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DISTRIBUTIONAL CHAOS FOR OPERATORS WITH FULL
SCRAMBLED SETS

FÉLIX MARTÍNEZ-GIMÉNEZ, PIOTR OPROCHA, AND ALFREDO PERIS

Abstract. In this article we answer in the negative the question of whether
hypercyclicity is sufficient for distributional chaos for a continuous linear op-
erator (we even prove that the mixing property does not suffice). Moreover,
we show that a extremal situation is possible: There are (hypercyclic and
non-hypercyclic) operators such that the whole space consists, except zero, of
distributionally irregular vectors.

1. Introduction

In recent years many researchers were looking for conditions that yield complex,
nontrivial dynamics of linear operators (note that, to admit such behaviour, the
space must be infinite dimensional). Probably the most studied is the notion of
the hypercyclicity, that is, the existence of vectors x ∈ X such that the orbit
of this vector x, T (x), T 2(x), . . . under action of a continuous and linear operator
T : X → X on a topological vector space (most often Banach or Fréchet space) X
forms a dense subset of X. We refer the reader to the recent books [5] and [10] for
an accessible introduction into the topic together with the review on the history of
this problem. After publication of the book of Devaney [7] studies on hypercyclicity
became essential tool for understanding of chaos in the sense of Devaney, since
definition of chaos from [7] in our context requires hypercyclicity and density of the
set of periodic points of T in X (see [1]).

Another definition of chaos was born a few years before [7], when Li and Yorke
published their famous paper on the study of complicated dynamics of maps on the
unit interval [13]. In contrast to the definition of Devaney, the definition derived
from [13] concentrates rather on local aspects of dynamics of pairs than a complex
global behavior induced by hypercyclicity.

Distributional chaos was introduced by Schweizer and Smital in [18] as a natural
extension of the notion of chaos given several years before by Li and Yorke in [13].
This concept will be the main notion considered in this paper. Following [14], we
will consider only the definition of uniform distributional chaos, which is one of the
strongest possibilities (see [16]).

Recall that, if A ⊂ N, then its upper density is the number

dens(A) = lim sup
n→∞

1

n
|{i < n ; i ∈ A}| ,

where |S| denotes cardinality of the set S. Using this notation, distributional chaos
can be defined as follows:
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Definition 1.1. Let f be a continuous self map on a metric space (X, d). If there
exists an uncountable set D ⊂ X and ε > 0 such that for every t > 0 and every
distinct x, y ∈ D the following conditions hold:

dens
{
i ∈ N ; d(f i(x), f i(y)) ≥ ε

}
= 1,

dens
{
i ∈ N ; d(f i(x), f i(y)) < t

}
= 1,

then we say that f exhibits uniform distributional chaos. The set D is called a
distributionally ε-scrambled set.

Let X be a Banach space and let T : X → X be an operator. While there is lack
of full characterization of distributional chaos for operators, it is possible to provide
effective criteria ensuring this property [4, 11, 14]. It was proved in [14] that if a
weighted backward shift on `p-space is chaotic in the sense of Devaney then it also
exhibits distributional chaos. There were also examples of distributionally chaotic
operators which are not hypercyclic. So the only uncertain possibility left in [14]
is the question whether hypercyclicity is sufficient for distributional chaos. The
negative answer to this question is given in Section 2. Even more is shown, that
is, mixing is not enough for distributional chaos. Recall that T is mixing if the set
{n ∈ N ; Tn(U) ∩ V 6= ∅} is co-finite for every pair of non-empty open sets U, V .

We recall from [3] that a vector x ∈ X is said to be irregular for an operator T if
lim infn→∞ ‖Tnx‖ = 0, while lim supn→∞ ‖Tnx‖ =∞. Inspired by this definition,
Bermúdez et al. introduced in [4] the following notion:

Definition 1.2. A vector x ∈ X is said to be distributionally irregular for T if
there are increasing sequences of integers A = {nk ; k ∈ N} and B = {mk ; k ∈ N}
such that dens(A) = dens(B) = 1, limk→∞ ‖Tnkx‖ = 0 and limk→∞ ‖Tmkx‖ =∞.

