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Abstract
Domain Adaptation (DA) techniques aim at en-
abling machine learning methods learn effec-
tive classifiers for a “target” domain when the
only available training data belongs to a different
“source” domain. In this extended abstract we
briefly describe a new DA method called Distri-
butional Correspondence Indexing (DCI) for sen-
timent classification. DCI derives term represen-
tations in a vector space common to both domains
where each dimension reflects its distributional cor-
respondence to a pivot, i.e., to a highly predictive
term that behaves similarly across domains. The
experiments we have conducted show that DCI ob-
tains better performance than current state-of-the-
art techniques for cross-lingual and cross-domain
sentiment classification.

1 Introduction
Automated text classification methods usually rely on a train-
ing set of labelled examples in order to learn a classifier that
will predict the classes of unlabelled documents. Deploying a
model for a new target domain in the absence of high-quality
annotated examples thus entails a substantial human labelling
effort. Transfer learning (TL) [Pan and Yang, 2010] focuses
on alleviating this problem by leveraging training examples
from a different, although related, source domain for which
the amount of available labelled examples is higher. TL thus
operates in applicative scenarios in which the so-called “iid
assumpution” (the training and the test data are randomly
drawn from the same distribution) no longer holds.

One such scenario of the utmost importance is sentiment
classification [Liu, 2012], the task of classifying opinion-
laden documents as conveying a positive or a negative senti-
ment towards a given entity (e.g., a product, a policy, a politi-
cal candidate). In many contexts the amount of available, pre-
labelled opinions is scarce, or even null, in the case of new en-
tities (e.g., products, policies, or political candidates). In such
cases, promptly generating a sentiment classifier might be-
come difficult, due to the considerable cost and time involved
in producing a representative set of training documents.

∗This paper is an extended abstract of an article appeared as
[Moreo Fernández et al., 2016].

In sentiment classification, TL finds a natural application in
domain adaptation (DA), i.e., the task of adapting a sentiment
classifier to operate on a new domain. For example, we might
want to use a training set of book reviews written in English
to classify movie reviews written in English, or to classify
book reviews written in German. The former case is typically
known as cross-domain adaptation, while the second one is
instead known as cross-lingual adaptation [Pan et al., 2012].

Central to text classification is the representation of words
and documents as numerical vectors that reflect, through their
relative distances, the semantic relations among them, i.e., the
smaller the distance between a pair of word vectors, the more
semantically similar the words are assumed to be. While dis-
tributional semantic models like Latent Semantic Analysis
(LSA) [Deerwester et al., 1990] and Latent Dirichlet Alloca-
tion (LDA) [Blei et al., 2003] have proven useful to represent
similar words (e.g., beautiful and nice) close to each other
(e.g., in terms of cosine similarity) in the vector space, one
main difficulty in domain adaptation is to discover semantic
correspondences that may exist across domains (e.g., writer
and director when adapting from a source domain of books
to a target domain of films).

Structural Correspondence Learning (SCL) was first
adapted for the cross-domain case [Blitzer et al., 2007] and
then extended to the cross-lingual case in [Prettenhofer and
Stein, 2011]. SCL discovers correspondences among terms
from different domains that show similar distributions with
respect to a set of pivot terms (highly predictive terms ex-
pected to behave in a similar way in both domains). Each
pivot defines in SCL an auxiliary classification problem that
brings to bear “structural” information of the adaptation prob-
lem. The intuition according to which the semantics of words
is somehow determined by its distribution in text with respect
to other terms is generally referred to as the distributional hy-
pothesis [Harris, 1954]. The Distributional Correspondence
Indexing (DCI) [Moreo Fernández et al., 2016] method we
propose also builds upon the distributional hypothesis, but it
formalizes the notion of correspondence through the Distri-
butional Correspondence Functions (DCF), which are much
lighter, in terms of computational cost, than the auxiliary
problems of SCL.

We experimentally show that DCI compares favourably to
the state of the art in two popular sentiment datasets cover-
ing both cross-domain and cross-lingual adaptation, and at a
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substantially smaller computational cost.

