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When comparing two sequences, a natural approach is to count the number of k-letter words the two sequences have in common.
No positional information is used in the count, but it has the virtue that the comparison time is linear with sequence length. For this
reason this statistic D, and certain transformations of D, are used for EST sequence database searches. In this paper we begin the
rigorous study of the statistical distribution of D,. Using an independence model of DNA sequences, we derive limiting distributions
by means of the Stein and Chen-Stein methods and identify three asymptotic regimes, including compound Poisson and normal. The
compound Poisson distribution arises when the word size k is large and word matches are rare. The normal distribution arises when
the word size is small and matches are common. Explicit expressions for what is meant by large and small word sizes are given in
the paper. However, when word size is small and the letters are uniformly distributed, the anticipated limiting normal distribution
does not always occur. In this situation the uniform distribution provides the exception to other letter distributions. Therefore a naive,
one distribution fits all, approach to D, statistics could easily create serious errors in estimating significance.

1. Introduction

Sequence comparison and database searching are among of the most frequent and useful activities in computational biology
and bioinformatics. The goal is to discover relationships between sequences and thus to suggest biological features previously
unknown. These searches are based on the local alignment or Smith-Waterman algorithm (1), which in important heuristic
versions has been utilized in the very popular search algorithms FASTA and BLAST (2-4).

As the sizes of biological sequence databases grow, even more efficient comparison methods are required to carry out the
large number of comparisons. There are effectively two components to all these methods: the discovery of approximately
matching words in the sequences and the evaluation of the statistical significance of the found matching. These estimates of
statistical significance can be based on Poisson approximation (ref. 5, Chap. 11). Another method of comparison is by sequence
composition, using statistical features of the sequences to determine relationships. The correlation between the occurrence of
various words such as AAA and AAT makes this a challenging problem. In ref. 5, Chap. 12, the reader can find the limiting
multivariate normal distribution for a collection of words when the sequence length becomes large. The use of these techniques
for comparisons has been somewhat limited. However, one such measure proposed originally in ref. 6, called D, in ref. 7, is based
on the pairwise compositional (dis)similarity of two sequences, and this method has found wide application, especially for EST
databases. A high-performance implementation of D5 is at the core of the EST clustering strategy of the STACK human gene
index (8, 9).

D> is based on a comparison of the counts of identical k-words in a pair of sequences, without producing an alignment, and
it can be computed in linear time. Each sequence is associated with a vector of its k-word counts, and the Euclidean distance
between these vectors provides the comparison. We define the D5 statistic to be the number of k-word matches between the
two sequences without reference to the order of occurrence of the k-words. D, was experimentally studied in ref. 10 and a
windowed version is used as the basis for alternative splicing clustering in refs. 11 and 12. Alternative quadratic forms and metrics,
related to the multivariate distribution cited above, including the Mahalanobis distance, have been experimentally explored in
refs. 13 and 14. With ref. 15, we see the introduction of alternative sequence models as well.

Although the computational results on biological sequences for D, are numerous, with ever more sophisticated models and
comparisons, until now there has been no rigorous statistical analysis of D, and its relatives in terms of its limiting distribution
as a random variable. It is classical in statistics that the binomial distribution with # trials and success probability p has two
asymptotic limiting distributions, Poisson if the product of the np tends to a positive finite limit (p must be a function of n) and
normal when p does not change with n. However, as seen in Section 5, D, in the case of a two-letter alphabet and &k = 1 has
neither a Poisson nor a normal limit.

In this paper we begin the rigorous study of D,. Admittedly, we do not give a complete analysis of the more recent D, variants.
Our sequence model will be independent letters, and our random variable will be the inner product of the two count vectors.
For this model, we derive limiting distributions by means of the Stein and Chen-Stein methods and identify three asymptotic
regimes, including Poisson and normal. Stein’s work allows us to give bounds on the distributional approximations. Additionally,
numerical results will be supplied, which suggest that substantial improvements on our theoretical bounds are possible.

We have confined our results to those relevant to nucleotide sequence alphabets (four-letter alphabet) because this is where
the important biological applications will be. The generalizations to other alphabets are not difficult to make.

