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Abstract

The recently proposed distributional approach
to reinforcement learning (DiRL) is centered on
learning the distribution of the reward-to-go, often
referred to as the value distribution. In this work,
we show that the distributional Bellman equation,
which drives DiRL methods, is equivalent to a
generative adversarial network (GAN) model. In
this formulation, DiRL can be seen as learning a
deep generative model of the value distribution,
driven by the discrepancy between the distribu-
tion of the current value, and the distribution of
the sum of current reward and next value. We use
this insight to propose a GAN-based approach to
DiRL, which leverages the strengths of GANSs in
learning distributions of high-dimensional data.
In particular, we show that our GAN approach
can be used for DiRL with multivariate rewards,
an important setting which cannot be tackled with
prior methods. The multivariate setting also al-
lows us to unify learning the distribution of values
and state transitions, allowing us to devise a novel
exploration method that is driven by the discrep-
ancy in estimating both values and states.

1. Introduction

Deep Reinforcement Learning (DRL) has been applied to
a wide range of problems in robotics and control, where
policies can be learned according to sensory inputs without
assuming a model of the environment (Mnih et al., 2015;
Schulman et al., 2015). Until recent years, most RL meth-
ods have relied on estimating the expected future return,
a.k.a. the ‘value function’, for carrying out the next action.
Recent studies (Bellemare et al., 2017; Dabney et al., 2017)
have suggested that a Distributional Reinforcement Learn-

!"The Viterbi Faculty of Electrical Engineering, Technion - Israel
Institute of Technology *Berkeley AI Research Lab, UC Berkeley.
Correspondence to: Dror Freirich <drorfrc@gmail.com>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

ing (DiRL) approach, where the value distribution, rather
than the expectation are learned, leads to improved learning
performance’.

DiRL algorithms such as C51 (Bellemare et al., 2017) and
Quantile Regression DQN (Dabney et al., 2017) learn a map-
ping from states to a parametric distribution over the return,
based on a distributional Bellman equation. Empirically, the
distributional perspective to RL has been shown to signif-
icantly improve performance on challenging benchmarks
(Bellemare et al., 2017; Hessel et al., 2017).

In this work, we provide a new approach to DiRL, building
on an equivalence between the distributional Bellman equa-
tion and Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014; Arjovsky et al., 2017). From this perspec-
tive, DiRL can be seen as learning a deep generative model
of the value distribution, driven by the discrepancy between
the distribution of the current value, and the distribution
of the sum of current reward and next value. This view
allows us to leverage GAN techniques for improving DiRL
algorithms. In particular, GANs are known to be effective
models for high-dimensional and correlated data such as
images. We exploit this fact to develop a DiRL method
for multivariate rewards, a setting for which previous DiRL
methods are not suitable.

Multivariate rewards are important for domains where the
natural performance evaluation of a policy depends on sev-
eral different factors that cannot be easily combined into
a single reward scalar (Vamplew et al., 2011). Here, we
also show that the multivariate reward approach allows us to
unify learning the distribution of future rewards and states
under a common learning framework. We use this combined
framework to develop a novel exploration strategy for RL,
where the signal driving the exploration is the discrepancy
in the learned distribution of states and rewards. We demon-
strate the efficiency on high-dimensional test-benches.

In summary, our specific contributions in this work are the
following. (1) Demonstrate an equivalence between the
distributional Bellman equation and GANs, where we con-

"While the value is customarily defined as an expectation over
arandom variable, namely the return given in (1), we follow (Belle-
mare et al., 2017) and use the term value distribution for the distri-
bution of the return.
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sider the Wasserstein metric (Arjovsky et al., 2017; Villani,
2008) as a distributional distance measure. (2) Introduce
the multivariate distributional Bellman equation and demon-
strate policy evaluation on vector-valued reward functions.
(3) Establish a novel reward-systematic exploration scheme,
combining exploration with transition model learning.

