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Abstract

The goal of this study was to determine if typically developing children could form grammatical 

categories from distributional information alone. Twenty-seven children aged six to nine listened 

to an artificial grammar which contained strategic gaps in its distribution. At test, we compared 

how children rated novel sentences that fit the grammar to sentences that were ungrammatical. 

Sentences could be distinguished only through the formation of categories of words with shared 

distributional properties. Children’s ratings revealed that they could discriminate grammatical and 

ungrammatical sentences. These data lend support to the hypothesis that distributional learning is a 

potential mechanism for learning grammatical categories in a first language.

Introduction

School-age children may not know exactly what a verb is, but their ability to use verbs in 

novel contexts demonstrates that they have learned the rules by which verbs operate. An 

important question in language acquisition is how children learn the grammatical category of 

a word. In languages with consistent word order, the lexical context in which a word appears 

can be an important cue, especially in combination with other cues including semantics and 

phonology (Farmer, Christensen, & Monaghan, 2006; Lany & Saffran, 2011; Monaghan, 

Christiansen, & Chater, 2007). Here, we aim to determine whether children can learn about 

grammatical category membership solely from distributional regularities in an artificial 

language.

Distributional information is distinct from surface-level adjacent and non-adjacent 

dependencies because it involves tracking these sequential statistics across time and 
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exemplars. There are limitations to the usefulness of sequence-based types of information 

for category learning. Despite positive findings from corpus analyses and models using 

adjacent dependencies to categorize content words (Mintz, Newport, & Bever, 2002; 

Redington, Chater, & Finch, 1998; Thorpe & Fernald, 2006), adjacent dependencies alone 

are likely not as helpful for learning functional grammatical categories such as prepositions 

and conjunctions, which might precede or follow any number of words or word types. Non-

adjacent dependencies, captured as frequent frames like “I __ it”, have been shown to 

facilitate word learning in 30-month-olds (Childers & Tomasello, 2001) and reliably contain 

words of the same grammatical category (Mintz, 2003). Infants as young as 18 months can 

track such non-adjacent dependencies, with higher variability of the intervening words 

resulting in better learning (Gómez, 2002). However, frequent frames like “I __ it”, while 

highly accurate in predicting the category of the intervening word, account for a very small 

percentage of what children hear (St Clair, Monaghan, & Christiansen, 2010). An 

experiment which shows that distributional information alone can cue child learners to 

category membership is an essential step in determining its role in language development.

We wanted to study distributional learning in children because they are faced with the task 

of discovering grammatical categories. It cannot be assumed that children will perform like 

adults, given that children have different cognitive and meta-cognitive skills and less 

experience with language. If children cannot do the task, it limits the conclusions we can 

draw from adult studies. Furthermore, if one takes seriously the idea that language is formed 

from exposure to input, school-age children have much less cumulative language exposure 

than adults do and thus much less experience and skill at extracting categories and 

subcategories from spoken language. Knowledge of argument structure is an area of 

language arguably still developing into adolescence (Ambridge, Pine, Rowland, & Chang, 

2012) and potentially impaired in children with language learning impairments (Ebbels, 

2005).

It was once believed that people could not use distributional cues alone to discover 

grammatical categories. In studies by Smith (1966, 1969), adults could use the fact that an 

item occurred first or last in a sequence to determine categories in an artificial language, but 

were unable to utilize distributional cues to restrict their generalizations to exclude 

ungrammatical co-occurrence violations (an example in real language of an ungrammatical 

co-occurrence is “he poured the jar with water” – a verb like “fill” is grammatical, but 

“pour” is not). In later studies, adults were successful only when morphological markers 

denoting category membership were present (Frigo & McDonald, 1998), as was the case 

with infants in a Russian gender paradigm (Gerken, Wilson, & Lewis, 2005). Thus, it 

seemed that only very salient cues like absolute position or a combination of cues would be 

sufficient for grammatical category learning. Results from modeling and novel word 

learning studies supported this hypothesis. A model by Monaghan, Chater, and Christensen 

(2005) showed that phonological and distributional cues used in combination resulted in the 

most accurate category assignment for 5,000 frequent nouns and verbs in English (between 

65–80%, depending on frequency, with about equal accuracy for nouns and verbs), while 

either type of cue alone produced much poorer discrimination (between 50–85% for 

distributional cues alone, with better categorization of nouns than verbs; and between 60–

65% for phonological cues alone, with better categorization of verbs than nouns). In a series 
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of behavioral studies, children and adults used novel verbs in new contexts based on both the 

distributional and semantic properties of other verbs they heard in those contexts (Ambridge 

& Lieven, 2011; Ambridge, Pine, & Rowland, 2011, 2012).

