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 
Abstract--This paper presents an effective method for 

placement of DG units in multiphase distribution networks based 
on system voltage profile. The approach consists of utilizing the 
positive sequence voltage ratio Vcollapse/Vno-load to identify the 
weakest three-phase bus for the installation of DG units. DG 
ratings are determined by evaluating their impacts on voltage 
profile, grid losses and maximum loading factor while 
considering the voltage limits at all buses. Detailed simulations 
are performed for the placement and sizing of a doubly fed 
induction generator (DIFG) in the IEEE multiphase 34 node test 
feeder using DIgSILENT PowerFactory software. The impacts of 
DIFG on voltage profile, active power loss and voltage stability 
margin are highlighted. Finally, simulation results indicate that 
voltage limits should be considered as a constraint for the 
methods of DG placement. 
 

Index Terms-- Multiphase network, weakest bus, DG, DIFG, 
voltage profile, grid loss, and maximum loading factor. 

I.  INTRODUCTION 

The present integration of Distributed Generation (DG) 
units in power systems has many advantages, but also 
challenges the performance of the old networks. One of these 
challenges is to investigate the location and the penetration 
level of DG units which can easily be absorbed in the system 
without major structural changes while keeping all bus voltage 
levels within permissible limits. Due to the high penetration of 
DG, voltage instability problems have become important 
issues in power systems. Most studies confirm that 10-15 % 
penetration of DG can be absorbed in the electricity network 
[1]. It is well-known that high penetration levels of DG may 
have significant impacts on voltage profile, grid loss, and 
voltage stability margin. These impacts may appear either 
positively or negatively, depending on the type of distribution 
networks, nature of distributed generations and load 
characteristics.  

It seems reasonable to expect that the connection of DG to 
the utility grid might improve the voltage profile and will 
enhance the voltage stability of a distribution system while 
reducing active and reactive losses [2]. Even though DG has a 
variety of benefits, it also imposes some problems and 
limitations.  

These problems become highly significant as the 
penetration level of DG increases and its impact will become 
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worse. This will eventually require static voltage stability 
analysis (based on the power flow calculation) to ensure a 
proper and reliable operation of the power system with large 
amounts of DG [3]. When the power system becomes stressed 
(e.g., as a result of load increasing), voltage instability can 
easily occur. This type of voltage instability mostly occurs at 
the weakest bus [4]. Therefore, both the location and the 
penetration level of DG become a challenging task for system 
planning and operation. Several methods to place DG units 
have been proposed including voltage sensitivity analysis [5], 
continuation power flow for determination of the most 
sensitive bus to voltage collapse [7], voltage stability index 
[8], optimization approaches [8-9], voltage profile and loss 
calculations [6, 11].  References [9-10] show that the sizing 
and location of DG can significantly influence the voltage 
profile and should be well planned to maintain the node 
voltages within permissible limits. 

Detailed analyses of unbalanced/multiphase networks based 
on continuation three-phase power flow show that the three 
PV curves on each phase for the unbalanced networks are 
different [12-13]. Therefore, to determine the voltage stability 
margins, the method of symmetrical components has been 
applied to merge the three PV curves to one PV curve based 
on positive sequence voltage. In addition, to extend and 
generalize the conventional definition of bus voltage ranking 
index for multiphase networks, symmetrical components are 
also applied to the three-phase voltages resulting from three-
phase power flow [14]. 

This paper expands the well-known voltage index V/V0 for 
balanced three-phase systems and defines an improved 
positive sequence voltage index of Vcollapse/Vno-load to identify 
the weakest buses in multiphase distribution networks. 
Simulation results are carried out for the IEEE multiphase 34 
node test feeder to determine the appropriate location and 
penetration level of DG in improving voltage profile, reducing 
grid losses and increasing the maximum loading factor while 
keeping all bus voltage levels within the permissible limits. 
Section II discusses the bus ranking for DG placement. 
Section III shows the impact of DG placement. Section IV 
presents the test system.  Simulation results and analysis are 
provided in Section V, followed by conclusion.   

II.  BUS RANKING OF MULTIPHASE DISTRIBUTION NETWORKS 

The approach taken in this study is utilizing the bus voltage 
ranking index to identify the weakest buses in multiphase 
distribution networks. This section starts with the definition 
and derivation of the conventional voltage ranking index 
(VRI) V/Vo using the two bus balanced network of Fig. 1 and 
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continues to extend its application to multiphase networks 
using symmetrical components [14]. 

 

 
Fig. 1.  Equivalent circuit of a two bus balanced network. 

