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Abstract

We compare trading in a market with receiving some particular
consumption bundle, given increasing state—independent preferences and
complete markets. The analysis focuses on the distributional price of the
particular bundle. The distributional price is the price of the cheapest
utility-equivalent bundle sold in the market. The distributional price is
determined by the distribution functions of the outside bundle and the state
price density. Simple portfolio performance measures illustrate the value
of the approach. Unlike CAPM-based measures, these measures are valid even

when superior information is the source of superior performance.



1. Introduction

The Capital Asset Pricing Model (CAPM) is an appreoach to investment
analysis based on very simple assumptions. For example, mean variance
analysis is implied by the following three assumptions:

1. Agents’ preferences depend only on the mean and variance of

consumption of a single good at a single date.

2. Agents prefer more to less, i.e., given a choice between two

consumption bundles with equal variances, an agent will choose the
bundle with the higher mean return.

3. The capital market equilibrium comes from our standard model
of perfect markets (with mno taxes, transaction costs, or
information asymmetries) which may not be complete. Such a

perfect market allows short sales without penalty.

From these assumptions, we can derive all the familiar features of the CAPM,
including the mean variance frontier (where all portfolio choices lie}, the
mean variance efficiency of the market, and the security market line (which
is a graphical representation of the linear relation between risk and
expected return).

The CAPM remains a leading theory in finance, partly because of the
simplicity of its assumptions and partly because of the power and elegance
of its conclusions. Yet the CAPM cannot possibly be valid for all assets.
As shown by Dybvig and Ingersoll [1982], there exist arbitrage profits if
the CAPM prices all options, even if the CAPM correctly prices all primitive
assets like stocks and bonds.1 In this paper, the intent is to extend the
spirit of the CAPM to complete markets, while maintaining simplicity. The
result is a model with close ties to stochastic dominance. This new model,
the Payoff Distribution Pricing Model (PDPM), 1is consistent with most

existing models with complete markets.



Like the CAPM, the PDPM can also be derived from three primitive
assumptions;

1. Agents'’ preferences depend only on the probability

distribution of consumption of a single good.

2. Apgents prefer more to less, i.e., given a choice between two

ordered consumption bundles, an agent will always choose the

bundle that is larger.

3. The market faced by an individual comes from our standard

model of a perfect market (no taxes, transaction costs, or

information asymmetries) that is comple%e over finitely many

equally probable states or some atomless® continuum of states.

Such a market allows short sales without penalty.
The first two assumptions are substantially weaker than the parallel
assumptions in mean variance analysis, because they allow preferences to
depend on all the moments of the distribution of consumption. These two
assumptions are almost equivalent to giving each agent strictly increasing
preferences in the class defined by Machina [1982].3 Machina's class of
preferences includes all wvon Neumann-Morgenstern utility functions. The
most important restriction we place on preferences is the exclusion of
state—dependent preferences. State dependence would arise implicitly if the
portfolio under study does not comprise all of consumption (as if some
wealth is not marketable), or would arise explicitly if market returns were
correlated with health or other non—economic contributors to well-being. We
are also ignoring concerns related to the existence of multiple goods or
periods, although assuming separability of preferences across goods and time
would allow us to apply the analysis of this paper to each good and time
separately. For exposition, the text will emphasize the more familiar von
Neumann-Morgenstern preferences, although all of the proofs will go through

almost verbatim with increasing Machina preferences (see Appendix 1).
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The third assumption is stronger than the corresponding assumption for
mean variance analysis. The assumption of complete markets over a continuum
of states is intended to be in the spirit of continuous-time option pricing
models in which the state space is continuous and every pattern of claims
across states is obtained through some trading strategy, even if it is not
marketed directly. Since the term "complete markets" has meant different
things to different authors, some clarification is needed. By completeness
we mean that the agent can trade every claim whose value tomorrow depends on
the value of any traded security tomorrow. It does not mean, for example,
that the agent can trade every claim whose wvalue tomorrow depends on other
agent's private information known today. (It is consistent with Assumption
3 for other agents to have private information, since Assumption 3 says only
that our agent's choice problem must be of the same form as if capital
markets were perfect.) Also, completeness does not mean that the agent can
trade every claim whose wvalue tomorrow depends on information that will be
publicly available tomorrow (but this would imply completeness). The part
of the third assumption requiring equally probable states (or a continuum)
is made primarily for convenience. If we assume concavity of preferences,
this assumption is not needed, as discussed in Appendix 1.

Because the probability distribution of consumption is the focus of our
analysis, the first task is to characterize how much it costs to obtain a
given distribution of consumption the cheapest way possible: we refer to
that cost as the distributional price of the distribution (to distinguish it
from the ordinary asset price). To compute the distributional price, we use
the simple observation that a minimum cost must order state—contingent

payoffs inversely with the state price density (per unit probability). For



agents with strictly increasing and concave wvon Neumann-Morgenstern
preferences, this ordering can be inferred from declining marginal utility
and the first order condition that marginal utility equals the state price
density. The distributional price is expressed by a simple formula that
depends on the payoff distribution without reference to the actual
assignment of payoffs to particular states of nature. The formula can be
interpreted as measure of efficiency in the spirit of the Sharpe measure.
The new measure has special appeal because it does not suffer from the
theoretical shortcomings of the Sharpe measure, which cannot be used
reliably to evaluate market timers (see Dybvig and Ross [1985a]).

Just as there is an analog of the mean variance frontier and the Sharpe
measure, there is an analog of Security Market Line (SML) analysis and
deviations from the security market line. The SML analog is a sort of
derivative of the distributional pricing measure as one adds the position
being evaluated to a base portfolio, just as a well-behaved SML alpha can
sometimes be interpreted as a gradient when one adds a position to the
market portfolio (see Dybvig and Ross [19853b]).

Sample statistics for the Sharpe-like and Jensen-like measures have a
flavor similar to modern "robust" data analysis, because the statistics are
related to order statistics. (Formally, the estimators are L-statistics —
see Shorack and Wellner [1986].) Although the measures put relatively
little weight on outliers representing the best returns (as would robust
estimators), they put relatively large weight on outliers representing the
worst returns (in contrast to the robust estimators). This divergence from
the philosophy of robust data analysis comes directly from the theory and is

well founded. Robust data analysis is intended to be "exploratory," and to



give a first indication of how to model a phenomenon. Here the use of a
statistic is to drive some economic decision, e.g., whether to retain a
portfolio manager. Large losses by an investment manager represent large
damage to the client and should be weighted heavily.4 This is also a good
feature for pragmatic reasons outside the model, because a large loss may be
symptomatic of other serious problems.