In an important next step for determining the role of distributional information in language 

acquisition, Reeder, Newport, and Aslin (2013) showed that adults could use distributional 

information in the absence of other cues, including position effects, to construct 

grammatical-like categories in an artificial grammar learning task. In a series of experiments 

examining how differing degrees of distributional overlap influenced learning, they 

demonstrated that adults generalized categories without multiple cues to category 

membership, and that they restricted their generalizations based on the distributional patterns 

and amount of exposure. In these experiments, grammatical test items consisted of three-

word AXB sequences heard during training, novel AXB sequences which had not appeared 

together in a trigram in training, and ungrammatical sequences containing a component 

bigram such as XA or BX that violated the linear order of items heard in training. In 

Experiment 3, the training contained strategic gaps, such that some test items contained 

grammatically possible bigrams not heard during training. Because of the shared contexts in 

the distribution of the words in the grammar, participants could form grammatical categories 

to determine that novel grammatical sentences were possible while the ungrammatical were 

not. Figure 1 shows how combinations heard during training (left) could lead to the 

induction of a category, which would lead to the acceptance of a novel combination (right). 

That participants rated novel grammatical combinations higher than ungrammatical 

combinations showed that adults can form rudimentary grammatical categories based on 

distributional information alone. Because adults rated novel items lower in Experiment 3 

than in experiments without distributional gaps, the authors concluded that, while the adults 

formed categories, they also must have found the gaps meaningful. Thus the differences in 

distributional information in Experiment 3 led to restricted generalizations, which shows the 

importance of the shape of distributional information in the formation of categories. Further, 

because during training participants heard AXB combinations as part of longer strings that 

optionally contained other categories of words at the beginning and end, categories could not 

have been determined through position effects, as in Smith (1966, 1969). The study did not 

include ungrammatical items that contained co-occurrence violations only, and so the ability 

to use co-occurrence information to form and restrict grammatical categories has remained 

untested. However, that participants could use distributional information alone to determine 

category membership suggests that this is a strong mechanism for learning language.

As Reeder et al. (2013, p. 52) state in their discussion, “Linguistic input to young language 

learners likely involves many words with partially overlapping contexts (as in Experiment 

3)”. Experiment 3 provides an ideal task for an initial foray into assessing distributional 

learning ability in children because of the realistic nature of the artificial language: in real 

language, children also must infer and restrict categories from gaps in the input, never being 

exposed to the entire corpus. Manipulating the input over several experiments is one way to 

learn how people form and limit generalizations. It is also possible to compare ratings for 

different types of items within the same experiment. In the present study, we employ an 

artificial grammar similar to that in Experiment 3 of Reeder et al., modified for use with 

children. Test items include both linear order and co-occurrence violations to compare 
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graded degrees of generalization. It has not been shown whether children can use category 

co-occurrence alone (as distinct from adjacent dependency information, which is individual 

item co-occurrence) as a cue to category membership, but theories of language learning 

often assume this skill (e.g., Tomasello, 2000, 2003). Results from this task will provide a 

basis for future work examining exposure manipulations such as those in Reeder et al. 
(2013), so that we can understand how children with typical and impaired language 

development create and restrict generalizations.

Methods

Participants—We recruited 27 typically developing participants, aged 6;0–9;11 (M = 8·4, 

SD=1·1), 16 of whom were females. An additional eight participants (four females) were 

later added to the sample. Since these participants were not part of our original planned 

sample, their data were only included for analyses in which we employ Bayesian Analyses 

and compute Bayes Factors (since, in contrast to the interpretation of p-values in frequentist 

analyses, Bayes Factors remain a valid measure of evidence even with optional stopping; 

Dienes, 2016; Rouder, 2014).1 Participants had normal hearing, scored above 85 (M = 

115·7, SD=12·6) on the Kaufman Brief Intelligence Test Matrices subtest, 2nd edition 
(Kaufman & Kaufman, 2004), and had no history of neurological disorders or of receiving 

speech/language therapy per parent report. In addition, all children completed the Peabody 
Picture Vocabulary Test, 4th edition (PPVT-4; Dunn & Dunn, 2007) to document vocabulary 

skills (raw: M= 158·3, SD=17·4; standard: M= 120·3, SD=12·5). Pilot work suggested that 

typical children under six could not reliably complete the task.