 
The conventional VRI is defined for balanced three-phase 

networks [8, 9]:  

௝ܫܴܸ
௖௢௡௩௘௡௧௜௢௡௔௟ ൌ

௏

௏బ
ൌ

௏ೕ,್ೌೞ೐ష೗೚ೌ೏
௏ೕ,೙೚ష೗೚ೌ೏

                 (1) 

where j is the bus number,  ௝ܸ,௕௔௦௘ି௟௢௔ௗ	and ௝ܸ,௡௢ି௟௢௔ௗ are the 
bus voltages for the base-load  and no-load operating 
conditions, respectively.  

Balanced three-phase load flow can be used to compute 
௝ܸ,௕௔௦௘ି௟௢௔ௗ by setting the complex power at bus j to zero: 

௝ܵ ൌ ݂ሺߜ, ܸሻ ൌ ௝ܲ െ ݆ܳ௝ ൌ ൫ ௝ܸ∠ߜ௝൯
∗
൬
௏೔∠ఋ೔ି௏ೕ∠ఋೕ
ோ೔ೕା௝௑೔ೕ

൰ ൌ 0     (2) 

where ௜ܸ∠ߜ௜ and ௝ܸ∠ߜ௝ are the voltages at buses i and j, 
respectively. Separating real and imaginary parts of (2): 

ቊ
ܴ݈݁	൛ ௝ܵൟ ൌ 0					

൛	݃ܽ݉ܫ ௝ܵൟ ൌ 0	
⇒

൝ ௥ܹ௘௔௟൫ߜ௜௝, ௝ܸ൯ ൌ ൣ ௝ܴܲ௜௝ ൅ ܳ௝ ௜ܺ௝൧ ൌ ௜ܸ ௝ܸܿߜݏ݋௜௝ െ ൫ ௝ܸ൯
ଶ
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     (3) 

where ߜ௜௝ ൌ ௜ߜ െ  ௝. The voltage ௝ܸ is computed by squaringߜ
and adding the real and imaginary parts of (3): 
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There are four solutions to (4), 

௝ܸ ൌ േට
ଵ

ଶ
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where ܾ ൌ െ൫ ௜ܸ
ଶ െ 2 ௝ܴܲ௜௝ െ 2ܳ௝ ௜ܺ௝൯	and ܿ ൌ ൫ ௝ܲ
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൫ܴ௜௝
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ଶ൯. However, ሺെܾሻ is always positive because the 
term ሺെ2 ௝ܴܲ௜௝ െ 2ܳ௝ ௜ܺ௝ሻ is small as compared to ሺ ௜ܸ

ଶሻ and 
also ሺ4ܿሻ is small as compared to	ሺܾଶሻ; therefore, the unique 
positive and stable solution of (5) is 

௝ܸ ൌ 	 ௝ܸ,௕௔௦௘ௗି௟௢௔ௗ ൌ ൅ට
ଵ
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Substituting (6) in (1) results in 
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The propose index in balanced network is defined as: 
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																															(8) 

To compute the proposed VRI for balanced three-phase 
networks, ௝ܸ,௖௢௟௟௔௣௦௘ is computed based on the Newton-
Raphson load flow by forcing (3) to zero.  

 
The Jacobian corresponding to (3) is defined as follows: 
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At the collapse point, Jacobian matrix is singular, therefore: 
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Substituting (6) and (10) in (8) results in 
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The angle is computed from (12): 

௜௝ߜ																	  ൌ ଵି݊ܽݐ ቆ
ൣ௉ೕ௑೔ೕିொೕோ೔ೕ൧

ൣ௉ೕோ೔ೕାொೕ௑೔ೕ൧ା൫௏ೕ൯
మቇ                      (12) 

To extend and generalize the conventional definition of VRI 
for multiphase networks, symmetrical components are applied 
to the three-phase voltages resulting from three-phase power 
flow. The new index is defined as the ratio of the positive 
sequence voltage at the collapse point to the positive sequence 
voltage at the no-load: 

௝ܫܴܸ
୳୬ୠୟ୪ୟ୬ୡୣୢ	 ൌ

௏ೕ,೎೚೗೗ೌ೛ೞ೐
శ

௏ೕ,೙೚ష೗೚ೌ೏
శ                     (13) 

    Equation (13) can be used to identify the weakest buses of 
both balanced and unbalanced networks. The node with the 
lowest bus voltage ranking index value is classified as the 
weakest bus.  

III.  IMPACTS OF DG PLACEMENT ON VOLTAGE PROFILE, GRID 

LOSS, AND MAXIMUM LOADING FACTOR   

A.  Impact of DG on Voltage Profiles 

In balanced three-phase networks, voltage profiles are 
usually plotted using the average bus voltage values. For 
unbalanced networks, system unbalanced voltage variance 
index [15] has been proposed for considering voltage profiles 
instead of using system average voltage [16-17]. However, for 
multiphase networks, voltage magnitudes in some phases are 
missing. Therefore, in this paper, the voltage profiles of all 
phases will be plotted in the range of 0.95-1.05 p.u. (see Figs. 
5 and 6). 

