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Thehighmountain regions ofAsia containmore glacial ice than anywhere on the planet
outside of the polar regions. Because of the large population living in the Induswatershed
region who are reliant on melt from these glaciers for fresh water, understanding the
factors that affect glacial melt along with the impacts of climate change on the region
is important for managing these natural resources. While there are multiple climate data
products (e.g., reanalysis and global climate models) available to study the impact of
climate change on this region, each product will have a different amount of skill in
projecting a given climate variable, such as precipitation. In this research, we develop a
spatially varying mixture model to compare the distribution of precipitation in the High
MountainAsia region as produced by climatemodels with the corresponding distribution
from in situ observations from the Asian Precipitation—Highly Resolved Observational
Data Integration Towards Evaluation (APHRODITE) data product. Parameter estimation
is carried out via a computationally efficient Markov chain Monte Carlo algorithm. Each
of the estimated climate distributions from each climate data product is then validated
against APHRODITE using a spatially varying Kullback–Leibler divergence measure.
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1. INTRODUCTION

1.1. PROBLEM STATEMENT AND DATA

The area knownasHighMountainAsia (HMA) is comprised of several important regions,
including the Indus,Ganges, andBrahmaputrawatersheds. The river systems associatedwith
each of these watersheds provide vital resources for hundreds of millions of people (Lutz
et al. 2014; Zhang et al. 2019). Unfortunately, extreme events in these same watersheds
also contribute to natural hazards such as flooding and landslides (Immerzeel et al. 2010;
Lutz et al. 2014). Hence, added scientific understanding of these watersheds and the over
650 glaciers which feed each watershed is crucial to managing these natural resources and
sustaining life in the area.

A principal driver of water availability, glacier mass balance, and glacier runoff in HMA
is precipitation. Complicated by the extreme mountainous terrain, in situ observations of
precipitation are sparse (Maussion et al. 2014; Palazzi et al. 2013). Hence, the primary
scientific understanding of precipitation in HMA comes from digital data products such
as climate models and reanalysis data—a data-assimilated combination of observations
and climate modeling (Riley et al. 2018; Krishnan et al. 2019). While the value of such
digital data products is immeasurable, the fact that these digital products are impacted by
an incomplete understanding of the hydrological processes in HMA suggests that they are
biased in their characterizations of precipitation in the region (Christensen et al. 2019; Yoon
et al. 2019; Mimeau et al. 2019).

As an example, consider the following four digital data products that motivate this
research. First, the Asian Precipitation—Highly Resolved Observational Data Integra-
tion Towards Evaluation (APHRODITE) data product is a continental scale data prod-
uct based on statistical interpolation of rain gauge data (see https://climatedataguide.ucar.
edu/climate-data for more information). Second, the Modern-Era Retrospective analysis
for Research and Applications (MERRA-2) data product is reanalysis data based pri-
marily on the assimilation of satellite observations with the GEOS atmospheric forecast
model (see Gelaro et al. 2017, for more information). Third, the ERA5 data product is
based on data assimilation of a large array of satellite, in situ and snow observations with
the ECMWF weather forecast system (see https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era5 for more information). And, fourth, the Tropical Rainfall Measur-
ing Mission (TRMM) is a purely remote sensing data product (see https://gpm.nasa.gov/
missions/trmm for more information). Example data from each product are provided in
Figure 1. Note that the products do not all have the same resolution and grid boundaries.
For purposes of this research, we regridded ERA5 and MERRA-2 to be on the same grid
as APHRODITE and TRMM (with 0.25◦ × 0.25◦ squares) following the methodology of
Christensen et al. (2019) in order to have matching, high-resolution grids. A future applica-
tion of this research would be to explore applying this model to data products with different
resolutions.