Stimuli—We take our artificial grammar from the Reeder et al. (2013) study. The grammar 

consisted of five arbitrary category types: Q, A, X, B, and R, controlled for co-occurrence 

frequency. Each category contained two or three pseudo-words, e.g., category Q words were 

klidum and spad. Training sentences were combinations of (Q)AXB(R), in that order, so that 

each sentence minimally contained AXB with Q and R words added optionally to avoid 

position effects.

Training—Participants heard 36 sentences, constructed from 12 of the 27 possible AXB 

combinations of the language. Sentences were chosen such that only a subset of A’s 

appeared with each X, and a subset of X’s appeared with each B. The 12 AXB combinations 

appeared in three of four possible sentence types, QAXB, AXB, AXBR, or QAXBR, and 

this corpus of 36 sentences was heard three times for a total of 108 trials. The ‘Appendix’ 

lists all training items by AXB combination. During training, while children listened to 

‘aliens’ on a computer saying the sentences, they completed a one-back task, indicating by 

button press if they heard the current sentence immediately prior. Only data from individuals 

who scored better than 60% on the one-back task were retained; all participants met this 

criterion. The one-back task ensured children attended during training.

1All analyses were additionally run with this larger dataset, and the pattern of significant findings was the same.
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Test—The test consisted of 54 AXB sentences of three types: (1) nine ‘grammatical’ 

sentences heard during training, (2) nine novel ‘grammatical’ sentences, i.e., sentences that 

were not heard during training but were consistent with the grammar of the artificial 

language, and (3) 18 ‘ungrammatical’ sentences. Grammatical sentences were heard twice at 

test; ungrammatical were each heard once to avoid familiarization. For the ungrammatical 

items, we included three of each combination: AXA, BXB, BXA, XBA, AXR, and QXB. 

AXR and QXB represent co-occurrence violations, while the others represent linear order 

violations. In each test trial, children listened to a sentence, then chose one of two buttons to 

indicate whether the sentence was something the alien would say, and finally, they moved a 

slider scale to indicate confidence (see Ambridge, Pine, Rowland, & Young, 2008), which 

provided increased power to detect variability in learning. The ‘Appendix’ lists all sentences 

heard during the test.

Procedures—The one-back task and training paradigm were introduced in the context of 

aliens trying to repair their spaceship. Children were told to listen to see if the aliens 

repeated themselves and to press the red button if the alien said the same thing she just said, 

and to press the green button if she said something different. Red and green buttons were 

stickers over the keyboard buttons D and K. Training trials were videos of an alien 

‘speaking’ one of the training sentences. For every trial except the first, participants 

performed the one-back task. They were also told that videos would play along the way to 

alert them of the aliens’ progress. Videos were four-second clips that included depictions of 

the aliens’ attempts to fix their ship. These occurred at fixed intervals during training.

Immediately after training, participants performed the test. They were told that the aliens 

again needed their help, and that this time they had to listen to a sentence and decide if it 

sounded like something the alien would say. Examiners told participants to press the red 

button if the sentence did not sound like something the alien would say, and green if it did 

sound like something the alien would say. Then they had to indicate their certainty on a red- 

and green-colored slider scale by placing the marker on one extreme or the other if they 

were sure of their decision, and somewhere in the middle if they were less sure. Participants 

were trained to use the scale at the outset of the experiment through a separate apple/pear 

shape and color sorting task. E-Prime was used to deliver all task components and perform 

data collection.