In [4] the authors proved that the existence of irregular vectors is equivalent to
admitting Li-Yorke pairs. The same paper shows that every infinite dimensional
separable Banach space admits a hypercyclic and distributionally chaotic operator
which has a dense distributionally irregular scrambled set D, that is distributionally
scrambled set such that each vector is distributionally irregular. Then the natural
question which immediately arises is whether it is possible that D = X, i.e. D is
not only dense but equals to the whole space.

Definition 1.3. We say that an operator T is completely distributionally irregular
if every vector x ∈ X \ {0} is distributionally irregular.

Remark 1.4. Note that if T is completely distributionally irregular then the whole
space is distributionally ε-scrambled, for any ε > 0.

In Section 3 we will show that there exist completely distributionally irregular
operators (even with completely distributionally irregular inverse) and that this
property is independent of hypercyclicity or distributional irregularity of the inverse.

We refer the reader to [2, 12, 17, 19] for other recent works on distributional chaos
for operators. Also, in [15] it is shown that there are completely distributionally
irregular operators T such that the sequence (‖Tn‖)n is increasing.
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2. Mixing and distributional chaos

In this section we will consider the unilateral backward shift (Bx)i = xi+1 on
the weighted `p-space

`p(v) := {x = (xj)j∈N ; ‖x‖p =
∑
j∈N
|xj |p vj <∞}.

The map B : `p(v) → `p(v) is well-defined (and, equivalently, continuous) if and
only if supj

vj
vj+1

< ∞. We will show that there are sequences of weights so that
unilateral shift is mixing but not distributionally chaotic. We should point out that
it is easy to construct non-hypercyclic but distributionally chaotic unilateral shifts
(see [14]).

Theorem 2.1. Let nk := (k!)3, k ∈ N, and let v = (vj)j be the sequence of weights
given by vj = k−1 for nk ≤ j < nk+1, k ∈ N. Then the operator B is mixing on
X := `p(v), 1 ≤ p <∞, but T is not distributionally chaotic.

Proof. The fact that B is mixing can be deduced from [6] (see also Chapter 4 in
[10] for more details), since limj vj = 0.

We will show that, for each x ∈ X and for every ε ∈]0, 1[,

lim
n→∞

|{j ≤ n ;
∥∥Bjx

∥∥ < ε}|
n

= 1,

that excludes the possibility of existence of distributionally chaotic pairs.
We fix an integer k0 > 6 satisfying∑

j≥nk0

|xj |pvj < ε/4 and k−10 < ε/4.

If n ≥ nk0+1, let k ≥ k0 with nk+1 ≤ n < nk+2. We can write n = Nnk +m with
m,N ∈ N, m ≤ nk, N > k3. Since

N−1∑
i=1

(i+1)nk−1∑
j=ink

|xj |pvj

 ≤ ∑
j≥nk

|xj |pvj < ε/4 < 1,

then, for

I := {i < N ;

(i+1)nk−1∑
j=ink

|xj |pvj ≥ k−2},

we have |I| ≤ k2. Thus,

|{1, . . . , N − 1} \ I| ≥ N − 1− k2.
If i ∈ J := {1, . . . , N − 1} \ I, then

(i+1)nk−1∑
j=ink

|xj |p ≤ (k + 1)

(i+1)nk−1∑
j=ink

|xj |pvj < (k + 1)k−2 < ε/2,

by the definition of I, and since vj = (k + 1)−1 for nk+1 ≤ j < nk+2. This implies
that, if we fix i ∈ J and j ∈ [ink, (i+ 1)nk − nk−1], then∥∥Bj−1x

∥∥p =

(i+1)nk−1∑
l=j

|xl|pvl−j+1 +
∑

l≥(i+1)nk

|xl|pvl−j+1
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≤
(i+1)nk−1∑

l=ink

|xl|p +
∑

l≥(i+1)nk

|xl|pvl
vl−j+1

vl
<
ε

2
+

3ε

8
< ε,

since j < nk+2 and l − j + 1 ≥ nk−1 whenever l ≥ (i + 1)nk, and by taking into
account that vs/vr ≤ (k + 2)/(k − 1) ≤ 3/2 if r > s ≥ nk−1 and r − s < nk+2.
Therefore,

|{j ≤ n ;
∥∥Bjx

∥∥p < ε}|
n

≥
∑

i∈J(nk − nk−1)
n

≥ (N − 1− k2)(nk − nk−1)
n

≥
(
N − 1− k2

N + 1

)(
nk − nk−1

nk

)
>

(
1− k2 + 2

k3 + 1

)(
1− 1

k3

)
−→
k→∞

1.