A careful inspection of Fig. 1, themeanmonthly precipitation of themonthsApril through
September in the region as estimated by each data product, shows some discrepancies
between the data products. For example, there is much disagreement between data products

https://climatedataguide.ucar.edu/climate-data
https://climatedataguide.ucar.edu/climate-data
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://gpm.nasa.gov/missions/trmm
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Figure 1. Mean monthly precipitation across the region of interest as estimated by each of the four data products.
Watershed boundaries are outlined, and a few are labeled for reference.

about the precipitation behavior on the Himalayan crest (stretching from the center of the
map to the south-east corner). ERA5 indicates some areas with much higher precipitation
than the rest of the crest, but these same areas have smaller values in the APHRODITE
and TRMM products and don’t show up at all in the MERRA-2 product. Each product
also shows varying degrees of precipitation in the areas surrounding the crest. MERRA-2
indicates that large precipitation events are essentially confined to the crest, while the other
products, especially APHRODITE, show notable precipitation in various other regions. The
products do agree on general trends though, and there are desert regions that all products
show as having little to no precipitation.

Discrepancies such as those presented above are prevalent in digital data products. As
such, data validation is required prior to using any digital data product for scientific dis-
covery. Data validation is the process of comparing the digital data product to a “baseline”
counterpart (typically observational data) to identify any potential strengths and weaknesses
of the product and, potentially, correct for any systemic discrepancies. Knowing where, and
how, these various data products differ allows scientists to understand where these products
might be useful for scientific discovery. Validation also clearly elucidates potential biases
that might enter into scientific results by using these products to, for example, inform a
climate model.

While a complete review of data validation and bias correction methods for climate
models is not possible here (see Maraun 2016; Chen et al. 2019, for holistic reviews),
we briefly review the most common approaches to further motivate the contributions of
this research. Data validation is most commonly done by comparing summary statistics
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of the digital data product to the corresponding baseline. For example, linear scaling, or
the so-called delta method, validates only discrepancies between the mean and variance
of the various data products (see Widmann et al. 2003; Ratna et al. 2017, for examples).
However, other data validation approaches include validating quantiles (Teutschbein and
Seibert 2012; Jakob Themeßl et al. 2011) or validating correlations amongst variables (Vrac
and Friederichs 2015).

1.2. STATISTICAL CHALLENGES

While data validation is common throughout climate science, the process of data val-
idation presents several interesting statistical challenges that are rarely addressed in the
climate literature. First, the distribution of precipitation varies across space. This can easily
be seen in Fig. 2 which shows kernel density plots of the four data products at three different
locations in the domain. These locations are shown in Fig. 3. The spatial variability seen
here also results in correlation between distributions at neighboring locations. The con-
temporary approaches to data validation mentioned above circumnavigate this problem by
performing data validation one location at time. Hence, there is a critical need for validation
methods which model a smoothly changing distribution over space to account for spatial
relationships.

Second, a single data product may be valid over one subregion of the spatial domain
while invalid in others. Using Fig. 1 as an example, the MERRA-2 data product may coin-
cide with APHRODITE in non-mountainous areas while disagreeing with APRHODITE in
mountainous regions. With spatially varying discrepancies between products, aggregated
metrics (such as an overall mean) mask the true discrepancies between data products. That
is, this overall metric would mask any weaknesses (and strengths) in individual data prod-
ucts in capturing local precipitation phenomena such as extreme events. Because of this, it
is important to develop methodology that can provide an overall validation measure of the
product while maintaining flexibility of validating on smaller spatial domains.

The third challenge is the matter of what to validate a data product on. For example,
there are a variety of statistics that can be used for validation such as the mean, median, or
quantiles that are appropriate for certain applications (see references given above). However,
validatingwith themean of the distribution, for example,may be problematic becausemeans
are easily influenced by tail behavior such that two similar data products could appear
dissimilar due to a few very large precipitation events. While using a median would remedy
this issue, such a choice would essentially ignore extremity of tail behavior, which may be
scientifically important to consider.

Fourth, the data products considered here contain exact zeros (or are zero-inflated). Exact
zeros coupled with positivity of precipitation do not suit the support of any standard distri-
butions. Thus, the complexity of precipitation itself presents various modeling challenges.

