∣∣δε

∣∣∣∣ = |q′k(x)| = 1. (25)

This implies that the cycles are eternal at an arbitrary starting number x. For
example, for the values

k = 3 and a = b = 1,

the arbitrary value of x follows a three-term cycle:

x,
1

1− x
, 1− 1

x
, x.

The values of λk nearly equal to 0 are very important in our study. This point is
discussed in §2.4.
2.4. Distribution (The case of ∆k �= 0 for arbitrary k)

2.4.1. Basic analysis
Under the conditions in Eq. (15)

0 �= |Bk−1| 
 1,

4a > b2,
(26)

∣∣λk =
Bk−1

Bk

∣∣
 1, (27)

the value ∆k of Eq. (14) becomes small but not 0. In this case, the attractor terms
can be evaluated except for in the particular case

|1− λkx| 
 1→ |q′k(x)| � 1.

From Eqs. (20) and (26), the complex number solutions are obtained:

x = ξ ± iη. (5)(20)

This result allows us to conclude that the quadratic formula never becomes 0 for
any real number x. This conclusion is very important in later arguments. “Nearly
0” is not “exactly 0”, and the value xn+k is never equal to xn at any step k. This
means that the xn are ergodically distributed on the real axis under the condition of
a small shift ∆k �= 0. From the results of Fig. 3, it can be known that the cycle points
linearly increase for every odd iteration step. These values of 1/a are distributed
from 0 to 4 with roughly equal distances. This fact insures the existence of the
condition in Eq. (26) for any values of a and b in large iteration steps.

At the k-th iteration from n, if the value xn+k is close to xn,

xn+k = xn +∆k,

0 < |∆k| 
 1 (28)
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Fig. 4. Bk, and λk in the double Markov sequence. At k = 10, the value λ10 = 0.00043 appears for

a = 0.28195 and b = 1.01.

and the value |xλk| is not too large, Eq. (14) can be approximately rewritten as

|Bk−1x| 
 |Bk|,
∆k ≈ λk(x2 − bx+ a). (29)

Large x values appear with small probability in the continued fractions, and the
effect of this appearance is suppressed by sufficiently small λk (k � 1) in Eq. (14).
Figure 3, the distribution map of 1/a satisfying the equation λk = 0, indicates that
the condition λk ≈ 0 exists for large k and any value of a. An example of such
cases can be illustrated by sequences of Bk and λk, as in Fig. 4. A small value of λk

(0.00043 · · ·) appears in the second sequence at the 10th iteration for a = 0.281950
and b = 1.01. If the value a is 0.281949 · · · and λ10 = 0, these continued fraction
terms become cyclic. The value corresponding to this situation in Fig. 3 is r = 3.618
(a = 0.2764, b = 1.0) at k = 10. Thus, in the case that λk is nearly 0, the continued
fractions are distributed as in Fig. 5, and they produce many tangent functions,
which are discussed below.

The next step value in Eq. (28) is important for analyzing the “nearly 0” be-
havior:

xn+k+1 − xn+1 =
a

b− xn+k
− a

b− xn
=

a∆k

(b− xn+k)(b− xn)
. (28)′

In Eq. (28)′, the ∆k value can become sufficiently small. From this result it is known
that if a pair of almost equal values xn+k and xn exists, k-period sequences of the
partial continued fractions behave similarly and appear alternately in the continued
iterations as shown in Fig. 5.

For the k period plotting of xn+k with small difference ∆k, many smooth curves
can be traced as in Fig. 5. A plus sign on ∆k indicates an increasing step in the
xk+n tracing, while a minus sign indicates a decreasing step. Iteration lengths lfull

of the tangent curves are calculated below, in Eqs. (36)–(38). In Fig. 5, the tangent
functions of (a) can be traced by k = 10 period plotting for lfull � 500 length curves
and by k = 50 period plotting for lfull � 2500 length curves. The case (b) becomes
only k = 10 plotting for lfull � 4.45× 105. The case (c) becomes k = 10 plotting for
lfull � 676 and k = 50 plotting for lfull � 3381.
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838 S. Obata and S. Ohkuro

Fig. 5. Alternate xn distributions in the con-

tinued fractions (b = 1.01). Many tangent

curves can be traced for up and down di-

rections in each graph. In (a) and (c), two

kinds of plotting (k = 10 and 50 periods)

can be directly traced. In these cases, small

values λk appear as (a) λ10 = −0.389 and

(c) λ10 = 0.278, respectively, at k = 10. In

(b), the small value λ10 = 0.00043 appears

as the case closing to the cycle condition of

a = 0.281949 · · ·.