Perhaps more exciting than the potential empirical use of the concepts
developed here is the use of the approach as a theoretical tool. In Dybvig
[1988], these tools are used to measure the cost of following inefficient
portfolio strategies, such as repeated portfolio insurance, that are
stylized versions of strategies used by practitioners. In Dybvig and Spatt
[1983], wusing the distributional approach led to results about an agency
problem without having to rely on ad hoc restrictions on the sharing rules.

In Section 2, we consider some simple examples that illustrate the
distributional approach, and we lay some foundations. Section 3 gives the
basic results of the analysis, including the Sharpe-like measure of
performance. Section 4 analyzes the distributional implications of sums and

marginal changes, including our Jensen-like measure of performance. Section

5 c¢loses the paper.



2. An Example and Some Preliminary Results
Before developing the general theory, an example will illustrate the
basic ideas. Although the theory's assumptions make the most sense when
there is a continuum of states, the economic ideas are easier to understand
when there are finitely many equally probable states. Therefore, all
examples and proofs in the text are for the discrete case, but the theorems
are stated to be valid more generally. Appendix 1 summarizes the extension
of the proofs to a continuum of states or to finitely many states with
unequal probabilities. For the text, we assume that there are n states,
each of which has probability 1/n, and that all state prices are positive.
Our example has three equally probably states; letting L be the
probability of state i, we have that n, = «

=, = 1/3. 5Since markets are

1 2

complete, the market must span elementary state securities for each state.

3

By definition, an elementary state security for state i pays off one dollar
if state i occurs and zero otherwise. Letting P; be the i-th state price,
i.e. the price of the ith elementary state security, let P; = 0.31, p, =
0.20, and Py = 0.39. A riskless asset paying I in all states is obtained at
a cost of

d=1-0.31 +1-0.20 + 1-0.39

= 0.90.

We call d the discount factor, which corresponds to the interest rate r
satisfying d = 1/(I+r). In the example, r is 11 1/9%.

Now we are set to consider how much it costs to purchase a given
distribution of consumption. Since there are three equally probable states,
the set of feasible consumption distributions is the set of Jotteries in

which each outcome has probability 1/3. As we use the term, lotteries are
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defined without reference to which outcome comes in which state (just as in
the axiomatic derivation of von Neumann—Morgenstern utility functions — see
for example Luce and Raiffa [1957]). For example, the lottery giving equal
chances at 10, 20, and 30 is the same as the lottery giving equal chances at
20, 30, and 10. This lottery can be purchased in the 6 different ways we
can assign the three lottery outcomes to the three states. Here are the six

allocations and their costs,

Allocation Cost

(10,20,30) 0.31-10 + 0.20-20 + 0.39-30 = 18.8
(10,30,20) 0.31-10 + 0.20-30 + 0.39.20 = 16.9
(20,10,30) 0.31-20 + 0.20-10 + 0.39-30 = 15.9
(20,30,10) 0.31-10 + 0.20-20 + 0.39-30 = 16.1
(30,10,20) 0.31-30 + 0.20-10 + 0.39.20 = 19.1
(30,20,10) 0.31.10 + ¢.20-20 + 0.39-30 = 17.2

Naturally, any agent satisfying our first assumption of caring only about
the distribution and our second assumption of "preferring more to less,"
will choose the fourth bundle. The money saved by choosing the fourth
allocation could be used to buy more consumption. For example, instead of
buying the bundle (10,30,20), an agent could buy the bundle
(20,30,10) + (0,4,0) = (20,34,10). Since the agent views consumption in the
three states symmetrically, this is clearly preferred to (10,30,20).

In general, an example with n outcomes will have n! different ways of
assigning lottery outcomes to states; for example if n = I0 then there are
3,628,800 different assignments of outcomes to states. Of course, the
listing technique for finding the optimum is impractical in general.
Instead, we rely on the simple result that the cheapest way of buying a
lottery orders consumption in reverse of the state price density p; = pi/wi.

The state price density is the price per unit of probability of buying



consumption in a particular state. The reason for using the state price
density is that in a continuum of states, each state has probability zero
and a state price of zero. The state price density is available in many
asset pricing models. For example, in the lognormal Black—Scholes model
with constant drift, the state price density is lognormal (see Dybvig

[1988]).

Theorem 1: Suppose that markets are complete and that all states are
equally probable. Then any cheapest way to achieve a lottery assigns the
outcomes of the lottery to the states in reverse order of the state price
density (with probability one). In the discrete case, this means that if
lottery outcome ; is chosen in state i and lottery ouﬁcome cj is chosen.in
state j, then P; > pj = c, = cj.

Proof: First note that there exists a cheapest way to achieve the
lattery, since there are only finitely many (n/) ways to assign the lottery
outcomes to the states. Now suppose that some cheapest way of assigning
lottery outcomes to states is not in the reverse order as the state prices

density (we will argue to a contradiction). In this case, there exist

states i and j such that p; > pj but c; > cj. Suppose we switch the lottery

outcomes between states i and . The change in cost 1is given by
(picj + pjci) - (Pici + chi) - (cj - Ci)(Pi - Pj) = (ci - cj)(ﬂi - Pj)/n: a
negative number, implying a decrease in cost. This contradicts the
supposition that the original assignment is cheapest. O

The cheapest assignment is unique if and only if the state prices and

consumption amounts are distinct. If not, then reassignment of lottery



outcomes among states having the same state price or the same amount of
consumption does not affect the cost. Therefore, Theorem 1 gives a complete
characterization of the assignments that yield the least cost.

It is useful to remember that cost-minimizing portfolio choice is an

implication of utility-maximizing behavior. Consider the following choice
problem.
; 1
Given u(-), w, n, Py» Pys --vs Pp» and R e
choose Cys €y wry € to

maximize Elu(c)) E?=1 wiu(ci)

subject to E[pc] = E?-l P T Z?=1 P;c; = w.