2 Distributional Correspondence Functions
DCFs are a family of real-valued functions that quantify the
degree of correspondence between two features (terms, in our
case) f i and f j by comparing their context distribution vec-
tors f i and f j from any (unlabelled) collection U . A context
distribution vector is a unit-length n-dimensional vector that
models how a feature relates to a set of contexts (documents,
in our case); f ic denotes the value of the vector for term f i

in context c, with f ic = 0 if f i does not appear in context
c. The cases in which f ic > 0 are determined by the weight-
ing function in use (e.g., tfidf ), and might lead to different
interpretations of the DCF, e.g., as a probability function in
an event space (Section 2.1), or as a kernel in a vector space
(Section 2.2).

A DCF is thus a function η : Rn × Rn → R, where
the sign of η(f i, f j) indicates the polarity of the correspon-
dence, i.e., positive values indicate positive correlation and
negative values indicate negative correlation. We force DCFs
to be centered at 0 for null correspondence, i.e., η(f i, f j) = 0
means the correspondence between f i and f j is not different
than the correspondence between any pair of context vectors
which randomly distribute the same number of events as f i
and f j .

2.1 Probability-Based DCF
Probability-based DCFs derive from information theory, and
build upon the joint probability distributions of two features
in the binomial event space.

The first part of Table 1 shows the probability-based DCFs
we investigate. We consider Pointwise Mutual Information
(PMI – the ratio between the joint distribution and the prod-
uct of the marginal distributions), and a simple probabilistic
function (here called Linear) that contrasts the probabilities
of f i conditioned on f j and f

j
, respectively. We also con-

sider Mutual Information (MI – the reduction in entropy of a
distribution due to the observation of another distribution) in
an asymmetric version called AMI , where in order to distin-
guish between positive and negative correspondence we swap
the sign of MI by means of a function ρ if tpr + tnr < 1.

2.2 Kernel-Based DCFs
Kernel-based DCFs are rooted in the kernel functions typi-
cally used, e.g., within Support Vector Machines (SVM). In
this case the values in the context vector can be numeric, thus
indicating the relative importance of a term in a given context
(we use tfidf as the weighting function). We consider nor-
malized context vectors, i.e., after weighting the document-
by-term matrix we normalize the term vectors to unit length.

However (and differently from the probability-based DCFs
we have considered above), not all kernels satisfy the null
correspondence property. In general, a valid DCF ηK can be
defined from a kernel K(·, ·) as:

ηK(u,v) = K(u,v)− E [K(u′,v′)]
u′ ∼ P (U)
v′ ∼ P (V )

(1)

where u′ and v′ are any two random context vectors with the
same prevalences as u and v (random variables represented
by U and V ), respectively.

The second part of Table 1 shows the Kernel-based DCFs
we have considered, based on the cosine, the polynomial and
the radial basis function kernels.

DCF Mathematical form

Pr
ob

.-b
as

ed Linear P (f i|f j)− P (f i|f j)

PMI log2
P (fi,fj)

P (fi)P (fj)

AMI ρ(f i, f j)
∑

x∈{fi,fi}
∑

y∈{fj ,fj} P (x, y) log2
P (x,y)

P (x)P (y)

K
er

ne
l-

ba
se

d

Cosine 〈f i,fj〉
‖f i‖‖fj‖ −

√
pipj

Polynomial (a+ 〈f i, f j〉)b − (a+
√
pipj)

b

RBF exp{−γ‖f i − f j‖2} − exp
{
−4γ

(
1−√pipj

)2}
Table 1: Mathematical forms of DCFs discussed in this work. We
use pk to denote the prevalence of vector fk.