The grammar used in this study was inspired by Experiment 3 of Reeder et al. (2013), but 

we made several departures from that design. For clarity’s sake, we list key differences here: 

stimuli were recorded in child-directed speech, the training contained 12 rather than nine 

AXB combinations, such that three trained AXB types never appeared during test, training 

included watching videos with pauses between sentences for a one-back task rather than 

listening to a continuous audio stream, the training was shortened to three exposures of each 

sentence because pilot testing showed that children could learn at this exposure with better 

attention to the task, ungrammatical items at test included additional item types beyond 

AXA and BXB, the test included a button press and continuous visual scale rather than a 5-

point Likert scale, and the apple/pear task ensured that children could use the buttons and the 

scale.
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Analysis

We used the lme4 package (Bates, Maechler, Bolker, & Walker, 2016) and the lmerTest 

package (Kuznetsova, Brockhoff, & Christensen, 2016) in R version 3.1.3 (R Core Team, 

2015) to run linear mixed-effects models to explore several comparisons of interest. We used 

the maximal random effects structure as recommended in Barr, Levy, Scheepers, and Tily 

(2013), except in instances in which the Akaike information criterion (AIC) and log-

likelihood ratios indicated a reduced model improved fit. We compared ratings at test from 

both binary and slider scale measures for grammatical to ungrammatical items, familiar to 

ungrammatical, and novel to ungrammatical, to determine learning within groups. We also 

ran a post-hoc familiar to novel comparison. Novel to ungrammatical is the critical 

comparison for formation of categories as it is evidence that participants learned the 

grammar of the artificial language, and that they did so by forming grammatical categories. 

Ungrammatical served as the reference category except where otherwise noted. We ran a 

separate model that included age in months and raw scores from the PPVT-4 (Dunn & Dunn, 

2007) as covariates to test for factors that contributed to learning. Accuracy on the one-back 

test during training was also included as a covariate in the model to determine whether 

attention during exposure influenced the ability to learn categories. Because attention during 

training would equally affect all item types, we only included this as a main effect, while 

vocabulary and age could interact with item type.

Results

No child scored below 60% on the one-back task during training (M = 0·86, SD = 0·10), and 

so all participants’ data were included. A linear mixed-effects model with a random subject 

slope for item type and random intercepts for subject and item was the maximal random 

effects structure supported by the data. Log-likelihood ratios and AIC confirmed the 

maximal effects structure as the preferred model. We first ran a model with item 

grammaticality as the single predictor. Participants rated grammatical sentences (which 

included familiar and novel items) as more acceptable than ungrammatical in the visual 

analog scale [beta = −16·04, SE = 3·29, t(36·77) = −4·87, p < ·0001], providing evidence that 

they could perform the tasks. Results from the binary choice followed those of the visual 

analog scale, with slightly smaller p-values, for all findings. As such, we report only visual 

analog scale results from this point forward.

To test learning, we replaced grammaticality with item type (familiar, novel, ungrammatical) 

in the model. Familiar and novel items were both rated higher than ungrammatical items 

[familiar: beta = 17·58, SE=4·02, t (34·55) = 4·37, p < ·0001; novel: beta = 14·75, SE=3·83, 

t(31·15) = 3·85, p < ·001]. Estimated effect size for novel vs. ungrammatical is calculated by 

finding the correlation between the fitted and observed values of the model (Xu, 2003) 

( Ω0
2 = .25). For the purpose of comparing familiar and novel item ratings, we changed the 

reference category to familiar, and found that ratings for familiar and novel items did not 

differ [beta = −2·84, SE=4·18, t(28·08) = −0·68, p = ·50]. The mean rating for familiar items 

was 66·09 (SE = 1·47), for novel items was 63·26 (SE = 1·55), and for ungrammatical items 

was 48·51 (SE = 1·63). Figure 2 illustrates mean ratings by item type for each participant. 
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All participants followed a pattern of numerically higher mean ratings for novel grammatical 

items than ungrammatical.

We converted scale ratings to z-scores as in Reeder et al. (2013) to control for variable use of 

the scale. We use z-score ratings as the dependent variable from this point forward. Familiar 

and novel ratings were still rated higher than ungrammatical [familiar: beta = 0·57, SE=0·12, 

t(33·69) = 4·55, p < ·0001; novel: beta = t(32·52) = 3·97, p < ·001, Ω0
2 = .14. Familiar and 

novel ratings did not differ [beta = −0·09, SE=0·13, t(28·30) = −0·69, p = ·50]. Single sample 

t-tests confirmed that mean ratings for all item types were different from zero [familiar: 

t(485) = 5·31, p < ·0001; novel: t(485) = 3·03, p = ·003; ungrammatical: t(485) = −7·43, p < 

·0001].

