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Abstract

Modeling hypernymy, such as poodle is-a

dog, is an important generalization aid to

many NLP tasks, such as entailment, coref-

erence, relation extraction, and question an-

swering. Supervised learning from labeled

hypernym sources, such as WordNet, limits

the coverage of these models, which can be

addressed by learning hypernyms from un-

labeled text. Existing unsupervised meth-

ods either do not scale to large vocabularies

or yield unacceptably poor accuracy. This

paper introduces distributional inclusion vec-

tor embedding (DIVE), a simple-to-implement

unsupervised method of hypernym discov-

ery via per-word non-negative vector embed-

dings which preserve the inclusion property

of word contexts in a low-dimensional and

interpretable space. In experimental evalua-

tions more comprehensive than any previous

literature of which we are aware—evaluating

on 11 datasets using multiple existing as well

as newly proposed scoring functions—we find

that our method provides up to double the pre-

cision of previous unsupervised embeddings,

and the highest average performance, using a

much more compact word representation, and

yielding many new state-of-the-art results.

1 Introduction

Numerous applications benefit from compactly

representing context distributions, which assign

meaning to objects under the rubric of distribu-

tional semantics. In natural language process-

ing, distributional semantics has long been used

to assign meanings to words (that is, to lex-

emes in the dictionary, not individual instances

of word tokens). The meaning of a word in

the distributional sense is often taken to be the

set of textual contexts (nearby tokens) in which

that word appears, represented as a large sparse

bag of words (SBOW). Without any supervision,

Word2Vec (Mikolov et al., 2013), among other

approaches based on matrix factorization (Levy

et al., 2015a), successfully compress the SBOW

into a much lower dimensional embedding space,

increasing the scalability and applicability of the

embeddings while preserving (or even improving)

the correlation of geometric embedding similari-

ties with human word similarity judgments.

While embedding models have achieved im-

pressive results, context distributions capture more

semantic information than just word similarity.

The distributional inclusion hypothesis (DIH)

(Weeds and Weir, 2003; Geffet and Dagan, 2005;

Cimiano et al., 2005) posits that the context set of a

word tends to be a subset of the contexts of its hy-

pernyms. For a concrete example, most adjectives

that can be applied to poodle can also be applied

to dog, because dog is a hypernym of poodle (e.g.

both can be obedient). However, the converse is

not necessarily true — a dog can be straight-haired

but a poodle cannot. Therefore, dog tends to have

a broader context set than poodle. Many asymmet-

ric scoring functions comparing SBOW features

based on DIH have been developed for hypernymy

detection (Weeds and Weir, 2003; Geffet and Da-

gan, 2005; Shwartz et al., 2017).

Hypernymy detection plays a key role in

many challenging NLP tasks, such as textual

entailment (Sammons et al., 2011), corefer-

ence (Ponzetto and Strube, 2006), relation extrac-

tion (Demeester et al., 2016) and question answer-

ing (Huang et al., 2008). Leveraging the variety

of contexts and inclusion properties in context dis-

tributions can greatly increase the ability to dis-

cover taxonomic structure among words (Shwartz

et al., 2017). The inability to preserve these fea-

tures limits the semantic representation power and

downstream applicability of some popular unsu-

pervised learning approaches such as Word2Vec.

Several recently proposed methods aim to en-

485



code hypernym relations between words in dense

embeddings, such as Gaussian embedding (Vil-

nis and McCallum, 2015; Athiwaratkun and

Wilson, 2017), Boolean Distributional Seman-

tic Model (Kruszewski et al., 2015), order em-

bedding (Vendrov et al., 2016), H-feature detec-

tor (Roller and Erk, 2016), HyperVec (Nguyen

et al., 2017), dual tensor (Glavaš and Ponzetto,

2017), Poincaré embedding (Nickel and Kiela,

2017), and LEAR (Vulić and Mrkšić, 2017). How-

ever, the methods focus on supervised or semi-

supervised settings where a massive amount of hy-

pernym annotations are available (Vendrov et al.,

2016; Roller and Erk, 2016; Nguyen et al., 2017;

Glavaš and Ponzetto, 2017; Vulić and Mrkšić,

2017), do not learn from raw text (Nickel and

Kiela, 2017) or lack comprehensive experiments

on the hypernym detection task (Vilnis and Mc-

Callum, 2015; Athiwaratkun and Wilson, 2017).

Recent studies (Levy et al., 2015b; Shwartz

et al., 2017) have underscored the difficulty of

generalizing supervised hypernymy annotations to

unseen pairs — classifiers often effectively memo-

rize prototypical hypernyms (‘general’ words) and

ignore relations between words. These findings

motivate us to develop more accurate and scal-

able unsupervised embeddings to detect hyper-

nymy and propose several scoring functions to an-

alyze the embeddings from different perspectives.

1.1 Contributions

• A novel unsupervised low-dimensional embed-

ding method via performing non-negative ma-

trix factorization (NMF) on a weighted PMI ma-

trix, which can be efficiently optimized using

modified skip-grams.

• Theoretical and qualitative analysis illustrate

that the proposed embedding can intuitively

and interpretably preserve inclusion relations

among word contexts.

• Extensive experiments on 11 hypernym detec-

tion datasets demonstrate that the learned em-

beddings dominate previous low-dimensional

unsupervised embedding approaches, achieving

similar or better performance than SBOW, on

both existing and newly proposed asymmetric

scoring functions, while requiring much less

memory and compute.