2. Preliminaries and Formulation

Let (S, A, R, P,~) be a Markov Decision Process (MDP;
Bertsekas 2005), where S is the state-space, A is the action
space and R is the space of possible rewards. The states
transition according to the unknown rule, s;11 ~ P(+|s¢, ar)
and v € [0,1) is the discount factor. The action a; is
drawn w.r.t. some policy 7(+|s;). We discuss the case of full
state observations for simplicity. A reward function r, =
r(s¢,a) € R is supplied by the environment and may be
unknown. By Z we denote the set of transformations from
state-action space to probability distributions over rewards,
Z : 8§ x A — P(R). Given a state s and an action a,
we consider the (random) return, when starting from s and
taking action a

R(s,a) 2 Z’ytrt, s.t. sg = s,a9 = a. (1
t=0

Following (Bellemare et al., 2017), we use the notation
Z™(s,a) for the return, and Z™(s,a) € Z to imply that
Z™(s,a) is distributed according to a distribution belonging
to the set of distributions Z. Since we will be assuming a
fixed policy for much of this work, we will simply use Z,
rather than Z7™, to denote the random return.

Notation Throughout this paper we use the following
acronyms. MDP - Markov Decision Process, RL - Rein-
forcement Learning, NN - Neural Network, GAN - Gener-
ative Adversarial Network, DQN - Deep Q-Network. ),
is the Wasserstein-p metric . For any two random variables
X and Y, X =Y denotes equality in distribution. By || - ||
we denote the /5-norm, and by I,,, the identity matrix of
dimension m. ¢ 4 is the indicator function of the set A.

2.1. Distributional RL

Given an initial state s and an action a, the Q)-function is
defined as the expectation

Q" (s,a) = E,R(s,a) 2)

A useful property of Q-functions is that they obey the Bell-
man equation (Bertsekas, 2005),

Q" (s,a) = Ex[r(s,a) +7Q7(s",d)], 3)
where s’ ~ P(:|s,a), and a’ ~ 7(-|s').

An optimal policy is a policy satisfying 7* €
argmax, E,Q(s,m(-|s)) for all s € S. The Q-function

of an optimal policy, denoted (Q*, satisfies the optimality
equation

Q*(s,a) = Elr(s,a) + 7 max Q*(s',ad")]. 4)

In RL we typically try to maximize the expected cumulative
reward, namely the (Q-function. Therefore, many RL ap-
proaches involve approximating solutions of (4) (Bertsekas,
1995; Mnih et al., 2015).

While the goal in RL is to maximize the expected return, it
has recently been observed that learning the full distribution
of the return Z (s, a), rather than the expectation E [Z (s, a)],
leads in practice to better performing algorithms (Bellemare
etal., 2017; Hessel et al., 2017).

For learning the distribution of Z (s, a) under a fixed policy
m, Bellemare et al. (2017) showed that the Bellman operator,

T"Z(s,a) 2 r(s,a) +7Z(s',a'), )

is a y—contraction over Z under the metric

d, = sup W, (Z1(s,a), Z2(s,a)),

s,a

Zv,Z2 € Z. (6)

Here again, s’ is a random variable drawn from P(-|s, a),
a’ ~ 7(-|s'), and W, is the Wasserstein-p metric.

For practical reasons, DiRL algorithms use a parametric fam-
ily of distributions Zy(s,a) to approximate Z(s,a). Pre-
vious work explored using deep neural networks to map
from s, a to either a distribution defined by a fixed set of
particles (Bellemare et al., 2017), or a mixture of uniform
distributions (Dabney et al., 2017). An approximation of
the Bellman operator was used to update the distribution
parameters.