The problem incorporates the von Neumann—Morgenstern assumption, the
assumption of complete and frictionless markets without short sales
restrictions, and the assumption of equally probable states. As always, we
assume that the state prices are positive.

The following theorem shows that maximizing behavior is cost-
minimizing, and that cost-minimization is the only restriction imposed by

maximizing behavior.

Theorem 2: Assume that markets are complete (withlpositive state prices)
and that all states are equally probable. Suppose that an assignment of
consumption minimizes the cost of purchasing a lottery. Then there exists
an increasing and concave von Neumann-Morgenstern utility function u(-) for
which the assignment is the optimal choice. Conversely, if an assignment is

the optimal choice for some increasing wvon Neumann-Morgenstern utility



function u(-) (concave or not), then it minimizes the cost of purchasing a
lottery.

Proof:; We sketch the proof here, referring the reader to Dybvig and Ross
(1982, Theorem 1 and Lemma 3] for omitted details.

When the ci's are distinct, the pi's form a non-increasing function of
the ci’s (by Theorem 1). Choose any positive, non-increasing, and
continuous function g:R -+ R that passes through the points g(ci) = for i
= 1,...,n. Then let u(-) be any integral of g(-). Continuity of g(:)
implies that an integral exists, and g(-) positive and non-increasing
implies that u(-) is strictly increasing and concave. If the pi's are
distinct, g(:) can be chosen strictly decreasing, making u(:-) strictly
concave. This utility function satisfies the first order condition from the
choice problem, because u’(ci) = 7y By concavity, the first order
conditions imply that ¢, solves the problem for this u(.) when the budget
constraint w = E[pc] is satisfied.

If the ci's are not distinet, g(-) ﬁill be chosen as a positive, non-
increasing, and convex—-valued correspondence whose integral u(-) is
therefore striectly increasing and concave. The resulting u(.) will still
satisfy first order conditions (in terms of subgradients), but will not
generally be differentiable,.

For the converse, a choice that does not minimize cost has lower

expected utility than the cost-minimizing choice plus a riskless bonus equal

to the difference of the costs divided by the sum of the state prices. O
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3. The Payoff Distribution Pricing Model — Using Distribution Functions

In Section 2, we represented distributions without regard to state
assignments as lotteries. From now on, we will represent lotteries using
the associated (statistical) cumulative distribution function, which
embodies all the information about a random variable that is invariant to
changing state assignments,

Recall that the wvalue of a distribution function, F(x), gives the
probability that the associated random variable is less than or equal to x.
In our analysis, we will frequently refer to integrals invelving the inverse
of the distribution function. In examples with finitely many states, F(-)
is a step functioen, and F_l(-) is not defined in the ordinary way because of

the discontinuity of F(:). Instead, for y € (0,1), we define5

Fl(y) = ainfx|F(x)zy). (1)

Whenever we use an inverse, we will intend this definition. (The values of
F—l(l) and Frl(O) do not concern us, since we will always use Frl(-) in
integrals that ignore the wvalue at finitely many points.) We can write the

mean value of x as

I
B = I F " (v)dy. (2)
X
v=0
As an aid to intuition, note that if a random wvariable v is distributed
uniformly on (0,1), then F_l(1) is a random wvariable with distribution
function F(-).
We make a distinction between two different types of pricing operators.

One prices assets and is the usual type of price or cost one would obtain

11



from a pricing model 1like the CAPM, the Arbitrage Pricing Theory, or the
Black-Scholes model, The new type of pricing operator prices payoff
distributions. Here are formal definitions and notations for the two types
of pricing operator. After the definition, Theorem 3 re—expresses Theorem 1

in terms of distribution functions.

Definition: The asset price of a marketed consumption stream ¢ is denoted
by PA(E;p) = E[pc]. The distributional price of a distribution function is
the asset price of the least costly consumption stream with that
distribution. The distributional price 1is denoted by PD(FC;FP) =

min{PA(E;;)IE - Fc}.

Theorem 3: Suppose that markets are complete and that states are equally
probable, Let Fp(-) be the distribution function of the state price density
and let Fc(-) be the distribution function of some lottery. Then the

distributional price of Fc(-) is given by

1
. -1 -1
Py(F i) J F o (0F (I=)dy. (3)
y=0
Proof: Relabel the states so that Py 2 Py S ... S P Then the

distribution function of the state price density is given by

Fp(q) = 0 q < Py
Fp(q) = k/n P <0< P for k=1,...,n-1
Fp(q) =1 P, =9

12



The inverse distribution function is given by

-1

Fp {(v) = Py 0 <4 =1l/n

F;l (1) = p, (k-1)/n < vy < k/n for k=2,...,n-1
Pl - o, (n-1)/n < v < 1.

Assigning the lottery outcomes ¢, for minimum cost, in reverse order as the

pi's (as required by Theorem 1), ¢y = ¢, = ... = e, and consequently
F"l(—y) =c 0 <y < 1l/n
c n -
-1
F, (v) = € rlmk (k=1)/n < v < k/n for k=2,...,n-1
-1
Fc (v) = ) (n-1)/n < vy < 1.

(Note that if py = P for some i and j, then the minimal cost consumption

N

plan is not unique but can always be chosen to have ¢y p3 €, > ... 0= cn.)

Now we are ready to evaluate the integral in the statement of the theorem.

1 _1 _1 n
J . Fp (VF (1-v)dy = E:.

1/n -1, . -1
J F " (1F, (I1—y)dy
" A j=7

v=(i-1)/n

n i/n
T e
i=] Yy=(i-1)/n

13



which is the asset price of the cost minimizing lottery. =

The distributional price expression (3) is the most important formula
in this paper. The integral is a general formula for the expected value of
the product of two inversely ordered random variables with distribution
functions Fp(-) and FC(-). Theorem 1 tells us that PD(FC;FP) = Efpc] =
PA(E;Z) if and only if p and ¢ are inversely ordered. PD(FC;FP) is clearly
symmetric in FC(-) and F}(-) (as can be proven directly by a change in
variables in (3) from v to 1-vy), just as PA(E;E) is symmetric in ¢ and p.
Furthermore, the integral is bi-linear in F;l(-) and F;I(-). Lemma 1 is a

simple implication of this property.