2 Method

The distributional inclusion hypothesis (DIH) sug-

gests that the context set of a hypernym tends to

contain the context set of its hyponyms. When

representing a word as the counts of contextual

co-occurrences, the count in every dimension of

hypernym y tends to be larger than or equal to the

corresponding count of its hyponym x:

x � y ⇐⇒ ∀c ∈ V, #(x, c) ≤ #(y, c), (1)

where x � y means y is a hypernym of x, V is

the set of vocabulary, and #(x, c) indicates the

number of times that word x and its context word

c co-occur in a small window with size |W | in

the corpus of interest D. Notice that the con-

cept of DIH could be applied to different context

word representations. For example, Geffet and

Dagan (2005) represent each word by the set of its

co-occurred context words while discarding their

counts. In this study, we define the inclusion prop-

erty based on counts of context words in (1) be-

cause the counts are an effective and noise-robust

feature for the hypernymy detection using only the

context distribution of words (Clarke, 2009; Vulić

et al., 2016; Shwartz et al., 2017).

Our goal is to produce lower-dimensional em-

beddings preserving the inclusion property that the

embedding of hypernym y is larger than or equal

to the embedding of its hyponym x in every di-

mension. Formally, the desired property can be

written as

x � y ⇐⇒ x[i] ≤ y[i] , ∀i ∈ {1, ..., L}, (2)

where L is number of dimensions in the embed-

ding space. We add additional non-negativity con-

straints, i.e. x[i] ≥ 0,y[i] ≥ 0, ∀i, in order to in-

crease the interpretability of the embeddings (the

reason will be explained later in this section).

This is a challenging task. In reality, there are

a lot of noise and systematic biases that cause the

violation of DIH in Equation (1) (i.e. #(x, c) >

#(y, c) for some neighboring word c), but the

general trend can be discovered by processing

thousands of neighboring words in SBOW to-

gether (Shwartz et al., 2017). After the compres-

sion, the same trend has to be estimated in a much

smaller embedding space which discards most of

the information in SBOW, so it is not surprising

to see most of the unsupervised hypernymy detec-

tion studies focus on SBOW (Shwartz et al., 2017)
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and the existing unsupervised embedding meth-

ods like Gaussian embedding have degraded ac-

curacy (Vulić et al., 2016).

2.1 Inclusion Preserving Matrix

Factorization

Popular methods of unsupervised word embed-

ding are usually based on matrix factoriza-

tion (Levy et al., 2015a). The approaches first

compute a co-occurrence statistic between the wth

word and the cth context word as the (w, c)th el-

ement of the matrix M [w, c]. Next, the matrix M

is factorized such that M [w, c] ≈ w
T
c, where w

is the low dimension embedding of wth word and

c is the cth context embedding.

The statistic in M [w, c] is usually related to

pointwise mutual information (Levy et al., 2015a):

PMI(w, c) = log( P (w,c)
P (w)·P (c)), where P (w, c) =

#(w,c)
|D| , |D| =

∑
w∈V

∑
c∈V

#(w, c) is number of co-

occurrence word pairs in the corpus, P (w) =
#(w)
|D| , #(w) =

∑
c∈V

#(w, c) is the frequency of

the word w times the window size |W |, and simi-

larly for P (c). For example, M [w, c] could be set

as positive PMI (PPMI), max(PMI(w, c), 0), or

shifted PMI, PMI(w, c) − log(k′), which (Levy

and Goldberg, 2014) demonstrate is connected to

skip-grams with negative sampling (SGNS).

Intuitively, since M [w, c] ≈ w
T
c, larger em-

bedding values of w at every dimension seems

to imply larger w
T
c, larger M [w, c], larger

PMI(w, c), and thus larger co-occurrence count

#(w, c). However, the derivation has two flaws:

(1) c could contain negative values and (2) lower

#(w, c) could still lead to larger PMI(w, c) as

long as the #(w) is small enough.

To preserve DIH, we propose a novel word

embedding method, distributional inclusion vec-

tor embedding (DIVE), which fixes the two

flaws by performing non-negative factorization

(NMF) (Lee and Seung, 2001) on the matrix M ,

where M [w, c] =

log(
P (w, c)

P (w) · P (c)
·
#(w)

kI · Z
) = log(

#(w, c)|V |

#(c)kI
),

(3)

where kI is a constant which shifts PMI value like

SGNS, Z = |D|
|V | is the average word frequency,

and |V | is the vocabulary size. We call this weight-

ing term
#(w)
Z

inclusion shift.

After applying the non-negativity constraint and

inclusion shift, the inclusion property in DIVE

(i.e. Equation (2)) implies that Equation (1) (DIH)

holds if the matrix is reconstructed perfectly. The

derivation is simple: If the embedding of hyper-

nym y is greater than or equal to the embedding

of its hyponym x in every dimension (x[i] ≤
y[i] , ∀i), xT c ≤ yT c since context vector c is non-

negative. Then, M [x, c] ≤ M [y, c] tends to be true

because wT c ≈ M [w, c]. This leads to #(x, c) ≤

#(y, c) because M [w, c] = log(#(w,c)|V |
#(c)kI

) and

only #(w, c) changes with w.