2.2. Generative Adversarial Networks

GANS train two competing models (typically NNs) (Good-
fellow et al., 2014). The generator takes noise z ~ P, as
input and generates samples according to some transforma-
tion, Gy(z). The discriminator takes samples from both
the generator output and the training set as input, and aims
to distinguish between the input sources. Goodfellow et al.
(2014) measured discrepancy between the generated and
the real distribution using the Kullback-Leibler divergence.
However, this approach was improved by Arjovsky et al.
(2017), by using the Wasserstein-1 distance. Wasserstein-
GAN:Ss exploit the Kantorovich-Rubinstein duality (Villani,
2008),

Wi(Py,Py) = sup  {Epep, f(2) = Eanp, f(2)},
fel-Lip
)

where 1 — Lip is the class of Lipschitz functions with
Lipschitz constant 1, in order to approximate the distance



Distributional Multivariate Policy Evaluation and Exploration with the Bellman GAN

between the real distribution, P,., and the generated one,
IP,. The GAN objective is then to train a generator model
Gy(z) with noise distribution P, at its input, and a critic
f € 1 — Lip, achieving

min max {E.-p.f(z) = E:nr. f(Go(2)}. )
The WGAN-GP (Gulrajani et al., 2017) is a stable training
algorithm for (8) that employs stochastic gradient descent
and a penalty on the norm of the gradient of the critic with
respect to its input. The gradient norm is sampled at random
points along lines between a real sample, x, and a generated
sample, Gg(z),

T =cex+(1-€)Gy(2), x ~Pp,z~ P,,e ~U[0,1]. (9)

The penalty term AE; (|| Vf(Z)] — 1)? is then added to
the discrimintaor optimization objective, where A is the
gradient penalty coefficient. By employing this penalty, the
norm of the critic gradient is penalized for deviating from 1,
thus encouraging f to belong to 1 — Lip.

2.3. Intrinsic-Reward Based Exploration

Exploration is a key challenge in RL. While efficient al-
gorithms and performance guarantees are available for the
model-based setting with finite state and action spaces (e.g.,
Kearns & Singh 2002; Osband et al. 2013; Tewari & Bartlett
2008), the situation is very different in the model free set-
ting, and, in particular, for large state and action spaces.
Within a model-free setting, the unknown environment and
rewards are not directly modeled, and actions are learned
by the agent through trial-and-error experience. At each
stage of the process an agent must balance exploration and
exploitation. Exploitation uses the knowledge gained so-far
about the environment, and attempts to use this to maximize
the return. Since the knowledge gained is always partial and
approximate, exploration is required in order to improve the
agent’s knowledge about environment, thereby improving
future exploitation. Exploration is particularly difficult in
a model free setting, where the environment itself is not
modeled. Simple exploration techniques in model-free RL
draw randomized actions (e.g. e-greedy, Boltzmann explo-
ration (Sutton & Barto, 1998)), or mildly perturb policy
improvements (Lillicrap et al., 2015).

A promising recent approach to exploration in model free
settings uses the notion of curiosity and internal reward
(Oudeyer et al., 2007; Schmidhuber, 2010) in order to direct
the learner to regions in state-action space where system
uncertainty is large. Such methods aim to explore regions
in state-action space through actions that lead to poorly
predictable outcomes, namely to ‘surprise’.

These methods often set a trade-off between exploitation
and exploration using a tuning parameter 1 and a combined

reward function,
T/(St, ag, St+1) = T'(St, at) + m”i(st, ag, St+1). (10)

In this formulation, intrinsic rewards ri(st, at, St+1) mea-
sure information gains about the agent’s internal belief of
a dynamical model it holds. For example, Houthooft et al.
(2016) capture information gain through the notion of mu-
tual information which is approximated and estimated by
their algorithm.

3. Related Work

The C51 algorithm of (Bellemare et al., 2017) represented
the value distribution using a fixed set of 51 particles, and
learned the probability of each particle. Dabney et al. (2017)
extended this approach to particles with adjustable loca-
tions, where each particle corresponds to a fixed uniform
distribution. Both approaches, which rely on ‘discretization’
of the value distribution, do not scale to high-dimensional
multivariate reward distributions.

Concurrently, and independently from us, Doan et al. (2018)
showed a similar equivalence between the distributional
Bellman equation and GANSs, and used it to develop a GAN
Q-learning algorithm. Compared to that work, which did
not show any significant improvement of GAN Q-learning
over conventional DRL methods, we show that the GAN
approach can be used to tackle multivariate rewards, and
use it to develop a novel exploration strategy.