Lemma 1: Let c2 =8 + bcl where b = (0. Then

a -
Py(F, SF ) = + BE(F, SF ). (4)

D( c2 l+4r 1

Furthermore, a similar result is true when we switch ¢ and p. Let pp = a +

bpl where b = (0. Then

PD(Fc;sz) = ap + bPD(Fc;Fpl). (5)

Proof: Recall that

N
d=-L - I FL(pdy. (6)
1+r =0 P
The results follow from (3) and the observation that FZI(V) = 4a + bFZI(T)
2 1
and F X(y) = a + bBF L(v). o
pz Pl

14



One implication of Lemma 1 is that we can write the minimum cost as

P (F ;F Yo L i
D( ¢’ p) “Ter t D( c’ p) )

*

where F denotes the distribution function of a de-meaned variable. This
decomposition tells us that the cost of obtaining the distribution Fc(-) is
equal to the expected discounted walue less a risk adjustment. (Since

o *_
F 1(1—7) is decreasing in ¥y with an integral equal to zero, and Fp 1(1) is

¢

increasing and therefore puts most positive weight on negative wvalues of
F:_l(lny), it follows that the integral implicit in PD(F:;F;) is negative.)
Just as PD(FC;Fp) is interpreted as the product of two inversely ordered
random +variables, PD(F:;F:) is interpreted as the covariance of two
inversely ordered random variables. Given Fi(-), the absolute wvalue of
PD(F:;F:) is a measure of dispersion.

Before we derive a theorem about performance measurement, it is worth
discussing what it means to have superior performance. When we measure
performance, we follow the tradition of comparing some particular investment
strategy to the alternative of trading in a market. This comparison places
substantial structure on the market (the CAPM or the PDPM), but leaves the
investment strategy arbitrary. The investment strategy's payoff is just a
random variable that may be defined on a state space that is larger (more
refined) than the space over which the market is complete. For example, the
investment strategy may include information-based trading, losses from
transaction costs or fraud, or investments placed privately outside the
market. This is a partial equilibrium approach in the sense that we do not

analyze the equilibrium effects of information or imperfect capital markets.
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We can think of this as a limiting case in which the equilibrium effects of
market imperfections are small (as they are in many rational expectations
models if there are few enough informed traders). This way of thinking
about portfolio performance measurement is consistent with the traditional
Sharpe and Jensen measures. Because we will be judging a strategy using a
market (and in particular, the market's Fp(-)) as a basis of comparison, we
will refer to that market as the benchmark market.

In the CAPM, we think of a benchmark as a market portfolio and an
associated riskless rate. These two summarize all that is important to an
investor, since they span the efficient frontier., In the current model, the

critical feature of a market is the state price density Fp(-).

Theorem 4: Let Fc(-) be the distribution function of consumption achieved
by investing initial wealth w in the strategy to be evaluated, let FP(A) be
the distribution function of the state price density in the benchmark
market, and let v = PD(FC;Fp)' Then,

(a) If v > w, there exists some increasing utility function u(:) for which
receiving the distribution FC(-) is preferred te trading in the benchmark
market. (This is superior performance or super—efficiency.)

(b} If v = w, there exists some increasing utility function u(.) for which
receiving the distribution Fc(-) is just as good as trading in the benchmark
market. (This is ofdinary performance or efficiency.}

(¢) If v < w, then for all increasing u(-), receiving the distribution
FC(-) is dominated by trading in the benchmark market. (This 1is inferior

performance or inefficiency.)
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Proof: Case (b) follows directly from Theorems 2 and 3, which imply that
Fc(-) is the distribution function of the optimal portfolic for some
increasing utility function. 1In case (a), Lemma 1 plus Theorems 2 and 3
imply that ec—(v-w)/d is distributed as the optimal portfolio for some
increasing utility function, and therefore ¢ is preferred for that agent.
In case (c), Lemma 1 plus Theorem 3 imply that c+(w-v)/d is distributed as
the optimal portfolio for some increasing utility function, and therefore ¢
is dominated by that choice for all increasing utility functions. (0f

course, most agents can do even better). O

Theorem 4 1is closely related to stochastic dominance, because the
distributional price indicates when some random variable () is
stochastically dominated by trading in the benchmark market.

It is often convenient to work with the rate of return, x = (c-w)/w.

We now define the dispersion of the return.
Definition: Consider a portfolio with distribution of return Fx(-), being
evaluated with respect to a benchmark state price density distribution

function Fp(-). The dispersion of the return is defined by

-] * &
. 8
§ = —d PD(F ,Fp). (8)

17



*
(Recall that the F ’'s are distribution functions of demeaned variables and
that d = 1/(1+r} = E[p] 1s the discount factor. Alsoc, § > 0 if neither p
*
nor x 1s constant, since we showed earlier that PD(FC;Fp) is always

negative.) Furthermore, from (2) the portfolio’s expected return is

I
B - J Fo(n)dy, (9)
v=0

and its excesg return is B, =T

Our analog of the Sharpe measure is given by the excess return (px—r)
of a portfolio divided by its dispersion. Theorem 5 shows that comparing

this measure with the market price of dispersion classifies performance.

Theorem 5: Let Fx(-) be the distribution of a portfolio's return. Then,
(a) 1If (px—r)/s > 1, there exists some increasing utility function u(-) for
which receiving the distribution FX(-) of returns is preferred to trading in
the benchmark market {superior performance).

(b) 1If (px—r)/6 = ], there exists some Iincreasing utility function u(-) for
which receiving the distribution Fx(-) of returns is just as good as trading
in the benchmark market (ordinary performance).

(c) 1f (px—r)/s < 1, then for all increasing u(-), receiving the
distribution Fx(-) of returns is dominated by trading in the benchmark

market (inferior performance).