2. Some Preliminaries

C. Stein introduced a revolutionary method to prove normal approximations to sums of random variables in ref. 16, and later
his student L. Chen extended the concepts to Poisson approximation (17). In our setting it is possible to show both methods
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can be applied (for different k of course). In this section we will derive and cite some calculations and bounds that will be useful
in what follows. Most of the notation and definitions used below are from ref. 5, Chap. 11.

For the two sequences with i.i.d. (independent and identically distributed) letters A = 414, - -- A, and B = B1B; - - - B,, of
letters from finite alphabet 1, let

fo=PA;=2a)=P(Bj=a), a€
and

Pk = Ef’é

aEA
Further, define the match indicator C;; = 1{4; = B;}, and the k-word match indicator at position (i, j)
Yi,j = Ci,jci+ Lj+1"° 'Ci+k—1,j+k—1 .

Note: EC;; = p> and EY}; = Ph.

It will be convenient to let7 = n — k + 1 and m — k + 1 when k is understood, as the terms arise frequently.

Let the index set for k-word matches be I = {(i,j) : 1 =i = i, 1 =j = m}. The neighborhood of dependence for index
v = (i, j) € I is defined as

Jo={u=(@G,jYel:|i-i'|skor|j—j|=k}

It is clear that Y, and Y, are independent when u ¢ J,.

It will be useful to further subdivide the dependency structure into two sets, J, = Ji U J;, where J§ is described by |i — i’
=kandl|j —j|>kor|i —i'|>kand]|j — | =k (the crabgrass case in ref. 5, and J; is described by |i — i’| = k and |j —
j'l = k (the accordion case).

In this framework, the D statistic is the number of k-word matches between the two sequences A and B is

D,=>Y,.

vel

Clearly,
ED, = ). EY, = imp.
vel

In the remainder of this section we derive bounds relevant to Var(D-). Since E(Y,Y,) = EY,EY, when u ¢ J,,

Var(D,) = 2, >, (E(Y,Y,) — EY,EY,)

veluel

= > > (E(V,Y,) - EY,EY,)
veluel,

= > X (EYY,) - p3).
veluel,

Thus, for the variance of D,, we may focus on the calculation of E(Y,Y,).
When u € J;, we have (from ref. 5) the upper bound

E(Y,Y,) = p3¥p3*,
where 8 € (0, é], and the lower bound

Ps3
E(YVYu) zp%k 7 N
P2

Whenu € Jj, andi — i’ # j — j' we have
E(Y,Y,) = pyokriph+12
where y € (0, % — 1/(2k + 1)], with a lower bound given by
E(Y,Y,) =p3".
Whenu € J), andi — i’ =j — j' = t, we have
E(Y,Y,) =ps'",

which is a case overlooked in ref. 5. Then p3* = E(Y,Y,) < p5. Summing E(Y,Y,) over allu € J, witht =i — i’ = j — j' and
assuming k > 1, we have

Lippert et al. PNAS | October 29,2002 | vol.99 | no.22 | 13981

APPLIED
MATHEMATICS



k-1 2 2
’ 1-p5 1+ p,—2p5
DEYY,)= X ptl =p’§<2 1= 1) Ep’é(il - ,
u t=—k+1 P2 P2

with upper bound

1+p,
> E(V,Y,) SP’E(@)-

Combining these contributions, we obtain an upper bound,

1+
2 Y EYY,) = ﬁm{(zk = 1)@ +m = 4+ 2p3¥pa™ + (2K — 12k = 2ps ™ P34 ph 1_—’72} [1]
veluel, p2
and the following upper bound on the variance,
Var(D;) = 2, Y (E(Y,Y,) — EVEY,)
veluely
= ﬁﬁz{(Zk — D + m — 4k + 2)p5(py>* — p3* = pb)
(172 y(2k + 1) I3 k L+p, k
+ (2k — 1)(2k — 2)p5(ps"p3 —-p2) +tps 1-p, = 2k —1)p3 | . [2]
Similarly, we can combine lower bound contributions to obtain
1+p,—2p3
Var(Dy) = ﬁm{(Zk )+ 7 — 4k + 2p(ps/pE— 1) + ;ﬁ(# ~ 2k - 1)p’;)}. 3]
— P2

3. Poisson When k > 2 log(n)
When k is large enough, arguments similar to that in refs. 18 and 19 show that there are approximately a Poisson number of
matching clumps. Each clump has a number of matching k-words that have a geometric distribution. Therefore the number of
k-word matches is approximately a Poisson number of independent geometric random variables and such a sum is called a
compound Poisson distribution. In ref. 20 there is a full treatment of the compound Poisson and sequence matching. Here are
some details.