2.2 Optimization

Due to its appealing scalability properties during

training time (Levy et al., 2015a), we optimize our

embedding based on the skip-gram with negative

sampling (SGNS) (Mikolov et al., 2013). The ob-

jective function of SGNS is

lSGNS =
∑

w∈V

∑

c∈V

#(w, c) log σ(wT
c) +

∑

w∈V

k
′
∑

c∈V

#(w, c) E
cN∼PD

[log σ(−w
T
cN)],

(4)

where w ∈ R, c ∈ R, cN ∈ R, σ is the logis-

tic sigmoid function, and k′ is a constant hyper-

parameter indicating the ratio between positive

and negative samples.

Levy and Goldberg (2014) demonstrate SGNS

is equivalent to factorizing a shifted PMI matrix

M ′, where M ′[w, c] = log( P (w,c)
P (w)·P (c) · 1

k′
). By

setting k′ = kI ·Z
#(w) and applying non-negativity

constraints to the embeddings, DIVE can be op-

timized using the similar objective function:

lDIV E =
∑

w∈V

∑

c∈V

#(w, c) log σ(wT
c) +

kI
∑

w∈V

Z

#(w)

∑

c∈V

#(w, c) E
cN∼PD

[log σ(−w
T
cN)],

(5)

where w ≥ 0, c ≥ 0, cN ≥ 0, and kI is a constant

hyper-parameter. PD is the distribution of negative

samples, which we set to be the corpus word fre-

quency distribution (not reducing the probability

of drawing frequent words like SGNS) in this pa-

per. Equation (5) is optimized by ADAM (Kingma

and Ba, 2015), a variant of stochastic gradient

descent (SGD). The non-negativity constraint is

implemented by projection (Polyak, 1969) (i.e.

clipping any embedding which crosses the zero

boundary after an update).

The optimization process provides an alterna-

tive angle to explain how DIVE preserves DIH.
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id Top 1-5 words Top 51-55 words

1 find, specie, species, animal, bird hunt, terrestrial, lion, planet, shark

2 system, blood, vessel, artery, intestine function, red, urinary, urine, tumor

3 head, leg, long, foot, hand shoe, pack, food, short, right

4 may, cell, protein, gene, receptor neuron, eukaryotic, immune, kinase, generally

5 sea, lake, river, area, water terrain, southern, mediterranean, highland, shallow

6 cause, disease, effect, infection, increase stress, problem, natural, earth, hazard

7 female, age, woman, male, household spread, friend, son, city, infant

8 food, fruit, vegetable, meat, potato fresh, flour, butter, leave, beverage

9 element, gas, atom, rock, carbon light, dense, radioactive, composition, deposit

10 number, million, total, population, estimate increase, less, capita, reach, male

11 industry, export, industrial, economy, company centre, chemical, construction, fish, small

Output: Embedding of every word 

(e.g. rodent and mammal) 

Input: Plaintext corpus

mammal

rodent

many specie of rodent and reptile 

live in every corner of the province

whether standard carcinogen 

assay on rodent be successful

geographic region for describe species 

distribution - to cover mammal ,

ammonia solution do not usually cause 

problem for human and other mammal

separate the aquatic mammal from fish

…..

…..

…..

…..

Figure 1: The embedding of the words rodent and mammal trained by the co-occurrence statistics of context words

using DIVE. The index of dimensions is sorted by the embedding values of mammal and values smaller than 0.1

are neglected. The top 5 words (sorted by its embedding value of the dimension) tend to be more general or more

representative on the topic than the top 51-105 words.

The gradients for the word embedding w is

dlDIV E

dw
=

∑

c∈V

#(w, c)(1− σ(wT
c))c −

kI
∑

cN∈V

#(cN )

|V |
σ(wT

cN)cN.

(6)

Assume hyponym x and hypernym y satisfy DIH

in Equation (1) and the embeddings x and y are

the same at some point during the gradient as-

cent. At this point, the gradients coming from

negative sampling (the second term) decrease the

same amount of embedding values for both x and

y. However, the embedding of hypernym y would

get higher or equal positive gradients from the first

term than x in every dimension because #(x, c) ≤
#(y, c). This means Equation (1) tends to imply

Equation (2) because the hypernym has larger gra-

dients everywhere in the embedding space.

Combining the analysis from the matrix fac-

torization viewpoint, DIH in Equation (1) is ap-

proximately equivalent to the inclusion property in

DIVE (i.e. Equation (2)).

2.3 PMI Filtering

For a frequent target word, there must be many

neighboring words that incidentally appear near

the target word without being semantically mean-

ingful, especially when a large context window

size is used. The unrelated context words cause

noise in both the word vector and the context vec-

tor of DIVE. We address this issue by filtering

out context words c for each target word w when

the PMI of the co-occurring words is too small

(i.e. log( P (w,c)
P (w)·P (c)) < log(kf )). That is, we set

#(w, c) = 0 in the objective function. This pre-

processing step is similar to computing PPMI in

SBOW (Bullinaria and Levy, 2007), where low

PMI co-occurrences are removed from SBOW.