In the context of model based RL, Asadi et al. (2018)
showed an equivalence between Wasserstein and value-
aware methods for learning state transition models. This
is different from our framework, that is able to learn both
the state transitions and the value distribution using a single
deep generative model. Tang & Agrawal (2018) proposed a
distributional RL based exploration strategy with Bayesian
parameter updates. This approach introduces a minimiza-
tion objective combining the expected distributional discrep-
ancy from observed data together with an exploration term,
encouraging a high-entropy distribution. In our work, we
suggest that the learning of a distributional discrepancy by
itself naturally yields a motivation for exploration.

In the context of intrinsic-reward based exploration, the
VIME method of Houthooft et al. (2016) described above,
does not take information about the distribution of incoming
rewards into consideration. This may become an advantage
where rewards are sparse, but misses crucial information
about the task elsewhere.

4. Equivalence Between DiRL and GANs

In this section, we show that the distributional Bellman
equation can be interpreted as a GAN, leading to a novel
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approach for learning the return distribution in DiRL. Given
a fixed stochastic policy m, where a; ~ 7(+|s;), we construct
a state-action conditioned generative model with an output
distribution Z(s,a) € Z such that

(1.5

Z(s,a) = T"Z(s,a), (11)
T"%(s,a) £ r(s,a,8) +7Z(s",a),  (12)
where s’ ~ ,a),a’ ~ 7(-|s"). The notation (11) im-

P(ls
plies that d; = s upg o Wi(Z(s,a),T"Z(s,a)) vanishes.
We use a more general notation where r may depend on s’.

We can solve (11) via a game formulation: due to the
Kantorovich-Rubinstein duality (7) we have a 1-Lipschitz
function (in its first argument), f(r|s, a), s.t.

Wl(Z(s,a),T”Z(s,a)) = (13)
ETNT"Z(s,a)f(T‘Sa a) - ETNZ(s,a)f(T|Sa a)v vs7a~

Similarly to (Arjovsky et al., 2017), we make use of this
duality for training a conditional GAN in a novel config-
uration we call a Bellman-GAN (Figure 1(a)). The gener-
ator Go(+|s, a) is a generative NN model with parameters
6, whose input consists of random noise with distribution
P,, and whose output distribution imitates that of Z7 (s, a).
The discriminator learns a critic f,(-|s, a) (we will some-
times omit the state-action condition for simplicity) . The
optimization objective is

min max L:(G,[f), 14a
Go(:|s,a) fu(]s,a)€1—Lip ( f) (142)
L(G,[f)= (14b)
EzNPz,at+1~7r(-\st+1)A(G9a fw))|(Z,St7¢1t-,7"ta5t+l1at+l)'

Here, z ~ P, is the input noise and A is defined by

A(Ge, fw)‘(z,s,a,'r‘,s',a’) =
Fulr +7Go(els' @) — FulGalels,0)).

We emphasize that unlike the conventional WGAN (Ar-
jovsky et al., 2017), in the Bellman GAN (Figure 1(a)), both
distributions are generated and there is no ‘real’ distribution.
We train our critic using the WGAN-GP scheme (Gulrajani
et al., 2017), with a penalty factor of \ (see Section 2.2).
We term our algorithm Value Distribution GAN Learning
(VDGL); pseudo-code is provided in Algorithm 1.

5)

4.1. Q-function and Z-distribution Estimation

Learning the discounted reward distribution of Z(s,a) at
every point of state-action space may lead to slow conver-
gence for large spaces (recall that we are concerned here
with a fixed policy). However, learning the @-function
is a simpler task, and may be utilized at an earlier stage
of training, forming a baseline for learning Z. By setting
the generator architecture given in Figure 1(b), we manage

Algorithm 1 Value Distribution GAN Learning (VDGL)
Input: discriminator parameters w, generator parameters
0, fixed policy 7(-|s), discount factor .

Parameters: number of steps 7', learning rate «, penalty
factor A\, minibatch size m, ngpritic = 5.
fort=1toT do
Act according to a; ~ m(+|s¢).
Observe (¢, at, s;+1) and draw reward r;.
Draw the next action according to as41 ~ m(-|S¢41)-
Store (s¢, at, re, St41,a+1) in replay pool.
end for
forn =1to nmtw (Train critic) do
1. Sample {(s\”,a{" rV, siﬁl,agl)}m from re-
play pool.