1.3. RESEARCH GOALS AND CONTRIBUTIONS

In this research, we seek to implement a method for validation of these data products
while accounting for the issues discussed above. Specifically, we develop a spatially varying



Distributional Validation of Precipitation… 103

Figure 2. Density plots of mean monthly precipitation for three different locations as represented by each of the
data products. (Note that zero values are excluded and summarized by a proportion.) It is clear that precipitation is
represented differently by each of the data products and that these differences vary by location. Thus, it is necessary
to use a spatially varying model for validation. (See Fig. 3 for a reference of these locations.).

mixturemodel that allows the distribution of precipitation to vary smoothly over the domain.
This is accomplished by allowing the weights of the mixture model to vary smoothly over
space. Importantly, by augmenting the parameter space with latent variables, we show that
the majority of the parameters in our spatially varying mixture model have conjugate full
conditional distributions allowing for ease of computation and good mixing of a Markov
chain Monte Carlo (MCMC) sampling scheme.

Using the spatially varying mixture model, we then propose to perform validation using a
pointwise Kullback–Leibler (KL) divergence measure. This pointwise KL validation metric
can highlight areas where each data product is valid while also allowing aggregation across
the spatial domain to produce an overall validation metric for each product. Further, because
wemodel the entire distribution at each spatial location, our proposed methods also have the
flexibility of performing validation on any summary of that distribution such as the mean,
median or quantile if desired.
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Figure 3. Locations associated with Fig. 2.

The remainder of this paper is outlined as follows: In Sect. 2, the spatially varying
mixturemodel is presented, alongwith its sampling algorithm and algorithms for calculating
validation metrics. In Sect. 3, the spatially varying mixture model fit results are displayed
and compared using the various validation metrics. Finally, Sect. 4 contains conclusions and
discusses future areas of research.

2. MODEL DESCRIPTION

In this section, we propose our spatially varying mixture model for precipitation along
with our chosen metrics to perform data validation. Further, we discuss a latent variable
augmentation approach that allows for more convenient posterior sampling.

2.1. SPATIALLY VARYING MIXTURE MODEL

Let Pt (s) denote the precipitation value at time t = 1 . . . T and location s ∈ D for a
spatial domain D ⊂ R

2. To characterize important features of precipitation such as heavy
right skewness and zero inflation, precipitation at each location was modeled as a mixture
between a point mass at zero and K log-normal distributions. We assume

Pt (s)
ind∼ f (p|s) =

{
ω0(s) if p = 0∑K

k=1 ωk(s)LN (μk, σk) if p > 0
(1)
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where {ωk(s)}Kk=0 are spatially varying mixture weights and LN (μk, σk) denotes the log-
normal distribution with log-mean μk and log-standard deviation σk . Notably, while any
distribution with positive support could be used, the log-normal distribution was specifically
selected because of its tendency to have heavy tails, which is especially appropriate for mod-
eling precipitation. For identifiability purposes in mixture models (Celeux 1998; Stephens
2000; Jasra et al. 2005), we order the mixture components such that μ1 < μ2 < · · · < μK ,
which will also be important for modeling purposes below.

Notably, the model in Eq. (1) assumes temporal independence and no seasonal varia-
tion. Because we subset the data here to the summer season (April–September), directly
accounting for seasonal variation is not necessary. Further, given that our data products are
monthly precipitation, while not explicitly independent, the temporal dependence present
in our data is weak and short-lived (as indicated by an exploratory data analysis). Hence,
this assumption is reasonable given our considered data products for this research but may
not be appropriate for all data products.