Let X, be the declumped matching indicators associated with the Y, by

Xi,j:Yi,j lZOOr]:O
)(i,j = (1 - C,,I)K’/ . else
Define a random variable D»., the “declumped D;,” as Z,e; X,. D2 counts the number of maximal exact matches between

A and B (those exact matches that cannot be extended) with length larger than k.
We can compute bounds to a Poisson approximation of D,.. by using the Chen-Stein theorem.

Theorem 3.1. Let X; for i € I be indicator random variables such that X; is independent of {X;},j ¢ Ji. Let W = Z;e; X; and A =
EW and let Z be a Poisson random variable with EZ = \. Then

1—e?
[W—Z| = 2(by + by) = 2(by + by),
and in particular
1—e?
POV =0) = e = by +b2)
where
by=2 X EXEX,,
veluel,
and

by=2, > EXJMX)

vEIV #ucl,

The intensity of this Poisson process is given by the expectation of D.,
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A = ED,, = p§{(1 — po)am + po(i + i — 1)}.

We obtain the upper bounds on the Chen-Stein terms for D».,

by =2, > EXEX,

veEluel,

= > EX,(2k — 1) + m — 2k + 1)ph

vel
= A2k — 1) +m — 2k + 1)pk.

Because of declumping E(X,X,) = 0 fori — i’ =j — j', u € J,. Otherwise, we take E(X,X,) = E(Y,Y,) to make an upper
bound on b, similar to Eq. 2,

b=, 2 EXJX)

vEIvV #uel,

= D EY.Y.)

veluel,
< nm(zk — 1)(}1 +m - 4k + 2)p3/2k 36k + (2k _ 1)(2k z)pk+1/2 y(2k + 1)

To simplify, let » = m, and k = —(a/log(p2))log(n). Additionally, we will assume n >> k >> 1 where appropriate. The
parameter in Poisson approximation can be written as

A= (1= pn® = 0>,
We may bound b; + b, by
b + bz <= 4kn’§ 2a + 4kl’l (3/2+38)a @y (Zk) I/2+7n27(2«/+1)a

Thus, b; + b, has a rate

log(n) log(n) (log(n))?
O(n2a73 +0 ;07243503 +0 @y Da2 -

In nonuniform case, clearly, by + by - 0 when o = 2. Additionally, when one chooses a= 2, A approaches a nonzero constant.
In uniform case, since & = - Land y = 3 1/2(k + 1), by + by — 0 when we take « > . Thus we may approximate D,. with
a Poisson Varlable in a bigger regime in the uniform case.

To obtain an approximate distribution of D, based on D5., we assume that the k-word matches occur in isolated, independent
islands. The number of the islands is approximately Poisson. The lengths of these islands are geometrically distributed according
to a random variable T

P(length=k +T=k+ 1) =(1—py)p5,

corresponding to the size of the extension past the first matching k-word.
The resulting model of D, is a compound Poisson process of independent geometrically distributed variables 73,

Z(A)

~ 2 1+T,,

i=1
where A = (1 — py)pin? and ET; = (p2/(1 — p,)). See ref. 20 for a rigorous treatment of compound Poisson in this setting.

4. Normal When k < :—; log(n)

Stein’s method (16, 21) is one of the many well-known techniques for studying normal approximations. Since its introduction

it has been the basis of much research and many applications. Recently, based on a differential equation and coupling, it has

been applied to obtain the bounds on the distance from normality/multinormality for the sum of local dependent variables

(22-24). Chen and Shao are currently working towards improving these bounds by using concentration inequalities (25).
We employ a version of Stein’s method, Theorem 2.2 from ref. 22 provided below, to obtain the error bounds between the

standardized D, and Normal.