18



Proof: We want to show that conditions (a), (b), and (c) are the same as in
Theorem 4. The condition from Theorem 4 that v 2 w is equivalent to each of

the following. By Theorem 3 and Lemma 1,

1
*—] %1
v~ d+ I Fo(WF, “(-p)dy 2 v
=0

Because x = (c-w)/w, or equivalently ¢ = w(l+x), then B, = :¢(1+px) and

Pl

c (1—y) = WF;_J'(I—?). Therefore,

1
*—] #—1
v = w(ltp )d + WI o (VFx (ndy 2 v
=

Divide both sides by w, subtract 1, and multiply by d_l = (l+r) to obtain

1
Pl

*-1
. Fr (Y)F, “(I-y)dy 2 0.
T-

(b 1) + d—II

From the definitions of § in (8) and the positivity of § we have that

p_—r

AV

To this point, we have not put enough structure on the medel to pin
down &, since we need to know Fp(-) to compute 6. The actual specification
of Fp(—) can be motivated by almost any equilibrium model consistent with
complete markets. In Dybvig [1988], it is shown how to derive Fp(-) in
discrete and continuous time models in which all options are spanned by
continous time trading strategies. In this paper, we give a single-peried
example related to the CAPM in which we can derive the form of Fp(-) {and

therefore §).
19



Here is the example. There is a riskless asset paying a constant
return r and a risky asset ("the market") paying a return EM that is
distributed normally with mean p and wvariance 02. There are arbitrarily
many other assets in the economy, including enough options to complete the
market. To price all the assets, we assume that some agent with wealth I
and constant absolute risk aversion (exponential utility) holds the market

portfolio. By the standard result, the agent holding the market must have

absolute risk aversion

and therefore the wutility function is u(w) = —exp(—4w), and the marginal
utility is u’(w) = Aexp(-4w). The first order condition for optimally
holding the market is the existence of a Lagrange multiplier A (a constant)
such that p = Au’(xM) - AAexp(vAxM). Because Xy is normally distributed,
this first order condition implies that p is constant, too. To compute the

exact distribution, we need to know A, But we know that p must price a

riskless bond with a face of ! correctly; i.e., we must have that

1
Tor = Ele]
- 22
- \e Ap + A2g2 /2
or
22
log(XA) = Ap — A"0" /2 - log(l+r). (11)

Therefore, we have that

1 AGy—p)-42o?/2

1+r (12)

20



and therefore log(;) ig distributed normally with mean —log(1+r)—A202/2 and
variance Azaz. Letting #(-) be the unit cumulative normal distribution

function, we have that

o| Zog( Ylog(ltr)+A2a>/2

Ag (13)

F -
p(P)
and

-1 1 22 -1
CTRE exp[—A /2 + Ao B (7)]. (14)

This formula can be substituted into (3) to compute the payoff distribution
price of a consumption distribution, or inte (8) to compute the dispersion
of a return distribution. (It is interesting to note that the measure of
dispersion does not depend on the Interest rate r except through the
absolute risk aversion coefficient, since d_l in (8) cancels 1/(l+r) in
(14).) To obtain a sample estimate of the dispersion given i.i.d.
observations on the return, we use the sample distribution function of
returns.6 This estimator is well-defined and consistent provided returns
are bounded below (limited liability) and the mean return exists, even if
the wvariance of returns is infinite.7 Of course, this measure will suffer
from many of the same measurement problems as other measures, for example,

if the sample is too small or if returns are not i.i.d.
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Once we have selected the distribution of the state price density (such
as in (13) above), we can use the measure of dispersion in much the same way
as we use the standard deviation, For example, we can plot sample
dispersions against sample means, or we can compute the ratio of excess
return to dispersion directly. According to Theorem 5, this analog of the
Sharpe measure will correctly identify superior, ordinary, and inferior
performance (provided we have chosen F;l(-) correctly).

Unlike the Sharpe measure, the distributional measure gives the correct
ordering (subject to measurement error) even in cases where superior
performance is based on superior information. The failure of the Sharpe
measure in the presence of information is documented by Dybvig and Ross
{1985b]. The difficulty with the Sharpe measure is that information makes
returns non-normal. For example, if an investor's signal and the risky
asset return are joint normal, the investor’s return will be the product of
the normal asset return and the portfolio choice. The portfolio choice is
some function of the signal, and except in degenerate cases this product
will not be normally distributed. If we motivated mean variance analysis
using quadratic utility, we would not have this problem, but assuming
quadratic utility sacrifices monotonicity of preferences and implies
absolute risk aversion is increasing. None of these problems arise in the
PDPM, however, because von Neumann-Morgenstern preferences are valid for all
random variables (and not, for example, not just normal random variables),

including those arising from information-based trading.
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4. Sums and Marginal Changes

The analysis in Section 3, like the Sharpe measure, is designed to
evaluate the efficiency of the entire portfolio held by the agent. 1In this
section, we consider measures designed to evaluate net Investments. These
measures consider whether investing marginally in the portfolio being
evaluated would increase the distributional price of a given base portfolio.
One way of evaluating marginal changes directly using the results of Section
3 is to look at our performance measure applied to the base portfolio before
and after partial movement towards the portfolio being evaluated. Another
approach, in the spirit of the Jensen measure, looks at the derivative of
the minimum cost in the direction of a marginal movement into the new
portfolio.

Generally, the choice of base portfolio matters, just as it matters
which market proxy or index we use in mean-variance analysis. (We
distinguish between the choice of base portfoliec and the choice of benchmark
market, because the two enter the analysis separately.) If we are looking
at one of several managers of a pension fund, one natural base portfolio may
be the portfolio representing the investments of the other managers -— in
other words we want to know whether the fund is better off than it would be
without this manager. In other contexts, the natural choice of base
portfolio is any efficient portfolio. Fortunately, as in mean—-variance
analysis, marginal performance does not depend on which strictly efficient
base portfolio we choose, where strictly efficient means that

Pi >p, > e < cj rather than Pi >p.=>c. = c..8 Marginal performance does

J J 1 J
depend on the choice of base portfolio if an inefficient base portfolio is

used.

23



Now we develop our analog of the Jensen measure.

Theorem 6: The marginal change in the minimum cost, starting at the payoff
¢ of some (possibly inefficient) base consumption stream and moving in the

direction of some net payoff A& is given by

I — 1
- [ Flenedlert a-niay (15)

3
—P(F
a¢ E'0+ -

c+§A;Fp)

if ¢ takes on different values in each state, and

=r F ey 1im[E[E|c+aA=F'l (1-—1)]]d-1 (16)
=0 o al0 cialh
in general.