2.4.2. Attractor and repellor
As for simple continued fractions, the attractor points are produced in large x

area under the condition of Eq. (15):

|q′k(x)| < 1, |1− λkx| > 1. (30)

However, such a condition is meaningless for the following reasons. After xn steps
cross the number b, the values at the next step are large (|xn+1| � 1). Equation
(30) seems to be satisfied in these steps, although, the values at step n+2 are small
(xn+2 ≈ 0), and the values for subsequent steps are all similar values (xn+3 ≈ a/b).
In any case, the continued fractions return to ordinary sequences.

2.4.3. The Cauchy distribution
The probability density of x in the continued fraction is calculated from Eq. (29).

The number xn+k appears once every k times with the small distance ∆k. Hence,
from Eqs. (14), (27) and (29), the density at an arbitrary point xn+k is proportional
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Fig. 6. Cauchy distributions of the examples in Fig. 5. (a) Clear distribution with ξ = 0.505, η =

0.161 and λ = −0.389. (b) Slow configuration with ξ = 0.505, η = 0.164 and λk = 0.00043.

to 1/∆k:

ρk(x) ∝
k∑

i=1

1
k|∆k| ≈

1
∆k

=
∣∣∣∣ 1λk

∣∣∣∣ 1
(x− ξ)2 + η2

. (31)

We can consider a series with arbitrary k period, where the sign of the small distance
∆k becomes arbitrary. For large x, x in the denominator of Eq. (14) vanishes, as
the result of the averaging manipulations and the sufficiently small λk. Considering
the normalization condition, the density function is obtained finally as the Cauchy
distribution in Fig. 6 for a infinite iterations:

ρ(x) =
1
π

η

(x− ξ)2 + η2
. (32)

2.4.4. Self-energy and the Green’s function
In the infinite case, we can analyze the probability densities using the Green’s

functions. The electronic state densities are calculated from the secular equations by
means of the LCAO method. In this method, Eq. (3) represents a linear chain and
Eq. (4) represents a Bethe lattice. The formulas in the LCAO theory all belong to the
group of the linear (symmetric) algebraic equations. 7) All of the secular equations can
be approximately transformed into a linear chain formula in infinite systems. 8) - 10)

The distribution behavior of the continued fractions is determined by the cyclic
terms, as explained in the above section. Under these cycle conditions, we can discuss
the state density calculations. Equation (32) and the basic equations (12)–(14) can
be analyzed using a Green’s function:

Gk(x) =
1
∆k

=
1

x− qk(x)
⇒ 1

x− σ(x)
. (33)

This Green’s function gives information of the cyclic terms induced from Λk in
Eq. (21) for the parameters a and b, where the value x is arbitrary.

If the simple continued fraction is in a distribution state, qk(x) becomes the
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complex number self-energy σ in the Green’s function:

σ =
a

b− σ
= ξ ± iη. (34)

The probability density is calculated from this Green’s function using the positive
imaginary σ:

ρ(x) =
1
π
ImG(x) =

1
π
Im

1
x− σ

. (35)

If σ is a real constant, this function becomes the δ-function, as is well known. This
δ-function also represents the cyclic terms accompanied by the bifurcations as the
chaotic behavior in the logistic map. In §3, we attempt to approximately draw the
densities of the logistic map using such a calculation method.

2.4.5. Tangent function
The various slow curves of dots in Fig. 4 represent tangent functions. Let l be

the iteration length (real number) for the iteration times k,

l(length) = k(times).

Then the change of x for l can be obtained from Eqs. (14) and (29):

dx

dl
≈ xn+k − xn

k
≈ λk(x2 − bx+ a)

k
. (36)

From this equation, the length is determined as∫ l

l−∞
dl = l − l−∞ =

k

ηλk

∫ x

−∞

η

(x− ξ)2 + η2
dx.