�

Remark 2.2. Observe that we have shown in Theorem 2.1 that

dens
{
j : d(Bjx,Bjy) ≥ ε

}
= 0

for every x, y ∈ X, x 6= y, and for every ε > 0. In other words, the mixing rate of
B is very slow.

3. Full distributionally scrambled sets and hypercyclicity

In this section we will consider the bilateral forward shift (Tx)i = xi−1 and the
backward shift (Bx)i = xi+1 on the weighted `p-space

`p(v,Z) := {x = (xj)j∈Z ; ‖x‖p =
∑
j∈Z
|xj |p vj <∞},

where the weight sequence v = (vj)j∈Z will be constructed satisfying certain gen-
eral assumptions. We also recall that B : `p(v,Z) → `p(v,Z) (respectively, T :
`p(v,Z)→ `p(v,Z)) is well-defined (equivalently, continuous) if and only if supj∈Z

vj
vj+1

<

∞ (respectively, supj∈Z
vj

vj−1
< ∞). Our purpose is to provide examples of weight

sequences v such that every non-zero vector is distributionally irregular for T : `p(v,Z)→
`p(v,Z), and for some of these examples T−1 = B will have the same property. We
also study its relation to hypercyclicity. In what follows, we will simply write
aij = (aj)

i. We hope it will cause no confusion to the reader.

Theorem 3.1. Let v = (vj)j∈Z be a weight sequence that satisfies the following
conditions:
(1) there are sequences of integers (nj)j∈Z and (mj)j∈Z with nj < mj < nj+1,

j ∈ Z, and M > 1 such that Mvm−k
≥ vj for every j ∈ [m−k,mk−1], k ∈ N,

and if we consider

Sk := sup{ vj
vj−1

; j 6∈]m−k,mk−1]}, k ∈ N,

then for every ε > 0 we find k ∈ N with vnk
< ε and

S
k(nk−m−k)
k ≤ min

{
M,

min{vi; m−k ≤ i ≤ mk−1}
vnk

}
,

(2) for every N ∈ N, there exists k ∈ N such that vj > N , for k ≤ j ≤ Nk.
Then the forward shift T : `p(v,Z) → `p(v,Z) is completely distributionally irregu-
lar.
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Proof. Let x ∈ `p(v,Z) be an arbitrary non-zero vector. Given M > 1 satisfying
condition (1), and an arbitrary δ > 0, we fix m ∈ N such that∑

|j|>m

|xj |pvj <
δ

2(1 +M2)
.

Again by condition (1) there exists k ∈ N with vnk
< ε := δ

min{vj ; |j| ≤ m}
2M(1 + ‖x‖p)

, and

such that [−m,m] ⊂]m−k,mk−1[. For any l ∈ [nk −m−k, k(nk −m−k)] we have

(3.1)
∥∥T lx

∥∥p =
∑

j∈[m−k,mk−1]

|xj |pvj+l +
∑

j 6∈[m−k,mk−1]

|xj |pvj+l.

For the first summand we obtain∑
j∈[m−k,mk−1]

|xj |pvj+l ≤
∑
|j|≤m

|xj |pvj
vj+l

vj
+

∑
j∈[m−k,mk−1]\[−m,m]

|xj |pvj
vj+l

vj

≤
∑
|j|≤m

|xj |pvj
vnk

(∏j+l−1
i=nk

vi+1

vi

)
vj

+
∑

j∈[m−k,mk−1]\[−m,m]

|xj |pvj
vj+l

vj

≤ ‖x‖p
vnk

Sm+l−nk

k

min{vj ; |j| ≤ m}
+

δ

2(1 +M2)
max{vj+l

vj
; j ∈ [m−k,mk−1] \ [−m,m]}

< ‖x‖p δM

2M(1 + ‖x‖p)
+

δ

2(1 +M2)

vnk
S
k(nk−m−k)
k

min{vj ; m−k ≤ j ≤ mk−1}
≤ δ(2 +M2)

2(1 +M2)
.

by the selection of m and ε. With respect to the second summand in (3.1), we get∑
j 6∈[m−k,mk−1]

|xj |pvj+l =
∑

m−k−l≤j<m−k

|xj |pvj
vj+l

vj
+

∑
j 6∈[m−k−l,mk−1]

|xj |pvj
vj+l

vj

≤

 ∑
m−k−l≤j<m−k

|xj |pvj

MSl
k +

 ∑
j 6∈[m−k−l,mk−1]

|xj |pvj

Sl
k <

δM2

2(1 +M2)
.