Importantly, themixtureweights in (1) are location-specific,which allows the distribution
of precipitation to vary at each location. As such, some locations (e.g., themountain ridges of
HMA) may observe higher amounts of precipitation than others (e.g., the low-lying plains).
In modeling the mixture weights, we desire to (i) ensure

∑K
k=0 ωk(s) = 1 for all s and (ii)

allow ωk(s) to vary smoothly over the spatial domain. To accomplish both of these goals,
we lean on the fact that the {μk} are ordered and follow the approach of Albert and Chib
(1993) by defining

ωk(s) =
∫ ck+1

ck

1√
2πσ 2

exp

(−(x − μu(s))2

2σ 2

)
dx (2)

where c0 = −∞ < c1 = 0 < c2 < · · · < cK+1 = ∞ are a series of cut points andμu(s) is a
location-specificmean. Note that, to ensure identifiability, one of the (non-infinite) cutpoints
must be fixed; for our purposes, c1 was fixed at 0. Under this parameterization, if μu(s)
varies smoothly over space, then ωk(s) will also vary smoothly over space. Furthermore,
this parameterization allows for all K + 1 weights ω0(s), . . . , ωK (s) to be governed by a
single parameter μu(s), greatly reducing the parameter space.

Under (2), spatial smoothing is imposed on the {ωk(s)} by imposing spatial smoothing
on {μu(s)}. Hence, we parameterize μu(s) using basis function expansions. That is, we let

μu(s) = b′(s)θ (3)

where b(s) = (1, b1(s), . . . , bP (s))′ is a set of basis functions (defined below) and θ are
the associated coefficients. While any set of spatial basis functions can be used (see Cressie
and Johannesson 2008; Banerjee et al. 2008; Nychka et al. 2015; Ma and Kang 2020,
for examples), because this research focuses on a gridded data product, we opt to use the
Moran basis functions of Hughes and Haran (2013) built from an inverse distance-weighted
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neighborhood matrix. That is, for the adjacency matrix A = {ai j }, we set

ai j =
{
0 if i = j

1/‖si − s j‖ if i 
= j
(4)

where ‖si − s j‖ is the Euclidean distance between each pair of locations. The basis function
b′(s) (with the exception of the intercept term) is then the sth row of the eigenvectors of the
matrix (I−J)A(I−J)where J is amatrix of ones. Further, the cumulative sumof the positive
eigenvalues of (I − J)A(I − J) can be interpreted to represent the percentage of positive
spatial variation explained by the basis functions (eigenvectors). For this research, to balance
computational efficiency while still capturing spatial variability, we used P = 94 basis
functions. These 94 basis functions accounted for, approximately, 50% of the theoretical
spatial variance, but Hughes and Haran (2013) show that often only 10% of the spatial
variation needs to be explained to adequately capture observed spatial patterns.

Under the Bayesian approach, prior assumptions were primarily selected for ease of sam-
pling. The cutpoints c2 . . . cK (which are all of the cutpoints that were not fixed) were trans-
formed in order to sample more easily. These transformed cutpoints (denoted as δ2 . . . δK )
follow the suggestion by Higgs and Hoeting (2010) and are calculated as:

δk = log(ck − ck−1) where k = 1 . . . K (5)

The transformed cutpoints were assumed to have a uniform prior distribution. The parameter
vector θ was assumed to have aN (0, I) prior distribution. Note that this prior is somewhat
informative. This is intentional: since we impose spatial smoothing on the model through
b′(s) and θ , we enforce some level of spatial smoothing by penalizing values of θ that are
far from 0. Adjusting this prior would be one method of adjusting the strength of the spatial
smoothing.

2.2. LATENT VARIABLE AUGMENTATION

The model in Sect. 2.1, while flexible, presents some computational challenges when
estimating parameters. For example, the θ parameters would require a Metropolis-type
algorithm to sample from the posterior. However, in this section, we propose an equivalent
model specification using latent variable augmentation that allows for more convenient
posterior sampling for all parameters except for the cut points c0, . . . , cK .