If the base consumption stream ¢ 1is strictly efficient, then the

expression (15) or (16) for the marginal change is equal to E[£Ap), which is
PA(E;B) if A is marketed.
Proof: For sufficiently small positive £ and a the orderings across states
of c+éA and ct+eA are the same as the ordering across states of ¢ (because
there are finitely many states), excepting perhaps ties in c. Consequently,
we have that for all £ and a both positive and sufficiently small,

1
P(F epiF,) = I B F;I ) [F;'l (1—‘1)+£E|:E|c+aA-=F;iaA(l--y):|]d'y.

=0

The result follows by differentiating with respect to ¢ under the integral
sign. The "limit" part of the expression in the statement of the theorem is

trivial, since we have equality for all sufficiently small positive a.
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For ¢ strictly efficient, p is a function of ¢ and is given by F;l(lu
Fc(c)). In this case, for a sufficiently small, the right hand side of (16)

is simply

E[plim(E[&|cter])] = E[p8].
atl O
The following result characterizes when some finite movement from ¢ in

the direction of A will increase the distributional price.

Theorem 7: The bundle c+£A represents better performance than ¢ (as
measured by minimum cost) for some £ > 0 if and only if the expression in
(16) is positive.

Proof: For each pairing of the states underlying c+£A with values of p, the
cost is affine (linear plus a constant) in £, The minimum cost is the
minimum of affine functions and therefore concave. Concavity and Theorem 6
together imply our result, By Theorem 6, the right derivative of the
distributional price of c+£A with respect to £ at £=0 is simply the
expression in (16). When this is negative, concavity of the distributional
price in £ implies the result. If the right derivative in (16) is positive,
then increasing ¢ increases the distributional price for sufficiently small £

> 0. O

Note that Theorems 6 and 7 do not assume that A is marketed. For
example, A could be the result of investments by a manager who has superior
information that is used effectively but who also incurs high transaction

costs from churning the portfolio, netting out to an inefficient return. If
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A is marketed and ¢ is efficient, then the measure is equivalent to
valuation using state prices,
The next result puts the results of Theorems 6 and 7 in terms of

returns, mimicking the form of the Jensen measure.

Theorem 8: Suppose that the distribution of returns given by x exhibits
ordinary performance in the sense of Theorem 5. Then the portfolio x+a(y—x)

exhibits superior performance for some « > 0 if and only if

By = F ﬁy;x (b —1) >0, (17)
where
I -~ -1
i ig L=0F‘° (v)E[ by | x+a( y=x)=F .. (y—x) (1-v)ldvy
ﬁ}’;x = P (F*F*) (18)
DYV x'p

If x is different in every state, then ﬂy'x is written more simply as

I ~ -1
j F o ODE[y=n |x=F " (1-v) 1dy
-0
Byx = ra— : (19)
PD(FX;Fp)

Proof: Let A = w(y—x). By Theorems 6 and 7, it suffices to show that this
definition makes (17) equivalent to positivity of (15). The proof assumes
that ¢ and x are different in every state; the proof for the other formula
is essentially the same line by line. By choice of A and because
¢ = w(l+x), substitution and division by w yields that positivity of (15) is

equivalent to
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1
~1 ~ ~ —1
J F (y)E|y-x|x=F_" (1—y)1dy > 0.
P X
y=0

Write ;—E in the expectation into three terms, py, -x, and ;—,uy. By

additivity of the expectation and integral operators, we have

1 1
I F " (y)p_dy - J

Freprt-yyay + Jl
y=0 * ¥ =0 P x

-1 - —
F L (EF-p | x=F 1 (1-y)]dy > 0.
=0 ° X

The first integral is py/(l-f-r), because we can take ,uy outside the integral,

The second integral is PD(FX;FP). Because x is efficient, PD(F1+X;FP) =1,
and Lemma 1 implies that PD(FX;Fp) = -1/(1+r) + 1 = r/(i+r). The third
integral is the numerator of ﬁy'x in (18). By (8), Theorem 5, and the

- - - - r *. * —_ _ - —_
efficiency of x, the denominator of ﬂy;x is PD(FX'Fp) §/¢(1+r) (px
r)/(i+r). Therefore, the third integral 1is —ﬂy_x(,ux—r)/(lﬂr). Replacing

each integral by its value and multiplying by I+r yields (17). o

We complete this section by asking what changes in FC(-) decrease
PA(FC;Fp) for agll Fp(«). The payoff distributions with lower cost than
FC(-) for all Fp(-) are those distributions that are second order
stochastically dominated by FC(~). (Appendix 2 provides the necessary
background on stochastic dominance.) Symmetrically, the state price density
distributions that price all claims lower than Fp(-) for all FC(-) are those

state price densities stochastically dominated by Fp(-).

Theorem 9: Consider two distributions of consumption Fc (-) and Fc (-).
1 2
The distributional price of Fc (-) is always less than or equal to that of
1
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Fc (-) for all Fp(-) if and only if Fc () second-order stochastically

2
dominates Fc (-). That is,
1
Pp(Fe iF,) S Pp(F, i)

for all Fp(-), if and only if

for all ne[0,1].

Similarly,

PD(FC;FP ) =< PD(FC;Fp )

1 2

for all FC(-) if and only if

for all n=[0,1].

Proof: Suppose that (20) holds for all Fp(-).

2

(20)

(21)

(22)

(23)

Then, in particular, (20)

holds for p a random variable taking on 1 with probability « and ¢ with

probability I-m, where ¢ < ¢ < 1.

Taking the limit as ¢ ! @ and reversing

the integral by changing variables from vy to I-y yields (21).

Suppose conversely that (21) holds for all x. Since F;l(-) is a non-

increasing step function with finitely many steps, it can be written in the

form



-1 n
Fp (v) = }: v, I(y,m.), (24)

i=]
where the ¢i's are positive, the wi's lie between 0 and 1, and

I(y,m) = 1 for yz =«

= { otherwise.

Change the order of integration by changing variables in (20) to I-y and
substitute in (24). This gives us the difference between the twc sides of
(20) as

_[1 Floa—pirle-Fleidy - ! " eI- FleyyrLeyd
o P 1) [ e (1-F, v)1dy ‘ ¢i 7,wi)[ . (V)= c (v)]dvy

1 2 y=0 —i=1 1 2

n T
- Z wij ot enFt ety
i=1 "V y=0 1 2
Since the ¢i's are positive, this last term is negative by (21).