2.4 Interpretability

After applying the non-negativity constraint, we

observe that each latent factor in the embedding is

interpretable as previous findings suggest (Pauca

et al., 2004; Murphy et al., 2012) (i.e. each dimen-

sion roughly corresponds to a topic). Furthermore,

DIH suggests that a general word appears in more

diverse contexts/topics. By preserving DIH using

inclusion shift, the embedding of a general word

(i.e. hypernym of many other words) tends to have

larger values in these dimensions (topics). This

gives rise to a natural and intuitive interpretation of

our word embeddings: the word embeddings can

be seen as unnormalized probability distributions

over topics. In Figure 1, we visualize the unnor-

malized topical distribution of two words, rodent

and mammal, as an example. Since rodent is a kind

of mammal, the embedding (i.e. unnormalized top-

ical distribution) of mammal includes the embed-

ding of rodent when DIH holds. More examples

are illustrated in our supplementary materials.

3 Unsupervised Embedding Comparison

In this section, we compare DIVE with other unsu-

pervised hypernym detection methods. In this pa-

per, unsupervised approaches refer to the methods

that only train on plaintext corpus without using

any hypernymy or lexicon annotation.
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Dataset BLESS EVALution LenciBenotto Weeds Medical LEDS

Random 5.3 26.6 41.2 51.4 8.5 50.5

Word2Vec + C 9.2 25.4 40.8 51.6 11.2 71.8

GE + C 10.5 26.7 43.3 52.0 14.9 69.7

GE + KL 7.6 29.6 45.1 51.3 15.7 64.6 (803)

DIVE + C·∆S 16.3 33.0 50.4 65.5 19.2 83.5

Dataset TM14 Kotlerman 2010 HypeNet WordNet Avg (10 datasets) HyperLex

Random 52.0 30.8 24.5 55.2 23.2 0

Word2Vec + C 52.1 39.5 20.7 63.0 25.3 16.3

GE + C 53.9 36.0 21.6 58.2 26.1 16.4

GE + KL 52.0 39.4 23.7 54.4 25.9 9.6 (20.63)

DIVE + C·∆S 57.2 36.6 32.0 60.9 32.7 32.8

Table 1: Comparison with other unsupervised embedding methods. The scores are AP@all (%) for the first 10

datasets and Spearman ρ (%) for HyperLex. Avg (10 datasets) shows the micro-average AP of all datasets except

HyperLex. Word2Vec+C scores word pairs using cosine similarity on skip-grams. GE+C and GE+KL compute

cosine similarity and negative KL divergence on Gaussian embedding, respectively.

3.1 Experiment Setup

The embeddings are tested on 11 datasets.

The first 4 datasets come from the recent re-

view of Shwartz et al. (2017)1: BLESS (Ba-

roni and Lenci, 2011), EVALution (Santus

et al., 2015), Lenci/Benotto (Benotto, 2015), and

Weeds (Weeds et al., 2014). The next 4 datasets

are downloaded from the code repository of the

H-feature detector (Roller and Erk, 2016)2: Med-

ical (i.e., Levy 2014) (Levy et al., 2014), LEDS

(also referred to as ENTAILMENT or Baroni

2012) (Baroni et al., 2012), TM14 (i.e., Tur-

ney 2014) (Turney and Mohammad, 2015), and

Kotlerman 2010 (Kotlerman et al., 2010). In ad-

dition, the performance on the test set of Hy-

peNet (Shwartz et al., 2016) (using the random

train/test split), the test set of WordNet (Vendrov

et al., 2016), and all pairs in HyperLex (Vulić

et al., 2016) are also evaluated.

The F1 and accuracy measurements are some-

times very similar even though the quality of pre-

diction varies, so we adopted average precision,

AP@all (Zhu, 2004) (equivalent to the area under

the precision-recall curve when the constant inter-

polation is used), as the main evaluation metric.

The HyperLex dataset has a continuous score on

each candidate word pair, so we adopt Spearman

rank coefficient ρ (Fieller et al., 1957) as suggested

by the review study of Vulić et al. (2016). Any

OOV (out-of-vocabulary) word encountered in the

testing data is pushed to the bottom of the predic-

tion list (effectively assuming the word pair does

not have hypernym relation).

1https://github.com/vered1986/

UnsupervisedHypernymy
2https://github.com/stephenroller/

emnlp2016/

We trained all methods on the first 51.2 mil-

lion tokens of WaCkypedia corpus (Baroni et al.,

2009) because DIH holds more often in this subset

(i.e. SBOW works better) compared with that in

the whole WaCkypedia corpus. The window size

|W | of DIVE and Gaussian embedding are set as

20 (left 10 words and right 10 words). The num-

ber of embedding dimensions in DIVE L is set to

be 100. The other hyper-parameters of DIVE and

Gaussian embedding are determined by the train-

ing set of HypeNet. Other experimental details are

described in our supplementary materials.

3.2 Results

If a pair of words has hypernym relation, the words

tend to be similar (sharing some context words)

and the hypernym should be more general than

the hyponym. Section 2.4 has shown that the em-

bedding could be viewed as an unnormalized topic

distribution of its context, so the embedding of hy-

pernym should be similar to the embedding of its

hyponym but having larger magnitude. As in Hy-

perVec (Nguyen et al., 2017), we score the hyper-

nym candidates by multiplying two factors corre-

sponding to these properties. The C·∆S (i.e. the

cosine similarity multiply the difference of sum-

mation) scoring function is defined as

C ·∆S(wq → wp) =
wT

q wp

||wq||2 · ||wp||2
· (‖wp‖1 − ‖wq‖1),

(7)

where wp is the embedding of hypernym and wq

is the embedding of hyponym.