Theorem 4.1. Let Yl, ..., Y, be random variables satisfying |Y; — E(Y;)| = B almost surely,i = 1, ,n, EXL Y = A, Vars!_
Y; = 0?>0and —E E Y= EY| w Let M; C {1, ...,n} besuch thatj € M, if and only if i E M and (Y,, Y) is mdependent
of {Yitkemiom, fori,j=1, ..., n and set D = maxlSiSn|Mi|. Then

YA
np
P\ =w|-ow|=7 5 (DB

oa
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To obtain a normal approximation for D,, we define a standardized auxiliary variable,

_D,—ED, Y, -EY,
B \/Var(Dz) B N} V/Var(Dz) '

Let M, = J,; it is easy to check that u € M, if and only if v € M,, and (Y,, Y,) is independent of {Yo}aenm,um, for u, v €
I. Then for the D in Theorem 4.1, we have D = (2k — 1)(n + m — 2k + 1). And since |Y, — E(Y,)|=1,B =1, and p =
1. Further, from Eq. 3, we have

o= \/Gar(Dz)

1+p,—2p3 P
= (fzﬁz{(Zk — D)@ + i — 4k + 2)(ps/p3 — Dp3* + <7lpip P2 ok - 1)p§>p§ ) :
2

Substituting into Theorem 4.1 (note that the n in the statement of the theorem becomes n?), and letting iz = m, k = a logyp,(n),
we obtain a bound for the nonuniform case

2 _ 2(7= 2
IP(W =w) — ®(w)| = Tn*(2k — 1)*2n — 2k + 1)

1+p2—2p% 2
————— = (2k— 1)p5|p5

1=p>

n*(2k — 1)(2n — 4k + 2)(’7; - 1)p§k + fz2<
P2
which has a rate O(Vlog(n)/n'?73¢). When a < ;1), the error bound is approximately zero. Thus for k = « logy,(n) with 0 <
a< é, W is approximately normal.
We arrive at our result.

Theorem 4.2. For nonuniform i.i.d. sequences, and for k < % logi/p,(n), the D, statistic on k-word of sequences of length n is
approximately normal.

When the underlying sequence is uniformly distributed, p3/p3 — 1 = 0, then, we have

(1+p2—2p3 2
JWVar(D,) = <n2<71 T 2k — Dp5)p5 ),
and we derive the rate,

Tn*(2k — 1)*(2i — 2k + 1)?

1+ p>—2p3
{ﬁZ(M— 2k — 1>p’5)p’§}
1=p>

[PIW=w) — D(w)| =

>

(SRS

which is asymptotically O(log(n)?n' +3/2¢), providing us with no bound. We therefore have proven an approach to normality only
in the nonuniform case.

5. The Nonnormal Case

In numerical results shown later, D, has nonnormal behavior in the case of uniformly distributed letters and small k. To
see just how this happens, let us consider the simplest case of k = 1, a binary alphabet, and the two sequences of the same
length n.

Assume the alphabet is {0, 1}, and P(0 appears) = p, P(1 appears) = q.

Denoting the number of occurrences of 0 and 1 in the two sequences by X and Y, respectively, then

D, =XY+(n—-X)(n -Y).
Obviously X and Y are independent binomial distributions with expectation np and variance npq. So
E(Dy) = n’p? + n’q® = n*((p + q)* = 2pq) = n*(1 = 2pq),
and

Var(D,) = 2n’pg(1 — 2pq) + 2n*(n — Dpq(p — q)*

n2

~—p=g=21

4 p=qg= 2
~2pqlp —q)’n’:p # q.

Letting 0> = Var(D,), we now consider the standardized D,.
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D, — E(D,) _)LY+ n—X)(n-Y) _’12(1 — 2pq)
o T o T o

_2XY nX nY+ 2n’pq

ag g g ag
_2X = np)(Y — np) N n(2p — (Y — np) N n(2p — )X — np)
ag ag o
_ 2npg (X — np)(Y— np) fnp—1) \npq <Y— np) fn@p 1) \npq (X— np)
a \ V% \/% a \/% g \@
with
Dy — E(Dy) _ 2npg(X — np) (Y — np)
o o \npg  \npq
forp =q = %
Note that in the uniform case,
. 2npqg . n/2
Jm = m b

and (X — np)/Vnpq and (Y — np)/Vnpq are approximately independent N (0, 1) by the central limit theorem. So, the limiting
distribution of (D, — E(D7))/o is N(0, 1)-N(0, 1), which obviously is not normal. In fact, the density function of the product
of two independent standard normal is a Bessel function (Ko(|x|)).