2. Sample both {z(} and {z'V}, i = 1,...,m,

from P,,and {"},i = 1,...,m, from U0, 1].
3. 2y = GoW[s(al), @) = n 4
'YGG( /()|St+17 1(t431)
4. 30 @) 4 (1= e@) ),

N

5. Juw «— 1V Zz 1|:w
+ A (IVaLulE) - 1)°] -

6. w <+ Adam(w, gy, ).
end for
(Train generator)

1. Sample {(s!" ),af),rt(l),siﬁzl,agl) , from re-
play pool.

2. Sample both {2V} and {2V}, i =1,...,m, from
P,.

3. :céi) = Gyl(z ’)|s(i’) agi)), x'éi) = rgi) +

'ng(z’(i)|s,E21,a£21)
4. go < **Ve Zz 1 [fw( (Z)) fw( AZ))}
5. 0 + Adam(6, gg, ).

to estimate the @ and Z functions concurrently, without
significant additional computational cost. Here Q(s, a) is
trained using DQN to satisfy the optimality equation (4),
and Gy(-|s,a) = Zy(-|s,a) + Q(s, a) is trained by VDGL
to satisfy (11). We believe other distributional methods may
benefit from this setting.

5. Multivariate Rewards

The equivalence between DiRL and GANs proposed in the
previous section allows us to train deep generative models
for approximating the value distribution. One advantage
of this approach is when the reward is a vector, requiring
learning a multivariate distribution for the value function.
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(a)

noise

Zo(s,a)
(s.0)

Gol(z]s,a)

(b)

Figure 1. GAN configurations. (a) Bellman-GAN; (b) Simultaneous estimation of Q-function and Z-distribution.

Multivariate rewards are important when the natural objec-
tive in the decision problem cannot be easily composed into
a single scalar quantity (Mannor & Shimkin, 2004; Vamplew
et al., 2011), and where different objectives may need to
be balanced. Examples include RL for clinical trials (Zhao
et al., 2009), but also learning auxiliary predictions within
a standard RL problem (Sutton et al., 2011; Dosovitskiy &
Koltun, 2016).

Since GANs have been shown to generate remarkably con-
vincing high dimensional multivariate signals such as im-
ages (Goodfellow et al., 2014; Radford et al., 2015), we
propose that our GAN approach to DiRL would scale well
to the multivariate reward case.

Consider the case where the reward is a vector r; € R™.
Given a fixed policy m, we define the return vector

Z(s,a) = R(s,a) = thrt e R™,
t=0

where sg = s, a9 = a. I' = v1,, is the discount matrix, and
the multivariate Bellman equation is

Z(s,a) 4 r(s,a,s") +TZ(s',d'), (16)
where s, a’ are drawn from P(-|s, ) and policy 7.

We note that the discussion of Section 4 applies to the mul-
tivariate reward case. The only modification is that in this
case, the generator output and discriminator input are m-
dimensional vectors.

6. Wasserstein-Distance Motivated
Exploration

In this section, we propose to use our GAN-based DiRL
method for exploration in MDPs. In exploration, the agent
attempts to reach state-space regions where knowledge
about the environment or reward function is insufficient,
thereby gaining better experience for future action learning.
The inability to predict the expected rewards or transitions

is generally a result of one of three factors. (1) Inherent un-
certainty of the environment, (2) Inadequate learning model,
or (3) Poor experience. The first factor is directly related
to the structure of the environment, and we assume that it
is beyond our control. The second factor can be mitigated
by using a richer class of models, e.g., expressive models
such as deep NNs. Here, we focus on the third factor, and
propose a method for directing the agent to areas in state
space where its past experience is not sufficient to accurately
predict the reward and transitions of the state.