As far as we know, Gaussian embedding

(GE) (Vilnis and McCallum, 2015) is the state-

of-the-art unsupervised embedding method which

can capture the asymmetric relations between a

hypernym and its hyponyms. Gaussian embedding
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encodes the context distribution of each word as a

multivariate Gaussian distribution, where the em-

beddings of hypernyms tend to have higher vari-

ance and overlap with the embedding of their hy-

ponyms. In Table 1, we compare DIVE with

Gaussian embedding3 using the code implemented

by Athiwaratkun and Wilson (2017)4 and with

word cosine similarity using skip-grams. The per-

formances of random scores are also presented for

reference. As we can see, DIVE is usually signifi-

cantly better than other unsupervised embedding.

4 SBOW Comparison

Unlike Word2Vec, which only tries to preserve the

similarity signal, the goals of DIVE cover preserv-

ing the capability of measuring not only the simi-

larity but also whether one context distribution in-

cludes the other (inclusion signal) or being more

general than the other (generality signal).

In this experiment, we perform a comprehen-

sive comparison between SBOW and DIVE using

multiple scoring functions to detect the hypernym

relation between words based on different types of

signal. The window size |W | of SBOW is also

set as 20, and experiment setups are the same as

that described in Section 3.1. Notice that the com-

parison is inherently unfair because most of the

information would be lost during the aggressive

compression process of DIVE, and we would like

to evaluate how well DIVE can preserve signals

of interest using the number of dimensions which

is several orders of magnitude less than that of

SBOW.

4.1 Unsupervised Scoring Functions

After trying many existing and newly proposed

functions which score a pair of words to detect hy-

pernym relation between them, we find that good

scoring functions for SBOW are also good scor-

ing functions for DIVE. Thus, in addition to C·∆S

used in Section 3.2, we also present 4 other best

performing or representative scoring functions in

the experiment (see our supplementary materials

for more details):

3 Note that higher AP is reported for some models in
previous literature: 80 (Vilnis and McCallum, 2015) in
LEDS, 74.2 (Athiwaratkun and Wilson, 2017) in LEDS, and
20.6 (Vulić et al., 2016) in HyperLex. The difference could
be caused by different train/test setup (e.g. How the hyper-
parameters are tuned, different training corpus, etc.). How-
ever, DIVE beats even these results.

4https://github.com/benathi/word2gm

• Inclusion: CDE (Clarke, 2009) computes the

summation of element-wise minimum over

the magnitude of hyponym embedding (i.e.
||min(wp,wq)||1

||wq ||1
). CDE measures the degree of vi-

olation of equation (1). Equation (1) holds if

and only if CDE is 1. Due to noise in SBOW,

CDE is rarely exactly 1, but hypernym pairs

usually have higher CDE. Despite its effective-

ness, the good performance could mostly come

from the magnitude of embeddings/features in-

stead of inclusion properties among context dis-

tributions. To measure the inclusion properties

between context distributions dp and dq (wp and

wq after normalization, respectively), we use

negative asymmetric L1 distance (−AL1)5 as

one of our scoring function, where

AL1 =min
a

∑

c

w0 ·max(adq[c]− dp[c], 0)+

max(dp[c]− adq[c], 0),
(8)

and w0 is a constant hyper-parameter.

• Generality: When the inclusion property in (2)

holds, ||y||1 =
∑

i y[i] ≥
∑

i x[i] = ||x||1.

Thus, we use summation difference (||wp||1 −
||wq||1) as our score to measure generality sig-

nal (∆S).

• Similarity plus generality: Computing cosine

similarity on skip-grams (i.e. Word2Vec + C in

Table 1) is a popular way to measure the similar-

ity of two words, so we multiply the Word2Vec

similarity with summation difference of DIVE

or SBOW (W·∆S) as an alternative of C·∆S.

4.2 Baselines

• SBOW Freq: A word is represented by the fre-

quency of its neighboring words. Applying PMI

filter (set context feature to be 0 if its value is

lower than log(kf )) to SBOW Freq only makes

its performances closer to (but still much worse

than) SBOW PPMI, so we omit the baseline.

• SBOW PPMI: SBOW which uses PPMI of

its neighboring words as the features (Bulli-

naria and Levy, 2007). Applying PMI filter to

SBOW PPMI usually makes the performances

worse, especially when kf is large. Similarly,

a constant log(k′) shifting to SBOW PPMI (i.e.

max(PMI − log(k′), 0)) is not helpful, so we

set both kf and k′ to be 1.

5The meaning and efficient implementation of AL1 are
illustrated in our supplementary materials
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AP@all (%)
BLESS EVALution Lenci/Benotto

CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S

SBOW

Freq 6.3 7.3 5.6 11.0 5.9 35.3 32.6 36.2 33.0 36.3 51.8 47.6 51.0 51.8 51.1

PPMI 13.6 5.1 5.6 17.2 15.3 30.4 27.7 34.1 31.9 34.3 47.2 39.7 50.8 51.1 52.0

PPMI w/ IS 6.2 5.0 5.5 12.4 5.8 36.0 27.5 36.3 32.9 36.4 52.0 43.1 50.9 51.9 50.7

All wiki 12.1 5.2 6.9 12.5 13.4 28.5 27.1 30.3 29.9 31.0 47.1 39.9 48.5 48.7 51.1