Therefore we have
∥∥T lx

∥∥p < δ, and we obtain the existence of A = {lj ; j ∈ N} ⊂ N
such that dens(A) = 1 and limj

∥∥T ljx
∥∥ = 0.

On the other hand, since x 6= 0, there is i0 ∈ Z such that xi0 6= 0. By condition
(2), given any N ∈ N there is k ∈ N such that vj > N for all j ∈ [k,Nk]. Without
loss of generality we may assume N > maxj≤|i0| vj , so that k > i0, therefore
‖T rx‖ ≥ |xi0 |N1/p for each r ∈ [k − i0, Nk − i0], which yields that there is B =
{rj ; j ∈ N} ⊂ N such that dens(B) = 1 and limj ‖T rjx‖ =∞. �

As a consequence of Theorem 3.1 we obtain the analogous result for the backward
shift.

Corollary 3.2. Let v = (vj)j∈Z be a weight sequence that satisfies the following
conditions:

(1) there are sequences of integers (nj)j∈Z and (mj)j∈Z with nj < mj < nj+1,
j ∈ Z, and M > 1 such that Mvmk−1

≥ vj for every j ∈ [m−k,mk−1],
k ∈ N, and if we consider

sk := inf{ vj
vj−1

; j 6∈]m−k,mk−1]}, k ∈ N,



6 MARTÍNEZ-GIMÉNEZ, OPROCHA, AND PERIS

then for every ε > 0 we find k ∈ N with vn−k
< ε and

s
k(n−k−mk−1)
k ≤ min

{
M,

min{vi; m−k ≤ i ≤ mk−1}
vn−k

}
,

(2) for every N ∈ N, there exits k ∈ N such that vj > N , for −Nk ≤ j ≤ −k.
Then the backward shift B = T−1 : `p(v,Z)→ `p(v,Z) is completely distributionally
irregular.

Proof. It suffices to consider the isomorphism (xj)j∈Z 7→ (x−j)j∈Z that conjugates
B to the forward shift T : `p(v′,Z) → `p(v′,Z), where the weight sequence v′ is
defined as v′j = v−j and the necessary sequences to apply Theorem 3.1 are defined
by n′j := −n−j , m′j := −m−j−1. �

For convenience of the constructions that we will provide in the final examples,
we need a further result which is a consequence of Corollary 3.2 by simply applying
a shift m′k = mk+1, n′k = nk+1, on the right part of the sequences (mk)k and (nk)k
(k ≥ 0), and leaving invariant the left parts m′k = mk, n′k = nk, k < 0.

Corollary 3.3. Let v = (vj)j∈Z be a weight sequence that satisfies the following
conditions:

(1) there are sequences of integers (nj)j∈Z and (mj)j∈Z with nj < mj < nj+1,
j ∈ Z, and M > 1 such that Mvmk

≥ vj for every j ∈ [m−k,mk], k ∈ N,
and if we consider

sk := inf{ vj
vj−1

; j 6∈]m−k,mk]}, k ∈ N,

then for every ε > 0 we find k ∈ N with vn−k
< ε and

s
k(n−k−mk)
k ≤ min

{
M,

min{vi; m−k ≤ i ≤ mk}
vn−k

}
,

(2) for every N ∈ N, there exits k ∈ N such that vj > N , for −Nk ≤ j ≤ −k.
Then the backward shift B = T−1 : `p(v,Z)→ `p(v,Z) is completely distributionally
irregular.

With the above results, we are ready to provide the desired examples. In all of
them the sequences of integers (nj)j∈Z and (mj)j∈Z with nj < mj < nj+1, j ∈ Z
are such that for every k ∈ Z we have:

vj−1 ≤ vj when nk < j ≤ mk, and vj−1 ≥ vj when mk < j ≤ nk+1.

Generally speaking, the positions vmk
represent “hills” of the weight sequence, and

the positions vnk
are “valleys”.