To determine whether participants showed graded effects of generalization for different 

ungrammatical item types, we re-ran the mixed effects model first with ungrammatical items 

with co-occurrence violations excluded and then with items that violated linear order 

excluded. Our key question was whether the data provided evidence of distributional 

learning from co-occurrence information alone. Since we added the additional eight 

participants for this analysis (see ‘Participants’ section), the key inferential statistic 

computed here is a Bayes Factor for the critical comparison of novel items to co-occurrence 

violations. We nevertheless also report the p-values associated with the coefficients of the 

mixed model, although their interpretation is limited by the fact that we increased the 

number of participants from the original sample. Bayes Factors compare evidence 

supporting the null hypothesis of no difference versus the alternative hypothesis of a 

significant difference. A Bayes Factor smaller than 1/3 is interpreted as evidence for the null 

hypothesis, whereas a Bayes Factor greater than 3 is interpreted as evidence for the 

alternative hypothesis, and Bayes Factors between these values are interpreted as insufficient 

data for the distinction (see Dienes, 2008, 2014). We used the free online Bayes calculator 

(Dienes, 2008) for these analyses. Because previous experiments have shown participants 

can detect linear order violations, we used the mean difference between ratings for novel and 

linear order violations as the estimate of predicted difference, using the estimate from the 

mixed-effects model comparing ratings for novel versus ungrammatical items, with co-

occurrence violation items excluded. This estimate serves as the SD of a half normal 

distribution, as per Dienes (2008). The mixed-effects model with co-occurrence violation 

items excluded showed that participants could distinguish between novel items and linear 

order violations [beta = 0·51, SE=0·12, t(31·14) = 4·24, p < ·001]. For the sample estimate, 

we used the coefficient from the mixed-methods model comparing ratings for novel versus 

ungrammatical items with linear order violations excluded. Results from the mixed effects 

model with linear order violations excluded and the Bayesian analysis suggested that 

participants could distinguish between novel items and co-occurrence violations [beta = 

0·34, SE=0·17, t (24·29) = 2·02, p = ·0549, BF=3·71].

Taking this one step further, we ran an additional model with familiar items removed to 

compare novel items to each type of ungrammatical item (AXA, BXB, BXA, XBA, QXB, 

AXR) to determine whether each type of co-occurrence violation (QXB, AXR) could be 

distinguished from novel items; novel items served as the reference category. For the 
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Bayesian analysis, we used the mean difference between ratings for novel items and 

ungrammatical AXA + BXB items, ·44, as the estimate of predicted difference because 

Reeder et al. (2013) used these items, thus allowing us to predict that participants would be 

able to distinguish between these types. The sample estimate was the coefficient for each 

item type in the mixed-effects model. For each item type except AXR, the mixed-effects 

model and the Bayes Factors supported the alternative hypothesis that ratings for novel items 

exceeded ratings for that ungrammatical item type [BXA: beta = −0·47, SE=0·19, t(22·73) = 

−2·55, p = ·02, BF=10·33; XBA: beta = −0·71, SE=0·22, t(23·20) = −3·26, p = ·003, 

BF=57·55; QXB: beta = −0·46, SE=0·19, t(22·73) = −2·48, p = ·02, BF=9·25; AXR: beta = 

−0·21, SE = 0·19, t(22·73) = −1·13, p = ·27, BF=1·12]. For AXR, the Bayes Factor indicated 

insubstantial evidence for the null or alternative hypothesis.

Using the original dataset of 27 from this point forward, we added centered raw PPVT-4 

scores, one-back accuracy, and age in months as factors in the model. Log-likelihood ratio 

tests and AIC comparison indicated that only a random item intercept was needed, likely 

because subject-specific variance was addressed by standardizing the rating scale. The best 

fit model included only item type and PPVT-4. The main effect of PPVT-4 was not 

significant [beta = −0·004, SE=0·002, t(1419) = −1·64, p = ·10], but there was an interaction 

with item type, such that children with higher vocabulary scores showed a larger distinction 

between familiar and ungrammatical items than children with lower vocabulary scores [beta 

= 0·008, SE=0·003, t(1419) = 2·44, p = ·02, Ω0
2 = .14] (see Figure 3). The slope difference 

between novel and familiar items was not significant [beta = −0·005, SE=0·003, t(1419) = 

−1·40, p = ·16]. The regression model is reported in Table 1.