DIVE

Full 9.3 7.6 6.0 18.6 16.3 30.0 27.5 34.9 32.3 33.0 46.7 43.2 51.3 51.5 50.4

w/o PMI 7.8 6.9 5.6 16.7 7.1 32.8 32.2 35.7 32.5 35.4 47.6 44.9 50.9 51.6 49.7

w/o IS 9.0 6.2 7.3 6.2 7.3 24.3 25.0 22.9 23.5 23.9 38.8 38.1 38.2 38.2 38.4

Kmean (Freq NMF) 6.5 7.3 5.6 10.9 5.8 33.7 27.2 36.2 33.0 36.2 49.6 42.5 51.0 51.8 51.2

AP@all (%)
Weeds Micro Average (4 datasets) Medical

CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S

SBOW

Freq 69.5 58.0 68.8 68.2 68.4 23.1 21.8 22.9 25.0 23.0 19.4 19.2 14.1 18.4 15.3

PPMI 61.0 50.3 70.3 69.2 69.3 24.7 17.9 22.3 28.1 27.8 23.4 8.7 13.2 20.1 24.4

PPMI w/ IS 67.6 52.2 69.4 68.7 67.7 23.2 18.2 22.9 25.8 22.9 22.8 10.6 13.7 18.6 17.0

All wiki 61.3 48.6 70.0 68.5 70.4 23.4 17.7 21.7 24.6 25.8 22.3 8.9 12.2 17.6 21.1

DIVE

Full 59.2 55.0 69.7 68.6 65.5 22.1 19.8 22.8 28.9 27.6 11.7 9.3 13.7 21.4 19.2

w/o PMI 60.4 56.4 69.3 68.6 64.8 22.2 21.0 22.7 28.0 23.1 10.7 8.4 13.3 19.8 16.2

w/o IS 49.2 47.3 45.1 45.1 44.9 18.9 17.3 17.2 16.8 17.5 10.9 9.8 7.4 7.6 7.7

Kmean (Freq NMF) 69.4 51.1 68.8 68.2 68.9 22.5 19.3 22.9 24.9 23.0 12.6 10.9 14.0 18.1 14.6

AP@all (%)
LEDS TM14 Kotlerman 2010

CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S

SBOW

Freq 82.7 70.4 70.7 83.3 73.3 55.6 53.2 54.9 55.7 55.0 35.9 40.5 34.5 37.0 35.4

PPMI 84.4 50.2 72.2 86.5 84.5 56.2 52.3 54.4 57.0 57.6 39.1 30.9 33.0 37.0 36.3

PPMI w/ IS 81.6 54.5 71.0 84.7 73.1 57.1 51.5 55.1 56.2 55.4 37.4 31.0 34.4 37.8 35.9

All wiki 83.1 49.7 67.9 82.9 81.4 54.7 50.5 52.6 55.1 54.9 38.5 31.2 32.2 35.4 35.3

DIVE

Full 83.3 74.7 72.7 86.4 83.5 55.3 52.6 55.2 57.3 57.2 35.3 31.6 33.6 37.4 36.6

w/o PMI 79.3 74.8 72.0 85.5 78.7 54.7 53.9 54.9 56.5 55.4 35.4 38.9 33.8 37.8 36.7

w/o IS 64.6 55.4 43.2 44.3 46.1 51.9 51.2 50.4 52.0 51.8 32.9 33.4 28.1 30.2 29.7

Kmean (Freq NMF) 80.3 64.5 70.7 83.0 73.0 54.8 49.0 54.8 55.6 54.8 32.1 37.0 34.5 36.9 34.8

AP@all (%)
HypeNet WordNet Micro Average (10 datasets)

CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S

SBOW

Freq 37.5 28.3 46.9 35.9 43.4 56.6 55.2 55.5 56.2 55.6 31.1 28.2 31.5 31.6 31.2

PPMI 23.8 24.0 47.0 32.5 33.1 57.7 53.9 55.6 56.8 57.2 30.1 23.0 31.1 32.9 33.5

PPMI w/ IS 38.5 26.7 47.2 35.5 37.6 57.0 54.1 55.7 56.6 55.7 31.8 24.1 31.5 32.1 30.3

All wiki 23.0 24.5 40.5 30.5 29.7 57.4 53.1 56.0 56.4 57.3 29.0 23.1 29.2 30.2 31.1

DIVE

Full 25.3 24.2 49.3 33.6 32.0 60.2 58.9 58.4 61.1 60.9 27.6 25.3 32.1 34.1 32.7

w/o PMI 31.3 27.0 46.9 33.8 34.0 59.2 60.1 58.2 61.1 59.1 28.5 26.7 31.5 33.4 30.1

w/o IS 20.1 21.7 20.3 21.8 22.0 61.0 56.3 51.3 55.7 54.7 22.3 20.7 19.1 19.6 19.9

Kmean (Freq NMF) 33.7 22.0 46.0 35.6 45.2 58.4 60.2 57.7 60.1 57.9 29.1 24.7 31.5 31.8 31.5

Table 2: AP@all (%) of 10 datasets. The box at lower right corner compares the micro average AP across all

10 datasets. Numbers in different rows come from different feature or embedding spaces. Numbers in different

columns come from different datasets and unsupervised scoring functions. We also present the micro average AP

across the first 4 datasets (BLESS, EVALution, Lenci/Benotto and Weeds), which are used as a benchmark for

unsupervised hypernym detection (Shwartz et al., 2017). IS refers to inclusion shift on the shifted PMI matrix.