Example 3.4. We will select v such that T and T−1 are completely distributionally
irregular on `p(v,Z), but T is not hypercyclic. First, we put some general condi-
tions which will lead to inductive construction of sequences of integers (mk)k∈Z
and (nk)k∈Z with the desired properties. We will require that sequences (mk)k∈Z,
(nk)k∈Z increase fast enough so that they satisfy the following conditions:
(a) m0 = 1, n1 = 4, vm0 = 2, vn1 = 2−2,
(b) vnk

= 2−2k, vmk
= 22k+1, k ∈ N, vi/vi−1 = vj/vj−1 if i, j ∈]nk,mk], or if

i, j ∈]mk−1, nk], k ∈ N,
(c) mk − nk > 2(mk−1 − nk−1), nk+1 −mk > 2(nk −mk−1), k ∈ N, and
(d) v−j = v−1j , j ∈ N, mk = −n−k, k ∈ Z.
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m
- 2 n

-1 m
-1n0 m0 n1 m1

4

8

16

2

Figure 1. Example 3.4

Observe that conditions (b) and (d) give that
min{vi; m−k ≤ i ≤ mk−1}

vnk

=

vn−k+1

vnk

= 2 for every k ∈ N, and the supremum of the slope of v outside the

interval [m−k,mk−1] is Sk = vj/vj−1 for any nk < j ≤ mk, k ∈ N, by the all the
assumptions. In order to fulfill condition (1) in Theorem 3.1, we set M = 2 and
Sk = 21/k(nk−m−k) = 21/(2knk), k ∈ N. Thus, we get Smk−nk

k = vmk
/vnk

= 24k+1,
which implies mk = (8k2 + 2k + 1)nk, k ∈ N.

Analogously,
min{vi; m−k ≤ i ≤ mk}

vn−k

=
vnk

vn−k

= 2 for every k ∈ N, and the

infimum of the slope of v outside the interval [m−k,mk] is sk = vj/vj−1 for any
mk < j ≤ nk+1, k ∈ N. Again, to have condition (1) in Corollary 3.3, we set
M = 2 and sk = 21/k(n−k−mk) = 2−1/(2kmk), k ∈ N. As a consequence, snk+1−mk

k =

vnk+1
/vmk

= 2−4k−3, which yields nk+1 = (8k2 +6k+1)mk, k ∈ N. This allows us
the inductive construction of (nj)j∈Z and (mj)j∈Z.

To check condition (2) in Theorem 3.1 and Corollary 3.3, we notice that

vr = 22k+1sr−mk

k = 22k+12
− r−mk

2kmk > 22k if mk ≤ r ≤ 2kmk,

and that

vr = 22kS
m−k−r
k = 22k2

−nk−r

2knk > 22k−1 if 2km−k ≤ r ≤ m−k.
This implies that all the conditions in Theorem 3.1 and Corollary 3.3 are satisfied
and so T and T−1 are completely distributionally irregular.

Finally, since vj = v−1−j for all j ∈ Z, there is no increasing sequence (jk)k in N
such that limk vjk = limk v−jk = 0, which avoids the hypercyclicity of T (See, e.g.,
Theorem 2 in [9]).

Example 3.5. Our purpose now is to construct v such that T and T−1 are com-
pletely distributionally irregular on `p(v,Z), and T is hypercyclic. To do so, we set
up the following preliminary conditions on the weights

(a) n1 = 4, m−1 = −4, vn0
= 1, vm0

= 2, vn1
= 2−1, vm−1

= 2, and
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(b) mk = −n−k, k ∈ Z, vnk
= 2−2k+1, vmk

= 2k+1, vn−k
= 2−2k, vm−k

= 2k,
k ∈ N, vi/vi−1 = vj/vj−1 if i, j ∈]nk,mk], or if i, j ∈]mk−1, nk], k ∈ Z, and

(c) mk − nk > 2(mk−1 − nk−1), nk+1 −mk > 2(nk −mk−1), k ∈ N.

m
- 2 n

-1 m
-1 n0 m0 n1 m1 n2

4

2

1

0.5

0.25

Figure 2. Example 3.5

We will check again that the hypothesis of Theorem 3.1 and Corollary 3.3 are

satisfied. Condition (b) gives
min{vi; m−k ≤ i ≤ mk−1}

vnk

=
vn−k+1

vnk

= 2 for every

k ∈ N, and the supremum of the slope of v outside the interval [m−k,mk−1] is
Sk = vj/vj−1 for any nk < j ≤ mk, k ∈ N. As in the previous example, we set
M = 2 and Sk = 21/k(nk−m−k) = 21/(2knk), k ∈ N. Thus, Smk−nk

k = vmk
/vnk

= 23k,
which implies mk = (6k2 + 1)nk, k ∈ N.