As additional evidence that distributional learning, rather than surface-level adjacent 

dependencies, drove performance in this task, we calculated associative chunk strength for 

each item, similar to the bigram analysis Reeder et al. (2013) performed for their 

Experiment 3 results. Associative chunk strength is the average of the frequency during 

training of the three component dependencies of every test item: each bigram (AX and XB) 

and the trigram as a whole (AXB) (Knowlton & Squire, 1994). For example, the 

ungrammatical test item bleggin zub glim has an associative chunk strength of ‘0’ because 

bleggin zub, zub glim, and bleggin zub glim are each never heard during training. In 

contrast, the ungrammatical sentence bleggin lapal fluggit has an associative chunk strength 

of ‘6’ because the bigram bleggin lapal occurs zero times, lapal fluggit occurs 18 times, and 

bleggin lapal fluggit occurs zero times. The ‘Appendix’ lists associative chunk strength and 

mean scale rating for each test item. It is possible for ungrammatical and novel items to have 

the same chunk strength. If participants were using only this information to perform the task, 

we would expect similar acceptability ratings for items with identical chunk strength. 

However, as Figure 4 shows, participants’ ratings differ by item type for items with 

overlapping chunk strength. Adding chunk strength to the model did not reveal any 

significant effect, and the effect of item type remained significant. Thus it appears that 

distributional information that goes beyond information derived solely from adjacent 

dependencies aided participants’ performance in this task. However, ungrammatical items 

had the widest range of scores (see ‘Appendix’), which suggests that item-level properties 

beyond chunk strength may have influenced ratings.
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Discussion

We used an artificial grammar similar to that in Experiment 3 of Reeder et al. (2013) to test 

distributional learning in typically developing school-age children. This task employed 

systematic gaps in the exposure such that learners had to formulate grammatical categories 

based on shared distributions to distinguish novel grammatical from ungrammatical items. In 

this way, the task simulates the problem of real language learning in that children must 

distinguish possible combinations from impossible without explicit knowledge of category 

membership. Children could distinguish grammatical from ungrammatical items in a 

grammar they were recently exposed to. Critically, they distinguished novel grammatical 

items from ungrammatical items through the utilization of distributional information in the 

grammar. They also showed graded performance, with lower ratings for linear violations 

than co-occurrence violations, though co-occurrence violations were still rated lower than 

novel grammatical items (at least for QXB items), evidence that children can use this 

information to inform category membership. Item chunk strength analysis, which is based 

on how often two words appear next to each other, confirmed that children were not using 

adjacent dependency frequency alone to perform the task, though the observation of lower 

ratings for items with lower chunk strength show that children constrain generalizations to 

those that are more robust statistically. Results show that children as young as six are 

sensitive to distributional information and can utilize it, even in the absence of other strong 

cuing information such as semantics or phonology, to form categories.

While different scales make a direct comparison with Reeder et al. (2013) untenable, our 

finding of similar ratings for familiar and novel items is somewhat inconsistent with adult 

performance in the earlier study. This may be due to a shortened overall exposure (three 

repetitions of the corpus instead of four), as Reeder et al. found lower ratings for novel items 

in Experiment 4, which had extended exposure time. The lack of a difference in our study 

suggests participants are not merely using stored sentence strings from the training to 

perform the test, as familiar ratings would be higher if participants relied on this strategy. 

These results fit with a theory of category learning, whereby individual exemplars (the 

sequence lapal fluggit or daffin lapal bleggin) may be stored temporarily until a threshold is 

reached for determining a class of items that can appear in certain contexts, at which point 

individual exemplars are no longer needed and generalization can occur. Differences 

between ratings for items with co-occurrence violations and novel grammatical items 

suggest that information about category membership goes beyond linear order. Recall that 

co-occurrence violations are not just that these two words never appeared next to each other 

(an adjacent dependency), but that the two CATEGORIES did not. This is a novel finding 

for any age of participant. Regarding individual differences in statistical learning, raw scores 

on the PPVT-4 (Dunn & Dunn, 2007) predicted distinction in ratings for familiar and 

ungrammatical items. There were no main effects or interactions with age or with accuracy 

on the one-back task during training, suggesting that distributional learning may be 

developmentally invariant, and only minimal attention is required, or that other factors may 

allow for advantages. Other work has suggested individual differences in statistical learning 

are related to language abilities (Kidd, 2012; Misyak & Christensen, 2012; Misyak, 