B.  Impact of DG on Grid Losses 

Grid losses associated with the placement and the 
penetration level of a DG unit (e.g., at the weakest bus) are 
computed and compared with the losses without any 
compensation device. Active power loss reduction (ALR) by 
DG units or compensation devices is calculated from:   
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ܴܮܣ                            ൌ
௉೗೚ೞೞି௉೗೚ೞೞ

ವಸ

௉೗೚ೞೞ
ൈ 100%                        (14) 

Where ௟ܲ௢௦௦
஽ீ  and P୪୭ୱୱ are the total active power losses with 

and without DG units, respectively. 
 The DG penetration level is defined as  

݈݁ݒ݁ܮ	݊݋݅ݐܽݎݐ݁݊݁ܲ                      ൌ
௉ವಸ
௉೗೚ೌ೏

ൈ 100%             (15) 

where ஽ܲீ and ௟ܲ௢௔ௗ are the total active powers of the DG 
units and system loads, respectively.  

C.  Impact of DG on Maximum Loading Factor 

Using a continuation three-phase power flow, PV curves for 
multiphase distribution networks will be plotted. The method 
of symmetrical components will then be applied to merge the 
three individual PV curves into a single PV curve based on 
positive sequence voltage. Finally, the maximum loading 
factor (MLF) will be determined using the single PV curve 
based on positive sequence voltage. MLF is defined as the 
ratio of the maximum system load (at the voltage collapse 
point) to the base load. 

 
Fig. 2.  The IEEE multiphase 34 node test feeder [14]. 

 

IV.  SIMULATION RESULTS  

For the analysis of this paper, the IEEE multiphase 34 node 
test feeder of Fig. 2 [18] is considered. The network has been 
simulated using DIgSILENT PowerFactory software [19]. The 
system data is available in [18]. This unbalanced multiphase 
feeder consists of three-phase and single-phase sections with 
unbalanced spot loads (Y-PQ, D-PQ, Y-I, D-I, Y-Z, and D-Z), 
distributed loads (Y-PQ, Y-I, Y-Z, D-I, D-Z, and D-PQ), 
three-phase shunt capacitors (at buses 844 and 848), and an in-
line transformer (between buses 632 and 688). There are also 
two automatic voltage regulators.  

Bus 800 is treated as a slack bus with a voltage setpoint at 
1.05 p.u. At a base-case load condition, the voltage at bus 890 
is lower than the permeable voltage limits because the line 
between buses 888 and 890 is relatively long. Other bus 
voltages are in the permeable range of 0.95- 1.05 p.u. 
 
A.  Bus Voltage Ranking Based on the Proposed Index 

Figure 3 shows the bus voltage ranking for the base-case-
load with two automatic voltage regulators which regulate the 
voltage in the range of 0.95-1.05 p.u. According to this figure, 
the four lowest VRI values are buses 890, 852, 864, and 822, 
respectively. The weakest bus is still at bus 890.Therefore, the 
three-phase weakest bus is bus 890 and this bus will be 
selected for the installation of DG units. 

 
Fig. 3.  Bus ranking for base-case load. 

 

B.  Impacts of DG Units on Voltage Profile, Grid Loss, and 
Maximum Loading Factor 

A DFIG wind turbine with power factor control is installed 
at the weakest three-phase bus (bus 890) and its size is 
changed to determine its impacts on loading factor, active 
power loss reduction, and voltage profile. 

Simulations results are presented in Fig. 4 indicating that 
active power loss is lowest (ALR = 62.31%) at a DG 
penetration level 40% while the loading factor escalates as the 
DG penetration increases. 

 
Fig. 4.  Loading factor and active power loss with different DG penetration at 
bus 890. 

 

However, with 40% DG penetration at bus 890, as identify 
by grid loss calculation, the voltage profile of all phases at bus 
890 is higher than the upper voltage limit of 1.05 p.u as shown 
in Fig.5. 
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Fig. 5.  Voltage profile with 40% DG penetration at bus 890. 

 

With 30% DG penetration at bus 890, all the bus voltage 
profiles are in the range of 0.95-1.05 p.u. as shown in Fig. 6. 
Notice that the voltage profile of phase c at bus 890 is 1.0499 
p.u., which is very close to the upper voltage limit of 1.05 p.u. 
Any increase in the DG penetration level at this bus beyond 
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