The length l for the variable x becomes the Cauchy distribution function (Heaviside
step function):

l − l−∞ =
πk

ηλk
F (x) =

k

ηλk

{
tan−1 x− ξ

η
+
π

2

}
. (37)

From this result, the change of x in terms of l is represented by the tangent function:

x = ξ + η tan
[
ηλk(l − l−∞)

k
− π

2

]
. (37)′

The full length of one tangent function becomes

lfull = l∞ − l−∞ =
πk

ηλk
,

−∞ < tan θ <∞, −π
2
< θ <

π

2
. (38)

In Fig. 5(a), for the values a = 0.28095, b = 1.01, η = 0.161, k = 10 and
λk = −0.389, the full length number becomes lfull = 501.6.
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§3. Logistic map

3.1. Basic equation

The well-known logistic map 3) - 5) is discussed in this section for characterizing
continued fractions. The logistic map equation

Xn+1 = RXn(1−Xn) (39)

can be rewritten as one of the continued fraction groups (a = 0, b = 1, c = 0, d =
−1, e = 1 in Eq. (2)). Although this equation differs from the simple continued frac-
tion because of the asymmetrical term d < 0, the chaotic behavior can be analyzed
using a method similar to the Cauchy distributions. In this work, the logistic map
equation is distinguished into the cycle equations

Xn+k = Qk(Xn) = Xn, (40)

which correspond to the cycle equations of Eq. (21) in the continued fractions. All
of these algebraic equations were directly solved numerically. The maximum of the
cycle number (k ≈ 6) is determined by the numerical precision (more than 16 digits)
of the computing processes.

3.2. Convergence

For Eq. (40) with k = 1, the convergent condition in the logistic map becomes∣∣∣∣δε
∣∣∣∣ = |R(1− 2X)| ≤ 1, (41)

as discussed in §2 using Eqs. (15) and (19). With this condition, setting X0 = X,
the solutions of the quadratic equation Eq. (39) are obtained as

X = 0 for 0 < R � 1,

X =
(
1− 1

R

)
for 1 < R � 3, (42)

reproducing known results.3) These results are similar to those for the simple con-
tinued fractions.

3.3. Cycle

Like Eq. (21) discussed in §2, the cycle equation in the logistic map becomes
Eq. (40), where the conditions

3 < R � 4,
Xn+1 �= Xn (43)

are satisfied. Such conditions have been studied, and various results are known. 3) - 5)

In these results, the stable sequence (attractor) condition∣∣∣∣δε
∣∣∣∣ = |Q′

k(X)| < 1 (44)
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is used in the calculations.
The quadratic equations of the cyclic terms become the high-degree algebraic

equations (43) along with the iteration times. The real-number solutions ξi in these
equations are transformed into the square root of the density function as the broad-
ened δ-function: ∣∣∣∣ 1

X − ξk,i

∣∣∣∣ = 1√
(X − ξk,i)2 + ε2 + µ

. (45)

We use ε = 10−2 in this work. In such calculations, repellors and attractors are
considered by introducing the factor µ, using Eq. (44). This function µ destroys the
repellor point delta-function and does not effect the other point mapping functions:

µ =
{
0 : |Q′| < 1 · · · attractor,
1 : |Q′| > 1 · · · repellor. (46)

By means of this function, we can control the densities of the repellor points to
be non-effective. Equation (44) is numerically solvable until k ∼ 6 with 16 digit
precision.

3.4. Distribution

The behavior of the distributions appears as breaking of the cycles. We ob-
tain real and complex number solutions for Eq. (40). The real solutions represent
the cyclic terms (accompanied by the bifurcation) which are quite different from
those in the simple continued fraction. The complex solutions directly indicate the
distribution phenomena in the iterated values, like the Cauchy distribution in §2.

We have the stable (attractor) distribution conditions as the well-known
results 3) - 5) in the logistic map:

3 < R � 4,
Xn+k −Xn = ∆k �= 0,
|Q′

k(X)| ≤ 1. (47)

Equation (39) is a real value mapping on the real axis from 0 to 1. At the first step,
the values X1 are mapped from the values X0 from 0 to 1:

RX0(1−X0) → X1.

Here the real values X0 and X1 satisfy the equation

X2
0 −X0 +

X1

R
= 0, (48)

and the real X0 must be equated as a real value in Eq. (48):

1− 4X1

R
> 0→ X1 <

R

4
. (49)

This is the first restriction. From the next step equation

X2
1 −X1 +

X2

R
= 0, (50)
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the following relation is obtained:

R

4
> X1 =

1
2

(
1±

√
1− 4X2

R

)
. (51)

In this relation, the values X2 have the second restriction

R

4
− 1
2
>

√
1− 4X2

R
> 0,

R

4

[
1−

(
R

4
− 1
2

)2
]
< X2 (52)

for the (+) root and

0 <
1
2
− R

4
<

√
1− 4X2

R
,

R

4

[
1−

(
1
2
− R

4

)2
]
> X2 (53)

for the (−) root. Such followed restrictions for Xn+1, Xn+2 · · · also exist in the
continued sequence:

F1 =
R

4
, Fn+1 =

R

4
[1− (2Fn − 1)2],

Fn > Xn =
1
2

(
1 +

√
1− 4Xn+1

R

)
,

Fn < Xn =
1
2

(
1−

√
1− 4Xn+1

R

)
. (54)

Here the inequalities are changed by the previous step inequality and ± sign (larger
or smaller than 1/2). These restricted values Fn imply important rules in the logistic
map.