In the nonuniform case, we have

fim P4 iy P
- —
nee O e \2pq(p — q)°n
. n@p-1\npg  n@p-1)\npg  2p—1
lim—————— = lim 7 > = b .
n—ow o n—o \,qu(P_q) n A% Ip_q|
So
_ D, —E(Dy) . (n@p—1)\npq (Y —np) n(2p — 1) \hpq (X — np)
lim ———= lim — + —
n—o 4 n—o o \npq o \npq
2p —1
= (N, +N,),
2h-q

where N; and N, are independent N(0, 1). So the standardized D, is approximately normal with expectation 0 and variance
((2p — 1D)?%/2(p — ¢)*) (1 + 1) = 1. Previous work in Section 4 provides the error bound on the normal approximation, which
decays at the rate O(1/Vn).

In the above results, the variance of D, has played an important role to form the normal or nonnormal approximation when
the underlying sequence is nonuniform or uniform. In fact, for any alphabet and any length of the counted word,

Var(D,) = An® + &n?,

where & > 0 in nonuniform case and & = 0 in uniform case.

Table 1. Kolmogorov-Smirnov p values for nonuniform D, compared with normal

k/n 20 X 102 21 % 102 22 % 102 23 X 102 24 % 102 25 X 102 26 X 102 27 X 102
1 0.05862 0.00419 0.13668 0.11486 0.31036 0.09010 0.91967 0.00506
2 0.03365 0.00006 0.00061 0.66297 0.29724 0.16957 0.66064 0.68674
3 0.00000 0.01002 0.05023 0.39328 0.05444 0.05082 0.77163 0.38298
4 0.00000 0.00004 0.00039 0.14959 0.03058 0.26901 0.59183 0.93879
5 0.00000 0.00004 0.00048 0.14381 0.03832 0.04490 0.55703 0.62759
6 0.00000 0.00000 0.00022 0.00403 0.00601 0.08003 0.59902 0.32061
7 0.00000 0.00000 0.00000 0.00009 0.00475 0.56324 0.29819 0.46705
8 0.00000 0.00000 0.00000 0.00000 0.00058 0.11751 0.32351 0.17059
9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00005 0.15591 0.18042
10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.02962 0.11055
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Table 2. Kolmogorov-Smirnov p values for uniform D, compared with normal

k/n 20 X 102 21 X 102 22 X 102 23 X 102 24 X 102 25 X 102 26 X 102 27 x 102
1 0.00000 0.00000 0.00000 0.00000 0.00010 0.00002 0.00001 0.00002
2 0.03811 0.15773 0.28724 0.47452 0.07759 0.19055 0.25803 0.00939
3 0.04802 0.15361 0.12058 0.55153 0.70760 0.22644 0.81058 0.31066
4 0.00000 0.05730 0.04796 0.81343 0.68940 0.65794 0.98177 0.69245
5 0.00000 0.00001 0.23410 0.18908 0.77291 0.10750 0.08259 0.08706
6 0.00000 0.00000 0.00144 0.07070 0.08660 0.72020 0.06702 0.45234
7 0.00000 0.00000 0.00000 0.00000 0.02782 0.69609 0.26900 0.06839
8 0.00000 0.00000 0.00000 0.00000 0.00000 0.06281 0.65713 0.05397
9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.32139
10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00011

Assume the size of the alphabet is d > 2, and (p;){_, are the probabilities of occurrences of the letters. Let (X, Y;){_, denote
the number of occurrences of some letter (in the alphabet) in the two sequences. Then

Dr=X\Y,+XoVo b+ |n— 2 X||ln- DV

with EX; = np;, and Var(X;) = np;(1 — p;).

Whend is large, D5 is therefore a sum of d identically distributed random variables. If they were independent, then asymptotic
normality follows from the usual central limit theorem. Therefore it is natural to conjecture asymptotic normality. Work with
G. Reinert using yet another modification of Stein’s method, exchangeable pairs coupling, has established this result. For small
d and large k the quantity 4% is large, and D, is the sum of 4* identically distributed terms, and again asymptotic normality is
a natural conjecture. We have also made progress on this result.