Spearman ρ (%)
HyperLex

CDE AL1 ∆S W·∆S C·∆S

SBOW

Freq 31.7 19.6 27.6 29.6 27.3

PPMI 28.1 -2.3 31.8 34.3 34.5

PPMI w/ IS 32.4 2.1 28.5 31.0 27.4

All wiki 25.3 -2.2 28.0 30.5 31.0

DIVE

Full 28.9 18.7 31.2 33.3 32.8

w/o PMI 29.2 22.2 29.5 31.9 29.2

w/o IS 11.5 -0.9 -6.2 -10.0 -11.6

Kmean (Freq NMF) 30.6 3.3 27.5 29.5 27.6

Table 3: Spearman ρ (%) in HyperLex.

SBOW Freq SBOW PPMI DIVE

5799 3808 20

Table 4: The average number of non-zero dimensions

across all testing words in 10 datasets.

• SBOW PPMI w/ IS (with additional inclu-

sion shift): The matrix reconstructed by DIVE

when kI = 1. Specifically, w[c] =

max(log( P (w,c)

P (w)∗P (c)∗ Z
#(w)

), 0).

• SBOW all wiki: SBOW using PPMI features

trained on the whole WaCkypedia.

• DIVE without the PMI filter (DIVE w/o PMI)

• NMF on shifted PMI: Non-negative matrix fac-

torization (NMF) on the shifted PMI without

inclusion shift for DIVE (DIVE w/o IS). This

is the same as applying the non-negative con-

straint on the skip-gram model.
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• K-means (Freq NMF): The method first uses

Mini-batch k-means (Sculley, 2010) to clus-

ter words in skip-gram embedding space into

100 topics, and hashes each frequency count in

SBOW into the corresponding topic. If running

k-means on skip-grams is viewed as an approx-

imation of clustering the SBOW context vec-

tors, the method can be viewed as a kind of

NMF (Ding et al., 2005).

DIVE performs non-negative matrix factoriza-

tion on PMI matrix after applying inclusion shift

and PMI filtering. To demonstrate the effective-

ness of each step, we show the performances of

DIVE after removing PMI filtering (DIVE w/o

PMI), removing inclusion shift (DIVE w/o IS),

and removing matrix factorization (SBOW PPMI

w/ IS, SBOW PPMI, and SBOW all wiki). The

methods based on frequency matrix are also tested

(SBOW Freq and Freq NMF).

4.3 Results and Discussions

In Table 2, we first confirm the finding of the pre-

vious review study of Shwartz et al. (2017): there

is no single hypernymy scoring function which al-

ways outperforms others. One of the main reasons

is that different datasets collect negative samples

differently. For example, if negative samples come

from random word pairs (e.g. WordNet dataset),

a symmetric similarity measure is a good scor-

ing function. On the other hand, negative sam-

ples come from related or similar words in Hy-

peNet, EVALution, Lenci/Benotto, and Weeds, so

only estimating generality difference leads to the

best (or close to the best) performance. The neg-

ative samples in many datasets are composed of

both random samples and similar words (such as

BLESS), so the combination of similarity and gen-

erality difference yields the most stable results.

DIVE performs similar or better on most of the

scoring functions compared with SBOW consis-

tently across all datasets in Table 2 and Table 3,

while using many fewer dimensions (see Table 4).

This leads to 2-3 order of magnitude savings on

both memory consumption and testing time. Fur-

thermore, the low dimensional embedding makes

the computational complexity independent of the

vocabulary size, which drastically boosts the scal-

ability of unsupervised hypernym detection es-

pecially with the help of GPU. It is surprising

that we can achieve such aggressive compression

while preserving the similarity, generality, and in-

clusion signal in various datasets with different

types of negative samples. Its results on C·∆S and

W·∆S outperform SBOW Freq. Meanwhile, its

results on AL1 outperform SBOW PPMI. The fact

that W·∆S or C·∆S usually outperform generality

functions suggests that only memorizing general

words is not sufficient. The best average perfor-

mance on 4 and 10 datasets are both produced by

W·∆S on DIVE.

SBOW PPMI improves the W·∆S and C·∆S

from SBOW Freq but sacrifices AP on the inclu-

sion functions. It generally hurts performance to

directly include inclusion shift in PPMI (PPMI w/

IS) or compute SBOW PPMI on the whole WaCk-

ypedia (all wiki) instead of the first 51.2 million

tokens. The similar trend can also be seen in Ta-

ble 3. Note that AL1 completely fails in the Hy-

perLex dataset using SBOW PPMI, which sug-

gests that PPMI might not necessarily preserve the

distributional inclusion property, even though it

can have good performance on scoring functions

combining similarity and generality signals.

Removing the PMI filter from DIVE slightly

drops the overall precision while removing inclu-

sion shift on shifted PMI (w/o IS) leads to poor

performances. K-means (Freq NMF) produces

similar AP compared with SBOW Freq but has

worse AL1 scores. Its best AP scores on differ-

ent datasets are also significantly worse than the

best AP of DIVE. This means that only making

Word2Vec (skip-grams) non-negative or naively

accumulating topic distribution in contexts cannot

lead to satisfactory embeddings.