Christensen, & Tomblin, 2010; Seigelman & Frost, 2015). Lany and Saffran (2011) found a 
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relationship between vocabulary ability and use of distributional cues in linguistic input in a 

word learning task. In their study, infants with large vocabularies learning an artificial 

grammar generalized semantic categories using distributional cues more than phonological 

cues, while infants with smaller vocabularies showed the opposite pattern. If vocabulary 

scores are understood as a proxy measure of general language aptitude, results from the 

present study, combined with those of Lany and Saffran, provide some evidence that 

statistical learning is related to language ability. Given the age of the children in our study, 

the direction of this relationship is not clear. The parameter estimates and effect size for the 

interaction are small, and it will be interesting to see if a wider range of vocabulary abilities 

serves to increase this effect. Future studies, including a replication with children with 

specific language impairment, will attempt to explore this relationship further.

Adult-like metacognitive skills do not appear to be necessary for distributional learning. 

Children aged six to nine could both generalize and limit generalizations based on what they 

heard in the input. Findings from this study support the hypothesis that implicit statistical 

learning is involved in language acquisition in two ways. One, there is a link between 

language ability and distributional learning ability. Two, because there is no explicit 

instruction in the task, children do not need to be fully aware that grammatical rules exist 

before they begin using information to make generalizations. We also saw that they showed 

gradation in their formation of categories, with higher ratings for items with co-occurrence 

violations than linear order violations. A future study that directly manipulates the number 

of items in the lexicon, as well as length of exposure to the artificial grammar, would reveal 

how learners use and weight different cues for generalization. This would allow exploration 

of item-level properties not possible to explore with the grammar of the current study.

We provide evidence that children as young as six can use distributional information in 

novel linguistic input to form grammatical categories, without other cuing information. 

Evidence that children use categories comes from higher ratings for novel grammatical test 

items than ungrammatical items containing similar bigram frequencies. That such a powerful 

learning mechanism is available to young learners strengthens its plausibility as a useful 

mechanism in language acquisition. This work provides an important foundation for 

extending the findings through additional studies on subcategory learning, comparison with 

adults, and comparison with individuals with language impairment. Future work will also 

explore manipulations of exposure, as in Reeder et al. (2013), to determine in more detail 

how children limit generalizations.
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Appendix

List of all training items, listed by AXB combination and sentence type.

AXB1 Sentence type

 daffin tomber mawg frag AXB

 klidum daffin tomber mawg gentif QAXBR

AXB2

 daffin tomber bleggin AXB

 daffin tomber bleggin gentif AXBR

 klidum daffin tomber bleggin QAXB

 spad daffin tomber bleggin gentif QAXBR

AXB3

 daffin zub fluggit AXB

 daffin zub fluggit gentif AXBR

 spad daffin zub fluggit QAXB

AXB4

 daffin zub bleggin gentif AXBR

 klidum daffin zub bleggin QAXB

 spad daffin zub bleggin frag QAXBR

AXB5
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AXB1 Sentence type

 flairb tomber mawg AXB

 klidum flairb tomber mawg gentif QAXBR

 spad flairb tomber mawg QAXB

AXB6

 glim zub fluggit AXB

 glim zub fluggit gentif AXBR

 klidum glim zub fluggit QAXB

AXB7

 glim zub bleggin AXB

 glim zub bleggin frag AXBR

 klidum glim zub bleggin frag QAXBR

AXB8

 glim lapal fluggit AXB

 klidum glim lapal fluggit QAXB

 spad glim lapal fluggit gentif QAXBR

AXB9

 glim lapal mawg AXB

 glim lapal mawg gentif AXBR

 spad glim lapal mawg QAXB

AXB10

 flairb tomber bleggin AXB

 klidum flairb tomber bleggin frag QAXBR

 spad flairb tomber bleggin QAXB

AXB11

 flairb lapal fluggit AXB

 flairb lapal fluggit frag AXBR

 spad flairb lapal fluggit frag QAXBR

AXB12

 flairb lapal mawg AXB

 flairb lapal mawg frag AXBR

 klidum flairb lapal mawg QAXB

List of all test items with chunk strength, organized by item type and mean rating.