First, let Zt (s) ∈ {0, . . . , K } represent a latent indicator for the mixture component. That
is,

Pt (s)|(Zt (s) = k)
i id∼

{
δ0 if k = 0

LN (μk, σk) if k ∈ {1, . . . , K } (6)

where δ0 is theDirac delta function (a pointmass) at 0 and Zt (s) is a discrete randomvariable
with Prob(Zt (s) = k) = ωk(s). Notice that marginalizing over Zt (s) yields Equation (1).
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Next, because we label the mixture components based on ordering such that μ1 < μ2 <

· · · < μK , we canmodel Zt (s) as an ordered multinomial, spatial random variable. As such,
we can employ the methods of Higgs and Hoeting (2010) and Schliep and Hoeting (2015)
and further augment the parameter space with another latent variableUt (s) ∼ N (μu(s), 1)
such that,

Zt (s) =
K∑

k=0

k × 1{ck < Ut (s) < ck+1}. (7)

Notably, integrating out theUt (s), we have Prob(Zt (s) = k) = ωk(s)which is equivalently
defined by Eq. (2).

Using the above latent variable augmentation, we can now directly sample all model
parameters, with the exception of the cut points, from their conjugate complete conditional
distributions. The overall Gibbs sampling algorithm is given by Algorithm 1, but here we
point out a few important features of the algorithm. First, notice that there is a relationship
between the Zt (s) and Ut (s). That is, given Ut (s), Zt (s) is known via Eq. (7). Hence, only
Ut (s) needs to be sampled but doing so results in a non-conjugate form of the complete con-
ditional distribution. Therefore, Algorithm 1 samples both Zt (s) andUt (s) via composition
where Ut (s) is integrated out to allow for efficient sampling of Zt (s). Then, conditional on
Zt (s), the complete conditional distribution of Ut (s) is a truncated Gaussian distribution.

Algorithm 1: Gibbs Sampler for Spatially Varying Mixture Model
Set initial values of all parameters {μk, σk}, {Zt (s)}, {Ut (s)}, {ck} and θ .
for j in 1:J do

1. Sample Zt (s) and Ut (s) jointly via composition by
a. Set Zt (s) = 0 if Pt (s) = 0 otherwise sample Zt (s) with probabilities

ω�
k(s) ∝ ωk(s)LN (Pt (s) | μk, σk)

b. Sample Ut (s) ∼ T N (μk(s), 1, cZt (s), cZt (s)+1) where T N (m, v, l, u) is the
truncated normal distribution with mean m, variance v, lower end point
l and upper end point u.

2. Noting that {log(Pt (s))} where Zt (s) = k are i id N (μk, σk) random variables,
sample {μk, σk} via their conjugate complete conditional distribution.
3. Sample the cut points c2, . . . , cK via the Metropolis accept–reject algorithm.
4. Noting that Ut (s) are i id N (b′(s)θ), 1) random variables, sample θ from its
Gaussian complete conditional distribution.

Next, as noted in Albert and Chib (1993), the first cut point c1 needs to be fixed for
identifiability reasons (otherwise it is completely confounded with the meanμu(s)). Hence,
we draw c2, . . . , cK from their complete conditional using an adaptive Metropolis accept–
reject algorithm.We again follow the convention of Schliep andHoeting (2015) and integrate
out the latentUt (s) to sample c2, . . . , cK from their posterior distribution given {Zt (s)} and
μu(s).
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2.3. VALIDATION METRICS

Theprimaryvalidationmetric usedhere is theKullback–Leibler (KL)divergencemeasure
(Kullback 1997). This metric, intuitively, measures the amount of information lost when
some reference distribution P(x) is approximated by another distribution Q(x). Define

DKL(P || Q) =
∫
X

P(x)log

(
P(x)

Q(x)

)
dx (8)

to be the KL divergence where X is the support of the distribution (which, in the case
of our HMA application, is [0,∞)). First, notice that if P(x) = Q(x) for all x then
DKL(P || Q) = 0 suggesting no information loss and a lower bound of zero. How-
ever, it is important to note that this metric is asymmetric, meaning that DKL(P || Q) 
=
DKL(Q || P), hence the necessity of choosing a reference distribution to validate against.