3 Distributional Correspondence Indexing
The working hypothesis of DCI is that words that play sim-
ilar roles in their respective domains might present approxi-
mately invariant correspondences to the pivots. For example,
consider the source domain of book reviews and the target
domain of movie reviews. Consider also the list of pivots
[intriguing, annoying, captivating, . . .] and a DCF η. We
might thus expect to have:

η(book, intriguing) ≈ η(movie, intriguing)

η(book, annoying) ≈ η(movie, annoying)

η(book, captivating) ≈ η(movie, captivating)

etc., since book and movie terms play analogous roles in the
source and target domains. Therefore, by embedding each
term with respect to its DCF values to the pivots, similar
terms across domains might end up being represented by sim-
ilar vectors in a common vector space. The cross-lingual
adaptation is achieved by presenting each pivot by a trans-
lation equivalent in the target language.

3.1 Pivot Selection
[Blitzer et al., 2006; 2007] defined pivots as highly predic-
tive terms which occur frequently in the source and target do-
mains and behave similarly in both domains. A good pivot
should be highly task-dependent, and also present a similar
degree of domain-dependence in the two domains. We thus
look for pivots by selecting the top n terms (where n is a pa-
rameter) ranked by their pivot strength Ψ(f i) defined as:

Ψ(f i) = MIs(f
i)
min{psi , pti}
max{psi , pti}

(2)

whereMIs(f
i) is the mutual information (as previously done

in [Prettenhofer and Stein, 2011]) of the term f i to the label
(to be estimated on the training set Trs), and the rightmost
factor is the cross-consistency, measured as the drift in preva-
lence (pi) of the term f i across the two domains.
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3.2 Term Profiles
Given n pivots and a DCF η, each source and target term
(including the pivot terms) is embedded as an n-dimensional
profile vector

~f = (η(f ,p1), η(f ,p2), . . . , η(f ,pm)) (3)

where f and pi are the context distribution vectors (typically
estimated in unlabelled collections) of the term f being pro-
filed and the ith pivot, respectively.

In order to avoid pivots with high prevalence to generate
high DCF values which could lead to dominant dimensions,
we center each profile dimension on its expected value and
then rescale by the standard deviation, so that the values for
all profile dimensions are approximately normally distributed
in N (0, 1), and then rescale them to unit length.

As we assume pivot terms behave similarly in the two do-
mains, we unify their term profiles by averaging the source
and the target profiles in order to correct the possible mis-
alignment between the source and target views of the pivot.

3.3 Document Indexing
Finally, train and test documents are indexed in the profile
space via a weighted sum of all profile vectors associated to
their terms. That is, document dj is represented as the m-
dimensional vector

~dj =
∑
fi∈dj

wij · ~f ′i (4)

where wij is the weight of term fi in document dj according
to any weighting function (in our experiments we used the
standard cosine-normalized tfidf ), and ~f ′i is the normalized
term profile vector for fi.

4 Experiments
In this section we experimentally compare DCI, equipped
with different DCFs, to other state-of-the-art methods pro-
posed in the literature.

We test these methods on two popular, publicly avail-
able sentiment datasets: Multi-Domain Sentiment Dataset1
(MDS) [Blitzer et al., 2007] and Webis-CLS-102 [Pretten-
hofer and Stein, 2011]. MDS is frequently used for evaluating
cross-domain adaptation approaches and consists of English
product reviews taken from Amazon.com for the four do-
mains Books, DVDs, Electronics, and Kitchen appliances.
The dataset comprises 1000 positive reviews and 1000 neg-
ative reviews for each of the four domains, and a set of un-
labelled documents ranging from 3,586 to 5,945 documents
for each domain. According to the same evaluation proce-
dure followed by the proposers of other methods we com-
pare against, we randomly split each labelled dataset into a
training set of 1600 instances and a test set of 400 instances.
In order to facilitate reproducibility and to allow for a fair
comparison with the results reported in previous literature,
we use the same pre-processed version of the dataset and
the same experimental protocol used in [Blitzer et al., 2007].