Test item Chunk strength Sentence type Mean z-score rating SD Mean rating

Familiar 14·67 0·22 0·91 66·09

 flairb lapal fluggit 15 AXB11 0·59 0·76 77·87

 glim lapal mawg 15 AXB9 0·51 0·88 75·04

 flairb tomber bleggin 15 AXB10 0·43 0·78 73·22

 flairb lapal mawg 15 AXB12 0·34 0·80 70·72

 daffin tomber mawg 12 AXB1 0·31 0·80 67·44
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Test item Chunk strength Sentence type Mean z-score rating SD Mean rating

 daffin zub fluggit 15 AXB3 0·20 0·92 64·65

 glim lapal fluggit 15 AXB8 0·01 0·84 60·94

 glim zub bleggin 15 AXB7 −0·19 1·09 54·91

 daffin zub bleggin 15 AXB4 −0·21 0·94 50·04

 daffin tomber bleggin appeared during training but not at test

 flairb tomber mawg appeared during training but not at test

 glim zub fluggit appeared during training but not at test

Novel 4 AXB 0·13 0·93 63·26

 flairb tomber fluggit 6 0·62 1·03 78·56

 daffin tomber fluggit 6 0·43 0·75 72·04

 daffin lapal bleggin 0 0·12 0·93 63·74

 glim tomber fluggit 0 0·18 0·91 63·67

 glim tomber bleggin 6 0·09 0·74 61·52

 daffin lapal mawg 6 0·09 0·86 61·43

 flairb zub mawg 0 −0·06 0·93 56·41

 glim zub mawg 6 −0·20 1·00 56·17

 flairb zub bleggin 6 −0·12 0·96 55·78

Ungrammatical 4·33 −0·35 1·03 48·51

 spad lapal fluggit 6 QXB† 0·25 0·82 68·59

 daffin tomber frag 6 AXR† 0·03 0·99 61·93

 flairb zub gentif 6 AXR† 0·04 1·06 58·26

 mawg lapal daffin 0 BXA −0·11 1·12 57·22

 bleggin lapal fluggit 6 BXB −0·06 0·98 56·96

 glim lapal frag 6 AXR† −0·15 1·05 55·89

 glim zub daffin 6 AXA −0·22 0·92 52·85

 daffin zub flairb 6 AXA −0·34 0·89 49·30

 bleggin zub glim 0 BXA −0·37 1·03 49·19

 flairb lapal glim 6 AXA −0·35 0·85 47·37

 spad tomber bleggin 6 QXB† −0·41 0·90 44·96

 mawg zub bleggin 0 BXB −0·45 0·84 43·41

 tomber mawg glim 3 XBA −0·54 1·15 42·89

 fluggit tomber flairb 6 BXA −0·68 1·25 39·33

 fluggit tomber mawg 6 BXB −0·65 0·95 38·30

 mawg bleggin flairb 0 BBA* −0·69 1·07 36·93

 zub fluggit daffin 3 XBA −0·67 1·04 36·04

 klidum zub mawg 6 QXB† −0·90 1·05 33·74

Notes: Means are reported in bold. Familiar items also appeared with Q and R words at the beginning and end during 
training, and sentence type refers to the AXB combination within, as listed in the earlier part of the ‘Appendix’;
*
BBA occurred as a mistake; this item was intended to be an BXA item;

†
indicates a co-occurrence violation, as opposed to a linear order violation.
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Fig. 1. 
This schematization shows that combinations heard during training can lead to the induction 

of a category of items that have shared distributions, which allows the listener to generalize a 

new combination at test.
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Fig. 2. 
Mean scale ratings of test items by item type.

NOTES: *** p < ·001, **** p < ·0001.

HALL et al. Page 16

J Child Lang. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Mean z-score scale ratings by item type (familiar, novel, ungrammatical) as indexed by the 

Peabody Picture Vocabulary Test, 4th edition (PPVT-4), raw score.

NOTE. PPVT-4 raw scores are not centered for the purpose of illustration, but are centered 

in the model.
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Fig. 4. 
Mean z-score scale ratings by item type (familiar, novel, ungrammatical co-occurrence 

violation, ungrammatical linear order violation) and chunk strength.
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