5 Related Work

Most previous unsupervised approaches focus on

designing better hypernymy scoring functions for

sparse bag of word (SBOW) features. They are

well summarized in the recent study (Shwartz

et al., 2017). Shwartz et al. (2017) also evaluate

the influence of different contexts, such as chang-

ing the window size of contexts or incorporating

dependency parsing information, but neglect scal-

ability issues inherent to SBOW methods.

A notable exception is the Gaussian embedding

model (Vilnis and McCallum, 2015), which repre-

sents each word as a Gaussian distribution. How-

ever, since a Gaussian distribution is normalized, it

is difficult to retain frequency information during

the embedding process, and experiments on Hy-

perLex (Vulić et al., 2016) demonstrate that a sim-
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ple baseline only relying on word frequency can

achieve good results. Follow-up work models con-

texts by a mixture of Gaussians (Athiwaratkun and

Wilson, 2017) relaxing the unimodality assump-

tion but achieves little improvement on hypernym

detection tasks.

Kiela et al. (2015) show that images retrieved

by a search engine can be a useful source of in-

formation to determine the generality of lexicons,

but the resources (e.g. pre-trained image classifier

for the words of interest) might not be available in

many domains.

Order embedding (Vendrov et al., 2016) is a

supervised approach to encode many annotated

hypernym pairs (e.g. all of the whole Word-

Net (Miller, 1995)) into a compact embedding

space, where the embedding of a hypernym should

be smaller than the embedding of its hyponym

in every dimension. Our method learns embed-

ding from raw text, where a hypernym embed-

ding should be larger than the embedding of its

hyponym in every dimension. Thus, DIVE can be

viewed as an unsupervised and reversed form of

order embedding.

Non-negative matrix factorization (NMF) has

a long history in NLP, for example in the con-

struction of topic models (Pauca et al., 2004).

Non-negative sparse embedding (NNSE) (Murphy

et al., 2012) and Faruqui et al. (2015) indicate that

non-negativity can make embeddings more inter-

pretable and improve word similarity evaluations.

The sparse NMF is also shown to be effective in

cross-lingual lexical entailment tasks but does not

necessarily improve monolingual hypernymy de-

tection (Vyas and Carpuat, 2016). In our study, we

show that performing NMF on PMI matrix with

inclusion shift can preserve DIH in SBOW, and

the comprehensive experimental analysis demon-

strates its state-of-the-art performances on unsu-

pervised hypernymy detection.

6 Conclusions

Although large SBOW vectors consistently show

the best all-around performance in unsupervised

hypernym detection, it is challenging to compress

them into a compact representation which pre-

serves inclusion, generality, and similarity signals

for this task. Our experiments suggest that the

existing approaches and simple baselines such as

Gaussian embedding, accumulating K-mean clus-

ters, and non-negative skip-grams do not lead to

satisfactory performance.

To achieve this goal, we propose an inter-

pretable and scalable embedding method called

distributional inclusion vector embedding (DIVE)

by performing non-negative matrix factorization

(NMF) on a weighted PMI matrix. We demon-

strate that scoring functions which measure in-

clusion and generality properties in SBOW can

also be applied to DIVE to detect hypernymy, and

DIVE performs the best on average, slightly better

than SBOW while using many fewer dimensions.

Our experiments also indicate that unsupervised

scoring functions which combine similarity and

generality measurements work the best in general,

but no one scoring function dominates across all

datasets. A combination of unsupervised DIVE

with the proposed scoring functions produces new

state-of-the-art performances on many datasets in

the unsupervised regime.

7 Acknowledgement

This work was supported in part by the Center

for Data Science and the Center for Intelligent

Information Retrieval, in part by DARPA under

agreement number FA8750-13-2-0020, in part by

Defense Advanced Research Agency (DARPA)

contract number HR0011-15-2-0036, in part by

the National Science Foundation (NSF) grant

numbers DMR-1534431 and IIS-1514053 and in

part by the Chan Zuckerberg Initiative under the

project Scientific Knowledge Base Construction.

The U.S. Government is authorized to reproduce

and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon.

The views and conclusions contained herein are

those of the authors and should not be interpreted

as necessarily representing the official policies

or endorsements, either expressed or implied, of

DARPA, or the U.S. Government, or the other

sponsors.

References

Ben Athiwaratkun and Andrew Gordon Wilson. 2017.
Multimodal word distributions. In ACL.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,
and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In EACL.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The WaCky wide web:
a collection of very large linguistically processed

493



web-crawled corpora. Language resources and
evaluation 43(3):209–226.

Marco Baroni and Alessandro Lenci. 2011. How we
BLESSed distributional semantic evaluation. In
Workshop on GEometrical Models of Natural Lan-
guage Semantics (GEMS).

Giulia Benotto. 2015. Distributional models for
semantic relations: A study on hyponymy and
antonymy. PhD Thesis, University of Pisa .

John A Bullinaria and Joseph P Levy. 2007. Extracting
semantic representations from word co-occurrence
statistics: A computational study. Behavior re-
search methods 39(3):510–526.

Philipp Cimiano, Andreas Hotho, and Steffen Staab.
2005. Learning concept hierarchies from text cor-
pora using formal concept analysis. J. Artif. Intell.
Res.(JAIR) 24(1):305–339.

Daoud Clarke. 2009. Context-theoretic semantics for
natural language: an overview. In workshop on
geometrical models of natural language semantics.
pages 112–119.

Thomas Demeester, Tim Rocktäschel, and Sebastian
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