The result for the state price distributions is true by the same
argument, once we note that adding a constant to ¢ (to make it positive)
does not affect the ordering. u]

The second part of Theorem 9 (comparing Fpl(y) to Fp2(1)) has an
interesting interpretation in terms of a more highly informed agent. One
possible effect of better information is to split states that were
previously indistinguishable. For example, take two states with the same
state prices and the same probabilities from the uninformed perspective.
For an informed agent, the state prices are the same, but the probabilities
are different, leaving the sum of the two probabilities the same.’

Therefore, the state price density has effectively had mean zero noise added
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to 1it. In this example, therefore, the informed state price density is
"second-order stochastically dominated"” by the uniniformed density, and
therefore is distributed as the uninformed density plus noise.

In fact, this property holds whenever we look at an uninformed agent
and an informed agent, Given a single—agent decision problem, improved
information would make any agent better off, and therefore the resultant
state price density must be preferred. By Theorem 9, a preferred state
price density is "second-order stochastically dominated" and therefore is
distributed as the original state price density plus noise less a
nonnegative variable. However, the mean (the price of the riskless asset)
must be the same with and without information. Therefore the new state
price density is just the original one plus added noise. In other words, in
terms of F;I(y), the only effect of receiving superior information on the
state price density distribution is equivalent to splitting states in the

sense described above.
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5. Conclusion

Starting from simple assumptions, we have developed a number of tools
for analyzing portfolio performance and efficiency. Collectively, we can
refer to the approach described here as the distributional approach to
analyzing portfolio problems, or as the Payoff Distribution Pricing Model
(PDFM) . The research has two broad goals. First, the PDPM provides a
theoretical toolbox that may stimulate new avenues of theoretical
development. Second, the PDPM provides specific techniques for measuring
investment performance and testing for efficiency.

While distributional analysis has already been applied successfully in
theoretical work (Dybvig and Spatt [1983] and Dybvig [1988]), much work
remains on the empirical side. We can apply some the known properties of
L-statistics directly to the estimators (see Shorack and Wellner [1986]),
but we still require econometric analysis of the estimators in the presence
of measurement errors in both the distribution of state prices and the
distribution of returns. Empirical work is needed to apply the measures and
to compare them to more traditional measures. Only then will it be possible

to assess the empirical potential of the distributional approach.
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Appendix 1 Generalizing the Results

In the text, the proofs have assumed finitely many equally probable
states and monotone von Neumann-Morgenstern preferences. 1In this appendix,
we discuss how the proofs are modified to be wvalid more generally. We
consider three types of generalizations: (1) more general preferences,
(2) unequal state probabilities, and (2) atomless continuous state spaces.

Theorem 2 is the only place where preferences appear explicitly in the
proofs; other theorems that make statements about preferences build on
Theorem 2. In Theorem 2, we need only a few restrictions on the class of
preferences: all preferences in the <c¢lass must depend only on the
distribution, all preferences in the class must strictly prefer more to
less, and the c¢lass must include all strictly monotone and concave von
Neumarm-Morgenstern utility functions. The class could be the class of
strictly monotone and concave von Neumann—Morgenstern preferences, the class
of strictly monotone Machina [1982] preferences, or any class nested between
these two classes. (The class of strictly monotone von Neumann-Morgenstern
preferences is an example of a class nested between the two.) Assuming
differentiability of wvon Neumann-Morgenstern preferences is not consistent
with the analysis here, because the condition for optimality would be Py >
pj »c; < cj instead of P; > pj = c; =< cj. For a discussion of the effect
of differentiability and strictness of concavity on the set of efficient
portfolios, see Dybvig and Ross [1982], especially Table 1 and the related
discussion.

As mnoted 1in the introduction, the analysis still works when
probabilities are unequal if we assume that agents are risk averse. The

basic change is that we look not for the cheapest lottery but instead for
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the cheapest lottery that is at least as good for all increasing and concave
u(-). The proof of Theorem 1 in the text obtains a smaller cost whenever
Py > pj and c; > cj by swapping the consumption values in the two states.
For increasing concave preferences and unequal probabilities, we swap

consumption and then adjust consumption in the less probable state to make

the means the same. The original distribution of consumption is distributed

as the new (swapped) consumption plus noise. For example, if o> Ij’
Py > pj, and c; > cj, then we change state j consumption to c; and we change
state i consumption to (xici-f—rrjcj—njci)/ari. This change makes any risk-

averse agent better off, while reducing the cost of the consumption

distribution by "j (pi--pj)(ci—cj). A similar swap works in the other case

i< ﬂj, Py > pj, and e; > Cj)'

The remainder of this appendix gives a sketch of how the proofs change

(m

when we have a continuum of states. While many details have been skipped,
an effort has been made to cover the most Important and difficult points.

Here are two assumptions we will use in the general case.

Assumption Al  All utility functions are defined on a convex unbounded
interval of non—negative consumption levels, and all consumption choices are
non—negative random variables. In distributional terms, FC(G) = (0, or

equivalently le (v) = 0 for all ve(0,1).

Assumption A2 For all state price densities p and consumption patterns c

under consideration, E(p) < « and E(E) < w®, In distributional terms,
fi_oF;l('y)dy < = and J._lygoF;l(-y)d'y < ©, For the results concerning

~ ~2 .
stochastiec dominance, we will also want E(pz) < @ and E(c) < =, or in

i3



distributional terms fi_oF;1(7)2d7 < « and fi_onl(y)zdy < o,

The proof of Theorem 1 in the text says that if consumption and the
state price density are in the same order in two states, we can obtain the
same distribution for lower cost by swapping consumption in the two states,
since all states are equally probable with a positive probability. With a
continuum of states, if p and ¢ are not in reverse order with probability 1,
then there exist two non-null disjoint sets of states fI, and @, such that p

1 2
and ¢ are both uniformly larger in . than in G,. While 0, and §I, may not

1 2 1 2
be equally probable, having a non—atomic state space implies that there
exist equally probable non-null subsets of 01 and 02. By a standard
measure—theoretic argument, we can switch consumption bhetween the two
subsets in a way that doesn’t affect the overall distribution of
consumption, As in the discrete proof, this decreases cost.