The key feature of our approach to exploration is the fol-
lowing. Assume we have a model of Z(s,a) (namely a
model for the distribution of Z(s, a)), trained to minimize
D(Z(s,a),T™Z(s,a)) for some distributional distance D.
In regions where we have rich enough experience, the ap-
proximated distance D(Z(s,a),T™ Z(s,a)) will be small,
even though Z (s, a) itself may have very high moments.
Regions where the drawn rewards are statistically differ-
ent from past experience will be characterized by a higher
discrepancy. As a result, distributional learning may help
us guide exploration to state-action regions where more
samples are required.

We now propose an exploration method based on DiRL.
Recall that every generator training step involves an up-
date of the NN parameters § — 6’ according to a sam-
pled batch of data. We measure the effect on the distri-
butional model by inspecting the Wasserstein-1 distance,
W1(Go(:|st,at), Gor (v 8¢, ar)).> Following Arjovsky et al.
(2017), we assume Gy(z|s,a) to be locally Lipschitz in
(z,0) with constants L(z, 0|s, a), such that for all (s, a),

E.op L(2,0|s,a) = L(f]s,a) < . (17)

Arjovsky et al. (2017) showed that for any given (6, s, a),
there exists a neighborhood of 6, denoted Uy ,(6), such that
2 Although many distributional metrics may be considered,

corresponding to the methods suggested in Section 4, here we use
the Wasserstein-1 distance.
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for all ¢’ € Us ,(0) we have
Wi(Go(-|s,a),Go (-|s,a)) < L(0|s,a)||0 — 0'|. (18)

That is, for small enough updates, Equation (18) bounds
the distributional change of the generator output for each
(s, a) by terms of the parameter difference. Using a gradient-
descent method implies an update of the parameters that is
proportional to the gradient,

H—HIOCVQEW(GQ,JC), (19)
where VoL, (Gy, f) equals

VGEZNPZ,S’NP(-\s,a)7a’~7r(-|s’)A(G97 Dw)|(z7s,a,r7s’,a’) .

Practically, we approximate over a batch of samples. Based
on (13)-(15), we have that

VoLr(Go, f) = (20)

]EZNPZ,S/NP('ls,(L),(l/NT\'(~|S')VOA(Gev Dw)|(z,s,a,r,s’,a’)v

where by [ we denote the empirical mean over a batch. Our
idea is that the gradient VoA(Go, Dy)|(z,s,a,r,5",a7) 1, in
effect, a measure of the error in predicting the return distri-
bution at the state-action tuple s, a. Thus, we propose to use
the magnitude of the gradient as an intrinsic reward func-
tion (cf. Section 2.3). We introduce the combined reward
function, where 1 > 0 is the trade-off parameter:

F(Sts at, $e41) = 1(St, a, Se41) + 01 (Se, ag, Se41),
(21a)

ri(st’at, Si41) = (21b)
HEZNPZ,at+1~77(‘|5t+1)v9/1(G97 Dw)|(z,st,at,rt,st+1,at+1) H .

Based on this definition, we introduce the Distributional
Discrepancy Motivated Exploration (W-1ME) method, de-
scribed in Algorithm 2.

6.1. Reward-Systematic Exploration

In domains where the reward is sparse, uncertainty in the
value distribution may not be an informative signal for explo-
ration. To overcome sparsity, several exploration methods
enrich the reward signal using some ‘intrinsic’ reward, based
on informative measures of transitions (see e.g. Houthooft
et al. (2016) ). Following the ideas of model-based ex-
ploration (Houthooft et al., 2016), we learn the transition
probability P(:|s, a), together with the value distribution.

Our main insight is that, by adopting the multivariate re-
ward framework of Section 5, we can unify learning the
distribution of return and transitions under a single GAN
framework. Assume that S C R™ has a Ly (or equivalent)
norm. Then, learning a dynamic model is a special case of
(16), where the reward vector is

7(s,a,s") = ( r(sa,5) ) (22)

S

and
o vl 0
I'= ( 0 O ) . (23)

Thus, by simply adding the state to the NNs in the GAN
generator and discriminator, and setting the discount fac-
tor appropriately, we obtain a GAN that predicts the joint
distribution of the return together with the state transition.
Note that, since we are learning joint distributions, any de-
pendency between the return and state transition should be
learned by such a GAN. In addition, the intrinsic reward
in Equation (21a) can be immediately applied to this GAN,
and will in this case include a reward bonus for errors both
in the return distribution and in the state transition.