1http://www.cs.jhu.edu/ mdredze/datasets/sentiment/
2https://goo.gl/eppCro

The Webis-CLS-10 dataset, frequently used for evaluating
cross-lingual methods, consists of Amazon product reviews
written in four languages (English, German, French, and
Japanese), covering three product domains (Books, DVDs,
and Music). For each language-domain pair there are 2,000
training documents, 2,000 test documents, and from 9,000
to 50,000 unlabelled documents depending on the language-
domain combination. We adhere to the exact experimental
protocol described in [Prettenhofer and Stein, 2011] and used
by many researchers in the field.

As the evaluation measure we use standard accuracy (the
proportion of correctly classified documents over the total
number of outcomes), following the practice common in the
related literature.

For this extended abstract, we have updated the list of
baseline methods by adding new approaches (TCT [Huang
et al., 2017], TrAdaB [Huang et al., 2017], DANN [Ganin
et al., 2016], CL-TS [Zhou et al., 2015], Bi-PV [Xu and
Wan, 2017], BiDRL [Zhou et al., 2016b], WSDNNs, [Zhou et
al., 2016a], CLDFA [Xu and Yang, 2017]) which have been
published in the cross-domain and cross-lingual arena after
our original work [Moreo Fernández et al., 2016], and kept
those which performed best in our original evaluation (SCL-
MI [Blitzer et al., 2007], SFA [Pan et al., 2010], SDA [Glorot
et al., 2011], and SSMC [Xiao and Guo, 2014]). We also
consider an upper bound that trains the classifier on the train-
ing set of the target domain (“Upper”), and a lower bound
that trains the classifier on the source domain and then ap-
plies the trained classifier directly in the target domain, i.e.,
without carrying out any sort of knowledge transfer (“No-
Trans”). For cross-lingual adaptation we also report the ma-
chine translation baseline (“MT”), which first translates all
target documents into the source language (English, in our
experiments) before giving them as input to the classifier; we
use the pre-translated documents provided by [Prettenhofer
and Stein, 2011].

We implemented our method as part of the JaTeCs [Esuli
et al., 2017] framework using SVMs as the learning device.
In all experiments we set the number of pivots to 100. To
emulate the word oracle that translates a source pivot word to
the target language we used the bilingual dictionaries created
by [Prettenhofer and Stein, 2011].

Table 2 and 3 report the results for cross-domain adapta-
tion and cross-lingual adaptation, respectively (bold indicates
the best score for each dataset, while greyed-out cells indi-
cate the DCI variants which outperform all other competi-
tors). We refer the interested reader to our original paper
[Moreo Fernández et al., 2016], where other scenarios (such
as simultaneously tackling cross-domain and cross-lingual)
are explored.

Most variants of DCI perform comparably or better to all
compared methods, even to the new approaches that have
been published after our original paper. In this regard, it is
interesting to note that many configurations of DCI outper-
form on average all the competitors. Particularly, the Cosine
and Polynomial DCFs have shown to stand the test of time,
delivering the best averaged results both in cross-domain and
cross-lingual experiments.
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DVD .772 .847 .758 .814 .818 .804 .796 .829 .808 .811 .806 .817 .829 .815
Books Electronics .708 .869 .759 .725 .757 .806 .749 .804 .810 .822 .793 .822 .826 .821

Kitchen .745 .902 .789 .788 .789 .844 .778 .843 .834 .839 .822 .835 .844 .835
Books .728 .844 .797 .775 .792 .724 .747 .825 .825 .827 .811 .824 .830 .825

DVD Electronics .730 .869 .741 .767 .778 .872 .759 .809 .822 .832 .812 .824 .833 .826
Kitchen .740 .902 .814 .808 .812 .803 .757 .849 .858 .856 .846 .864 .861 .863
Books .707 .844 .754 .757 .759 .768 .691 .774 .766 .763 .753 .764 .776 .765

Electronics DVD .706 .847 .762 .772 .773 .902 .718 .781 .768 .779 .765 .774 .799 .771
Kitchen .840 .902 .859 .868 .863 .777 .837 .881 .864 .864 .851 .868 .874 .867
Books .709 .844 .686 .748 .748 .807 .706 .718 .783 .783 .769 .790 .791 .784

Kitchen DVD .727 .847 .769 .766 .785 .835 .744 .789 .788 .789 .781 .799 .807 .798
Electronics .827 .869 .868 .851 .856 .802 .831 .856 .855 .851 .843 .858 .863 .857

Average .745 .866 .780 .786 .794 .812 .759 .813 .815 .818 .804 .820 .828 .819

Table 2: Cross-domain adaptation on the MDS dataset.