Analogously,
min{vi; m−k ≤ i ≤ mk}

vn−k

=
vnk

vn−k

= 2 for every k ∈ N, and the

infimum of the slope of v outside the interval [m−k,mk] is sk = vj/vj−1 for any
mk < j ≤ nk+1, k ∈ N. Again, we set M = 2 and sk = 21/k(n−k−mk) = 2−1/(2kmk),
k ∈ N. In consequence, snk+1−mk

k = vnk+1
/vmk

= 2−3k−2, that yields nk+1 =

(6k2 + 4k + 1)mk, k ∈ N.
To check the final conditions for T and T−1 being completely distributionally

irregular, we notice that

vr = 2k+1sr−mk

k = 2k+12
− r−mk

2kmk > 2k if mk ≤ r ≤ 2kmk,

and that

vr = 2kS
m−k−r
k = 2k2

−nk−r

2knk > 2k−1 if 2km−k ≤ r ≤ m−k.

For the hypercyclicity of T , since it is invertible, it suffices to show that there is
an increasing sequence (jk)k in N such that limk vjk = limk v−jk = 0 (See Theorem
3.2 in [8]). Let jk := (mk + nk)/2 = (3k2 + 1)nk. We have

vjk = Sjk−nk

k vnk
= 2−k/2+1,
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for any k ∈ N. Note that Rk = vj/vj−1 has the same value for any j ∈]n−k,m−k],
and thus for all k ∈ N we have Rk < Sk and

v−jk = R
−jk−n−k

k vn−k
< Smk−jk

k 2−2k = 2−k/2+1/2.

Indeed, limk vjk = limk v−jk = 0 which concludes the hypercyclicity of T .

Example 3.6. We will provide v such that T is hypercyclic and completely distri-
butionally irregular on `p(v,Z), but T−1 is not completely distributionally irregular.
We define

(a) n0 = 0, m0 = 1, n1 = 3, m−1 = −1, vn0
= 1, vm0

= 2, vn1
= 2−1,

vm−1
= 2, and

(b) m−k = −mk−1, n−k = −mk+1, nk+1 = mk+2k2+k+1, vn−k
= vnk

= 2−k,
vmk

= 22k
2

, vm−k
= 2−k+2, k ∈ N, vi/vi−1 = vj/vj−1 if i, j ∈]nk,mk], or if

i, j ∈]mk−1, nk], k ∈ Z, and
(c) mk − nk > 2(mk−1 − nk−1), nk+1 −mk > 2(nk −mk−1), k ∈ N.

m
- 2n

-1 m
-1 m0n1 m1 n2

4

2

1

0.5

0.25

Figure 3. Example 3.6

Condition (b) gives
min{vi; m−k ≤ i ≤ mk−1}

vnk

=
vnk−1

vnk

= 2. We set again

M = 2 and Sk = 21/k(nk−m−k) = 21/k(nk+mk−1), k ∈ N. Thus, Smk−nk

k = 22k
2+k,

which implies mk = nk + (2k3 + k)(nk +mk−1), k ∈ N. We then have the formulas
to construct (mk)k∈Z, (nk)k∈Z, the values of the weight sequence v, and condition
(1) of Theorem 3.1. For condition (2), pick rk := nk + 2k2(nk + mk−1), k ∈ N.
If j ∈ [rk,mk], then vj = vnk

Sj−nk

k ≥ 2k. Since (mk − rk)/rk > (k − 1)/2, for
each k ∈ N, we obtain that T is completely distributionally irregular. Moreover,
limj→−∞ vj = 0, thus limk vnk

= limk v−nk
= 0, and we get the hypercyclicity of

T . Finally, if we consider x = (xj)j∈Z such that xj = 1 for j = nk, k ∈ N, and
xj = 0 otherwise, we have x ∈ `p(v,Z) and since nk −mk−1 ≥ k we also get that∥∥T−kx∥∥ ≥ 2kvnk

≥ 1

for all k ∈ N. This shows that x is not a distributionally irregular vector for T−1.
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