Algorithm 2 Distributional Discrepancy Motivated Explo-
ration (W-1ME)
Input: initial policy 7 (|s), trained model (G, D,,).
Parameters: number of steps 7', number of noise sam-
ples Neapiore, trade-off parameter 7).
fort =1toT do
Act according to a; ~ m(+|s¢).
Observe (s¢, at, s¢+1) and draw reward r;.
Draw Negpiore NOise samples 20~ N (0, 1) and ac-
tions a§21 ~ 7 (+|St41) -
Approximate (21b) by the empirical mean over sample
(St, i, T, 5t+1):

Ti(st,ataStJrl) =

1 Nezpiore
VoA(Go, Do)l ||

Nerplore i—1
i) _ (i (4)
p( ) - (Z( )7 Sty Aty Tty St+1, at+1)-

Construct combined rewards 7 (s, at, S¢11), applying
(21a) using parameter 7.
end for
Update policy 7 using rewards 7(s;, at, s;+1) and any
standard RL method.
Train (Gy, D,,) using stored (s, at, ¢, S¢+1), ™ and Al-
gorithm 1.

7. Experimental Results

In this section we demonstrate our methods empirically. Our
experiments are designed to address the following questions:
(1) Can the VDGL algorithm learn accurate distributions of
multivariate returns? (2) Does the W-1ME algorithm result
in effective exploration?
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7.1. Multivariate Policy Evaluation

Here, we aim to demonstrate that our GAN-based method
can learn return distributions of multivariate returns, with
non-trivial correlation structure between the return variables.
For this task, we designed a toy domain where the correla-
tion structure is easy to visualize.

We consider a multi-reward maze with a tabular state
space — the Four-room maze in Fig. 2(a). The four al-
lowed actions are moving one unit UP, DOWN, LEFT or
RIGHT. We have 8 reward types corresponding to the
subsets A,..., H C &, where in each subset of the state
space only one type of reward is active, r(s¢, at, S¢+1) =
(1 =7)(0a(se41), -+, 0m(s141))" € RE.

Each room contains a pair of reward types, while the aisle is
neutral. Thus, when exploring each room, only two reward
types can be collected. We consider an agent that moves
randomly in the maze. Because of the maze structure, which
contains narrow passages between the rooms, the agent is
likely to spend most of its time in a single room, and we
therefore expect the return distribution to contain different
modes, where in each mode only two rewards are dominant.

We trained the VDGL algorithm for 1500 episodes of
350 steps, and sampled Z(s,a) at three different states
(s0, 81, S2). Action a was randomly chosen at each sample,
where we denote the obtained value distribution Z(s) =
Z(s,a), a ~ U(A). Figure 2(b) shows that at each loca-
tion, Z(s) generated higher probability of values for near-by
reward types; while samples from Z(s;) tends to present
higher A and B rewards, Z(s2) predicts higher G’s and H'’s.
When starting at the center of the maze, the return distribu-
tion Z(sg) is indeed multi-modal, with each mode showing
high returns for two different reward types, corresponding
to one of the four rooms.

We emphasize that previous DiRL algorithms, such as
C-51 (Bellemare et al., 2017), or quantile regression
DQN (Dabney et al., 2017), which rely on a discretization of
the value distribution, cannot be used to practically estimate
an 8-dimensional return vector. As our results show, our
GAN approach can effectively handle multivariate, corre-
lated, return distributions.