Language
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Books .541 .867 .808 .833 .819 .799 .796 .841 .813 .840 .798 .714 .797 .827 .837 .829
German DVD .556 .835 .800 .809 .823 .819 .786 .841 .824 .831 .826 .819 .800 .822 .833 .788

Music .539 .859 .790 .829 .813 .796 .825 .847 .807 .790 .844 .850 .837 .856 .844 .801
Books .589 .861 .820 .813 .831 .826 .843 .844 .835 .834 .746 .761 .768 .842 .819 .844

French DVD .519 .871 .794 .804 .827 .827 .796 .836 .836 .826 .823 .823 .801 .827 .806 .846
Music .551 .889 .764 .781 .805 .802 .801 .826 .810 .833 .816 .827 .818 .844 .840 .803
Books .484 .812 .692 .770 .738 .735 .718 .732 .745 .774 .779 .731 .711 .758 .754 .782

Japanese DVD .471 .834 .722 .764 .776 .771 .754 .768 .783 .805 .822 .768 .797 .801 .795 .761
Music .535 .842 .714 .773 .775 .768 .755 .788 .775 .765 .826 .816 .807 .839 .832 .826

Average .532 .852 .767 .797 .801 .794 .786 .814 .803 .811 .809 .790 .793 .824 .818 .809

Table 3: Cross-lingual adaptation on the Webis-CLS-10 dataset.

4.1 Embeddings

The intuitions behind DCI bear strong resemblance to those
behind “word embeddings” [Mikolov et al., 2013], as from
deep learning. Although neural models typically require large
quantities of text data and expensive resources in terms of
computation, DCI delivers meaningful representations in a
fraction of the time they require (see [Moreo Fernández et
al., 2016] for a more detailed discussion on efficiency).

Table 4 illustrates the semantic properties captured by our
term profiles; it lists the most similar (via cosine similarity)
target terms to a given source term.

beautifully classical delightful
schöne (beautiful) .635 adagio .767 魅力(attractive) .610

liebevoll (loving) .596 Martenot .746 描き出さ(portrayed) .546
sehnsucht (longing) .533 Charles-Marie .736 風景(scenes) .545

ungewöhnlich (unusual) .510 violoncelle (cello) .727 繊細(delicate) .542
phantastisch (fantastic) .507 soliste (soloist) .720 味わえる(taste) .538

Table 4: Five most similar terms in German, French, Japanese given
three terms (beautifully, classical, delightful) in English for the
Music domain.

5 Conclusions and Future Work
Distributional Correspondence Indexing is an efficient
method for domain adaptation that represents terms in a vec-
torial space based on their distributional correspondence with
respect to a small, fixed set of terms. This representation is
motivated by the distributional hypothesis [Harris, 1954] and
the notion of a “pivot term” [Blitzer et al., 2006]; the method
indexes documents from different domains into a common
vector space based on their semantic correspondence. Unlike
other distributional semantic methods, DCI gives a lighter in-
terpretation to the hypothesis through the distributional cor-
respondence functions, resulting in a computationally cheap
approach to domain adaptation.

Empirical evaluation we have carried out on two popular
sentiment analysis benchmarks shows that our method out-
performs several state-of-the-art approaches in different do-
main adaptation settings, including cross-domain and cross-
lingual sentiment adaptation. DCI has remained unbeaten
since its appearance in 2016.

In future research, we plan to put to test DCI in other do-
mains and settings, including multi-class multi- and single-
label datasets, highly imbalanced classes, and transductive
problems.
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