If the value ∆k in Eq. (44) is small but nonzero, the analysis in the continued
fractions can be adapted similarly for this case, where the complex-numbers σ are
determined by the equation

σk,m = Qk(σk,m) = ξm + iηm. (55)

The cycle equations of the logistic map can be equated using these solutions including
the real numbers

X −Qk(X) =
2k∏
i=1

(X − σk,i), (56)

which are represented in a multiplied form of the quadratic functions. In this work,
as a first approximation, the density functions are equated like Eqs. (28), (31) and
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(32) in the continued fractions:

ρk(X) ∝ 1
|∆k| =

1
|X −Qk(X)| =

1∣∣∣∣∏
i=1

(X − σk,j)
∣∣∣∣
. (57)

This equation implies that the logistic map is characterized by the quadratic func-
tions including the Cauchy distributions. There is also a related argument.4)

In practical calculations, we must consider the basic foundations as follows.
The distribution range is from 0 to 1, and the values ∆k are produced around the
specific attractors at Xa. The probability densities ρk are inherited in the next
mapping from k to k+1. If the attractive areas around Xa are continuously mapped
into the next attractive areas, the high-density parts are continued as areas. If the
repetitious mapping includes the repellor area, the high-density mapping is broken.
These relations are self-consistently formed in the continued mapping.

With the above considerations, we attempt to approximate the density function
of the logistic map using the k-th X areas from F a

k to F b
k determined by Eq. (54):

ρk(X) ≈ hk

2k∏
i=1

1
[(X − ξk,i)2 + η2

k,i + µk,i]0.5
for F a

k < X < F b
k . (58)

Here, the real value solutions are treated as in Eq. (45). The form of Eq. (58)
is almost the same as Eq. (57), except for the normalization constant hk and the
repellor function µk,i.

The continued attractor sequence is restricted in the iteration regions as in
Eq. (54). Almost one or two of these attractor points ξk,i exist in every k cycles
and are concentrated in the edge regions. Thus, the high-density parts continue in

Fig. 7. Density representation of the logistic

map.

the restricted edge regions. The actual
repellor point distributions are broad-
ened in continued iterations. Although
some of them (e.g. R = 3.8, x = 0.33)
are not completely destroyed in our cal-
culation. Under these relations, the
high-density parts must be destroyed in
the k-th cycle roughly with the ratio

Destroyed ratio ∝ 1
k − 2

. (59)

The total distribution density is ob-
tained by superposing each cycle as an
approximation:

ρ(X) =
∑

k

1
k − 2

ρk(X). (60)

The results appear in Fig. 7. This ap-
proximation is very rough, and the re-
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Fig. 8. Comparison of the distribution densities for R = 3.79. (a) The cycle equations are consid-

ered for k = 3–7 in Eq. (58). The peaks are numbered by k. (b) Large peaks appear at the

band edges in the numerical iteration results.

sults are not self-consistent, where the cycle equations are taken into account from
k = 3 to 6.

The calculated distribution densities at R = 3.79 are presented in Fig. 8 and
compared with the numerical results of the iterations to show the degree of precision.
In the numerical iteration results, the large peaks indicate the band edge distributions
of each cycle, which is observed from k = 3 to about 10. In Fig. 8 (a) the density
calculations are performed for k = 3 to 7. Here, the lack of peaks of higher order
cycles (k = 8–10) is noteworthy around x = 0.7–0.8.

§4. Conclusion

The various properties of chaotic and chaos-like behavior in continued fractions
have been clarified. In the chaos-like behavior, the double Markov sequences domi-
nate the map in the Cauchy distribution areas where the real numbers are distributed
along with many tangent functions. The distribution density of the logistic map has
been analyzed, where the Green’s function theory was manipulated like the calcula-
tions of electronic state densities in solids. From these results, it has been pointed out
that the distribution phenomena are commonly based on the Cauchy distributions
in these continued fraction maps.
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