7.2. DiRL-Based Exploration

To evaluate the W-1ME exploration algorithm, we propose
the 2-Face Climber testbench. In the 2-Face Climber (see
full description in the Appendix), a climber is about to con-
quer the summit of a mountain, and there are two possible
ways to reach the top. The South Face is mild and easy
to climb. The North face is slippery and much harder to
climb, but the route is shorter, and reaching the top bears a
greater reward. The climb starts at camp (so = 0), where the
climber chooses the face to climb. Then, at each step, there

are two possible actions. One action progresses the climber
towards the summit, while the effect of the other action
depends on the mountain face. On the South Side, it causes
the climber to slip, and move back to the previous state,
while on the North Side, with some probability it can also
cause her to fall several steps, or even restart at base-camp.
The idea here is that once the model is known, it is easy
to always take actions that progress towards the summit,
and in this case the north side should be preferred. During
exploration, however, the south side is more forgiving when
taking a wrong action.

Figure 3 shows the state-space visit counts of W-1ME ex-
ploration using different values of 7 in (21a), where we
used reward-systematic exploration (Sec. 6.1). For policy
improvement in Algorithm 2 we used DQN, where we refer
to the full algorithm as W-IME+DQN. n = 0 is for DQN,
where we applied an e-greedy exploration (¢ = 0.05). We
run over 100 independent seeds, with 1000 episodes at each
experiment. Here we can see that indeed, higher exploration
7’s increment the visit rate to the North face states, resulting
in higher average returns (for detailed results we refer the
reader to the Appendix).
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Figure 3. W-1ME exploration for the 2Face climber. Histograms
present the number of visits to each state. Observe that higher
n’s incremented the visit rate to the North face states, resulting in
higher average returns. This shows the utility of our exploration
method.

7.3. Exploration in Continuous Domains

In this section, we evaluate W-1ME on continuous control
tasks: a LQR setup with a Gaussian cost, and sparse reward
tasks CartPoleSwingup and SwimmerGather (Houthooft
et al., 2016). Here we used TRPO (Schulman et al., 2015)
as a basic RL method, and the reward-systematic explo-
ration (Sec. 6.1). For exact setup we refer the reader to the
Appendix.
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Figure 2. Random policy evaluation on multi-reward maze. (a) maze configuration; (b) generated Z(s) samples at different locations,
where each line represents a sample in R®. Note that when starting at the center of the maze (so), the distribution contains several modes,
where in each mode only two reward types have a high return. Conversely, when starting at s, only returns of type A and B are observed.
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Figure 4. W-1ME vs. VIME exploration on continuous control tasks. W-1ME exploration outperforms TRPO+VIME and TRPO on both
(a) and (b), and is comparable to VIME on (c). The cumulative reward is displayed.

Figure 4 shows the median of the averaged cumulative re-
ward (at each iteration) for each algorithm over a fixed set
of random seeds (20 for LQR, 10 for CartpoleSwingup, 8
for SwimmerGather). In 4(c) the median is averaged over
a window of 15 iterations. Shaded areas represent the in-
terquartile range. For the first two tasks, we set = 1077
which gave the best results for both exploration methods.
For Swimmergather, we setn = 10~4, as used by Houthooft
et al. (2016) in their code.

We can see that W-1ME exploration outperforms both VIME
and plain TRPO on LQR and CartpoleSwingup tasks, and
is comparable to VIME on SwimmerGather environment.
This shows that in domains where reward uncertainty domi-
nates, such as in random cost LQR, our method that exploits
this uncertainty for exploration is preferred, while in do-
mains where state uncertainty is most important, such as in
SwimmerGather, we are not worse than the state of the art.

8. Conclusion and Outlook

In this work we showed an interesting equivalence between
the distributional Bellman equation and GANs. Based on
this equivalence, we proposed a GAN based algorithm for
DiRL, which can handle high-dimensional, multivariate
rewards. We also showed that the multivariate reward for-
mulation allows to unify learning of return and next state
distributions, and we proposed a novel exploration method
based on this idea, where the prediction error in both return
and next state distribution is used as an intrinsic reward. We
empirically validated our methods in several RL domains.

Our work paves the way for investigations of a distributional
approach to multi-objective RL (Vamplew et al., 2011).
Such would require a distributional policy optimization algo-
rithm that can exploit the multi-variate reward distribution
from the Bellman GAN. Our unified method for learning
state and value distributions also suggests a new direction
for model-based RL in high-dimensional state spaces.
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