Theorem 2 is essentially the same as in the discrete case, both in the
statement and in the proof. Two new wrinkles are related to closure
problems at the limit when the number of states becomes infinite. One
problem is that the strictly increasing utility function constructed may not
be defined outside the open interval going from the bottom to the top of the
support of ¢ — impliecitly, the marginal utility may be infinite or zero
outside that interval. (The utility function is defined at any endpoint
that is a mass point of ¢, however.) The other wrinkle iIs that expected
utility for the utility function defined this way may be infinite. The
simplest solution to this problem is to redefine optimality using a

shortfall criterion, as Ramsey [1928] did in growth theory. Define an

e - - —t
optimal choice ¢ to be a choice of ¢ that maximizes E[u(c)-u(c )] subject
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to the budget constraint for ¢. When E[u(z)] is bounded, the new objective
function is simply E[u(E)] - E[u(E*)], and maximizing the new objective with
respect to ¢ ylelds the same optimum as maximizing E[u(¢)] with respect to
c¢. The advantage teo this new objective function is that it can be defined
even when E[u(c)] and E[u(E*)] are both infinite, Using this more general
definition of optimality, the proof of Theorem 2 goes through as is.

Theorem 3 can be proven using a sequence of finite approximations to
the two distribution functions and a proof for each finite approximation
that is essentially the same as the finite proof. Assumptions Al and A2
together imply that the expression for the minimum cost given in (3) is
finite, To prove thié, split the integral into two integrals, one from 0 to

1/2 and one from 1/2 to 1. By dominance, the minimum cost is less than
1 1 ~ -1 ~
3 FP (1/2)E(e) + F “(1/2)E(p)| < =

For Lemma 1, finiteness of 1/(I+r) in (6) is just the condition E[;] < @ in
A2, and it is easy to see that the proof goes through unchanged.

It is relatively straightforward to generalize the remaining proofs,
most of which are direct applications of the Theorems we have already

discussed.
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Appendix 2 Stochastic Dominance

This appendix summarizes some familiar stochastic dominance results.
The results are displayed in a tabular form which is essentially Table 1 of
Ross [1971] extended to include conditions expressed in terms of Frl. Most
if not all of the results have appeared before in published literature. For
example, see Quirk and Saposnik [1962], Hadar and Russell [1969], and Levy
and Kroll [1978] for the results for the monotone (M) and monotone concave
(MC) classes of utility functions. We have taken the results for the
concave class (C) from Ross [1971].

We will take F(:) and G(:) to be the distribution functions of the
random variables X and ¥y, respectively, and X and ; are both assumed to have
finite mean and variance. M is the set of nonincreasing real-valued
functions on R, C is the set of concave real-valued functions on R, and MC
is the intersection of these two sets. The notation =x(¢:) 1is used to
indicate the probability of an event. The notation d indicates "is
distributed as.”

All conditions in a given row of Table 1 are equivalent., The rows of
Table 1 correspond to dominance for all monotone utility functions (first
order stochastic dominance), dominance for all concave utility functions
(concave dominance), and dominance for all monotone and concave utility

functions (second order stochastic dominance).
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Table 1: Summary of Stochastic Dominance Results

Integral (F-l)

E[U(x)] = E[U(Y)]

JCIF(r)-G(r)1dr = 0

FE -6 ) ar

v

Criterion Integral (F) Dist

YU(-)eM (¥e) (vy) y = x+z
E[U®)] = E[UR]|  F(e) = 6(e) Fla = 6tew 7 (7<0) = 1

(ve) (v1) Ca

WIS Afe (R(r)-6(r)1dr < 0|[YF L (r)-6 " (r)1dr = 0 Y T X
Efux)] = E[U(y)] and + 0 as ¢ t © and - 0 as vy t 1 E[st]-O
d ~ ~ ~
YU (- )eMC (ve) (¥v) y-ox+z+s
x(750) = 1

E[E|x+z] =0
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Footnotes
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from Jon Ingersoll, David Pollard, Steve Ross, and an anonymous referee. I
am very grateful for support received from the Batterymarch Fellowship
program and from the Sloan Research Fellowship program. This paper extends
and clarifies ideas originally introduced in a previous working paper,

Dybvig [1982].

1. The arbitrage opportunity 1is the purchase of a call option on the market
portfolio with a sufficiently large exercise price. Provided the market
might go up enough to put the call option in the money, the call will have a

negative price.

2. An atom is an indivisible state with positive probabllity. Whenever we
refer to a continuous state space we will implicitly mean that there are no

atoms.

3. Machina's [1982] preferences satisfy all the von Neumann-Morgenstern
axioms except the independence axiom. The resulting preferences depend only
on the distribution function of outcomes (as we require). The slight

difference is that Machina also imposes Frechet differentiability.

4. This 1is obvious when von Neumann-Morgenstern preferences are concave.
When there is a continuum of states, it can also be shown that a monotone

agent will always be on a concave part of the utility funetion.
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5. When FFI exists in the usual sense, this definition is the same as the
standard one. More generally, if random wvariables X, converge to X in
distribution as ntw, then the inverse distribution function in the

definition converges pointwise.

6. Alternatively, we can use a slightly simpler estimator of dispersion
which uses the ordinary approximation to the integral in (8) that assigns
F;l(-) at the midpoint to each interval along which the sample inverse

distribution function of return is constant.

7. The formal properties of the estimators are available in the literature
on L-statistics. Chapter 19 of Shorack and Wellner [1986] contains a rich
variety of results related to consistency and asymptotic normality of L-
statisties. These results apply directly given the actual distribution
function of state prices and the sample distribution of consumption or
returns. (For example, as a special case, if both are lognormally
distributed, we have both consistency and asymptotic normality.) If we also
have an estimated distribution of state price density, the derivation of the
unconditional distribution of our measure requires additlional analysis but

appears straightforward.

8. Strict efficiency corresponds to efficiency for some agent with a
differentiable von Neumann—Morgenstern utility function. See Dybvig and

Ross [1982], Table 1.

9. While this makes probabilities unequal in general, this is justified if
we have a continucus state space or if we restrict attention to concave

preferences.
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