6. Numerical Experiments

We will now discuss simulation results that support the derived asymptotics. Our simulations were conducted on
randomly generated sequences of a fixed length over the alphabet ({a, ¢, g, t}) where d = 4. The sequences are of independent
letters w1th two distributions of relevance to biological sequence analy51s the uniform dlstrlbutlon (P(a) = P(c) = P(g) =
P(t) = —) and a “G+C-rich” nonuniform distribution (P(a) = P(t) = ., P(g) = P(c) = —)

For each length n we generated 2 X 2,500 sequences and computed the D, statistic for each k using our own software. The
distribution of the 2,500 scores were then compared to both a compound Poisson process and a normal distribution, using the
Kolmogorov—Smirnov test (26) to obtain a p value. As the compound Poisson process does not have an exact computationally
efficient distribution, we compared the D, simulation results to 2,500 samples from a compound Poisson simulation with
appropriate parameters for the given values of n, k, and p,, using the two-sample Kolmogorov—Smirnov test. When the
distributions match, the p values will be distributed on (0, 1) uniformly. When the fit is poor the p values will be near 0.

The results corresponding to the two sequence generation models and the two tests are in Tables 1, 2, 3, and 4. Note that
n is taken on a logarithmic scale; in the first columns » = 100 and in the last columns n = 128 X 100.

For the normal approximations in the nonuniform case, we expect substantial p values for k < - logl/p2 (28 X 10%) ~x/10 +
0.6. For example, for x = 2, we expect normality for & < 0.8. While this is observed in our numerical experiments, the results
suggest that our bounds are by no means tight.

For normality with uniform sequences, for the k = 1 case, D, should fail to be normal. To explain the ray of nonzero values,
we believe we need to have 4% large enough but also need 4 < n = 2 X 100 or k < x/2 + 3.32.

For the compound Poisson approximations in the nonuniform case, the derivations suggest approximate compound Poisson
when k > 2logy, (2* X 10%) ~ 1.2x + 7.2. In the uniform case, the derlvatlons suggest approximate compound Poisson when
k>=: logl/m (2 X 10%) ~ 0.75x + 4.95. These bounds appear to be qulte tight.

We did not expect to see the compound Poisson approximation work in the 4 ~ n or the 4 << n regimes in the uniform
case. In hindsight, we observe the compound Poisson distribution we have chosen approaches a normal distribution (with the

Table 3. Kolmogorov-Smirnov p values for nonuniform D, compared with compound Poisson

k/n 20 X 102 21 % 102 22 % 102 23 X 102 24 % 102 25 X 102 26 X 102 27 X 102
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
5 0.15181 0.00010 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
6 0.01670 0.06138 0.00067 0.00000 0.00000 0.00000 0.00000 0.00000
7 0.08230 0.24738 0.12469 0.00075 0.00000 0.00000 0.00000 0.00000
8 0.78766 0.67140 0.04178 0.14229 0.00667 0.00001 0.00000 0.00000
9 0.24738 0.36250 0.13325 0.67140 0.20728 0.01066 0.00179 0.00000
10 0.50706 0.57613 0.06613 0.52972 0.02357 0.95655 0.14229 0.03027

13986 | www.pnas.org/cgi/doi/10.1073/pnas.202468099 Lippert et al.



Table 4. Kolmogorov-Smirnov p values for uniform D, compared with compound Poisson

k/n 20 X 102 21 X 102 22 X 102 23 X 102 24 X 102 25 X 102 26 X 102 27 x 102
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00059 0.00029 0.00006 0.00409 0.00003 0.00023 0.00549 0.00075
3 0.07657 0.05693 0.02787 0.00605 0.29296 0.02787 0.11658 0.15181
4 0.30940 0.69525 0.03027 0.42112 0.59975 0.10167 0.46307 0.88737
5 0.18346 0.78766 0.11658 0.67140 0.74228 0.29296 0.96602 0.18346
6 0.00104 0.64747 0.13325 0.19509 0.04885 0.69525 0.90400 0.26195
7 0.46307 0.23342 0.46307 0.04885 0.08230 0.48483 0.71892 0.22006
8 0.48483 0.27715 0.03562 0.76524 0.30940 0.91930 0.96602 0.24738
9 0.83039 0.48483 0.19509 0.00199 0.11658 0.74228 0.34418 0.08230
10 0.14229 0.23342 0.78766 0.62356 0.08230 0.07657 0.22006 0.16183

correct mean and variance) when 4% << i, and this should have been something to be expected, though we still have no theoretical
justification for its quality when 4% ~ n.

In the nonuniform case, the compound Poisson process also approaches a normal when 4% << n. However, the variance of
this normal distribution does not match the variance of D,, which explains the lack of fit.

7. Extreme Value Statistics

We have begun to address the issue of the distribution of the statistic D,. However, when doing database searches, we perform
m different comparisons, and we wish to know the p value of the best score of that collection of comparisons. Therefore the
distribution of the maximum of m independent values is a desirable feature of a similarity statistic. That is, one often wishes
to assign a probability to the maximum of a set of scores being larger than a given value. This can be the maximum score of
a single query against a large database of candidates or the maximum of scores coming from “sliding” a query along a long
genome sequence. The last important case is even more difficult because of dependencies. For an illustrative example of
the technical challenge see the work on a profile score distribution (27).
For a random variable X, approaching a standard normal, the asymptotic extreme value distribution is

PM =x) =G(x) =exp(—e ™

with the standardized variable M = V2 log(m)N + 2 log(m) + %log(log(m)) + %log(477), for the maximum value, NU™),
of m independent standard normal random variables.

Using this for intuition, we can explore the fit from treating our approximately normal random variables for D, as if they were
independent normals. This was done in ref. 27 for profiles.

In the figures for this section we make a plot of —log(—log(G(x))) for the cumulative distribution function of 2,500 samples
of the maximum of 100 D scores on both uniformly distributed and nonuniform sequences for various (k, n) values. These plots
should approach the line y = x (for x > 0) in the asymptotic limit. We chose four values for k and n that were just within the
experimentally determined normal regime, (k, n) = (6, 2* X 102), (7, 2> X 10?), (8, 2° X 10?), (9, 27 X 10?). We have also
plotted four null plots that are the result of taking 2,500 samples of the maximum of 100 random variables from a true normal
distribution for comparison (Fig. 1).

standardized score

-3 =2 -1 0 1 2 3 4 5 6 7
—log(-log(j/(N+1)))

Fig 1. The extreme value plot for true normal data.
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standardized score

—log(-log(j/(N+1)))

Fig 2. The extreme value plot for D, on uniform sequences.

We see that Fig. 2 shows the uniform D, plot converging very well to the extreme value distribution. We see that Fig. 3 shows
poor convergence even though the (k, n) values are well within the normal range, as shown by Table 1. This is illustrative of
the technical challenges of establishing rigorous results for these cases. In addition, we point out the famously slow convergence
of the maximum of random variables to their extreme value limiting distribution.

8. Conclusion

We have established a model for the distribution of a word composition (dis)similarity statistic D, for the case where the
underlying sequences are nonuniformly distributed, and we have numerically investigated this statistic on both uniform and
nonuniform sequences. The statistical limits of (compound) Poisson when word matches are rare and of normal when word
matches are common are observed. However, there are “small-word” regimes where D5 is neither, and thus convergence is both
a matter of word length and match probability.

In Section 6, we found that for a nucleotide sequence of EST length (~500), and with the typically selected k = 6 two-codon
word-size, the compound Poisson is a better fit than the normal unless the letter distribution is uniform or close to uniform (where
it is shown, by experiment, to be equivalent).

In Section 5, we saw that D, in the nonuniform asymptotics for £k = 1 and binary alphabet, standardizes to two independent
normals, each of which is dependent only on one sequence and the expected distribution of words in the model. To contribute
asymptotically to the sum D, the product of the standardized count statistics must grow at least as fast as V. Otherwise
“unusual” k-word coincidences between the sequences will be masked. These observations hold for larger k and for nonbinary

N W R LN

standardized score

~log(-log(j/(N+1)))

Fig 3. The extreme value plot for D, on nonuniform sequences.
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alphabets, within certain restrictions on the growth of . Thus, anyone hoping to simply use inner products of word compositions
is likely going to be measuring the sum of the departure of each sequence from the background, which seems to miss the point
of sequence comparison. This mathematics suggests that, asymptotically, one could gain as much insight into pairwise similarity
of nonuniform sequences by pairwise comparing some appropriate indices of background departure, computed per each
sequence.

This result raises the question of which of various compositional statistics could have a tractable distribution and an asymptotic
relevance to pairwise comparison. One possibility we have yet to explore is that of the D, variant used originally by Blaisdell
in ref. 6, where distance replaces the inner product in the comparison of composition vectors.
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