For the current research, we consider the KL divergence between the fitted mixture
distributions in Eq. (1) for each data product and the model fit to APRHRODITE as the
reference distribution. We calculate DKL for each location s ∈ D using Monte Carlo
integration and the fact that DKL = EP (log(P(x)) − log(Q(x))). That is, we sample
precipitation values Pt (s) ∼ f̂ (p | s) where f̂ (p | s) is the mixture distribution in Eq. (1)
with parameters fixed at their respective posterior means.

We propose that digital data validation using KL divergence is most appropriate because
the KL divergence captures all aspects of the distribution of the data. However, there may be
specific research questions that are better addressed by comparing certain summary statistics.
For example, perhaps the main quantity of interest is the extremes of the distributions in
which case we may wish to validate on, say, the 0.95 quantile of the distribution. Because
we focus on modeling the entire distribution of the data, we are also able to perform data
validation on these other metrics. For example, to validate on a metric other than DKL we
can merely (i) sample many Pt (s) from f̂ (p | s) for each data product, (ii) calculate the
chosen summary statistic from each of the two samples and (iii) calculate the difference of
the summary statistics of each distribution. Hence, while we focus on DKL , our modeling
strategy is highly flexible in validating data products on various summary statistics.

3. RESULTS

The spatially varying mixture model described in Sect. 2 was fit using Algorithm 1. To
assess convergence properties, three chains were run for each data product. For ERA5 and
MERRA-2, 150,000 iterations were run with the first 50,000 constituting a burn-in period
with the remaining being thinned by 100 to reduce autocorrelation and storage space. In
our assessment of convergence, the MCMC algorithm to fit the model to APHRODITE
and TRMM took longer to converge. Hence, for those data products 250,000 iterations
were run, with a 50,000 burn-in period and thinning every 200th iteration. Code for imple-
menting the sampler, as well as the data used, is available at https://github.com/lynsiewarr/
spatiallyvaryingmixture.

In the early stages of this research, the parameters {μk, σk} were estimated as part of
the MCMC algorithm outlined in Algorithm 1, but this caused the algorithm to converge

https://github.com/lynsiewarr/spatiallyvaryingmixture
https://github.com/lynsiewarr/spatiallyvaryingmixture
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Figure 4. KL divergence from APHRODITE for the different data products for different numbers of components.

extremely slowlywhile creating issues with identifiability, and it necessitated handling order
constraints to maintain consistent labels on the μ and σ parameters. To avoid these issues
and prioritize model parsimony, the μ and σ parameters were fixed. By fixing {μk, σk}
while allowing the weights {ωk(s)} to be estimated, the mixture components in Eq. (1)
are, effectively, a basis function expansion for the underlying distribution. This still results
in a model flexible enough to capture the distribution of the data. Fixing {μk, σk} has the
added benefit of improved interpretability between data products, as each part of the mixture
becomes a similar “precipitation regime.” For example, it is useful to compare how much
one data product utilizes the highest precipitation component to how much another utilizes
it (which would not be possible if the means of the components were not consistent across
data products). To select these values, the nonzero data points from all four data products
were divided into K equal intervals (rather than percentiles, which would have prevented
the components from accurately representing the tails) and the estimators

μ̂ = log

(
E[X ]2√

Var[X ] + E[X ]2

)
(9)

σ̂ 2 = log

(
Var[X ]
E[X ]2 + 1

)
(10)

were usedwhereE[X]was calculated as themiddle of the interval, andVar[X]was calculated
as the square of half the width of the interval.

The total number of nonzero components K was selected by examining both DIC and the
KL divergence between APHRODITE and each other product, for several different numbers
of components. To enable good mixing and avoid identifiability problems, it would be
optimal to use as few mixture components as possible while still capturing the differences
between products. The DIC values were 1.55e7, 1.39e7, 1.35e7, 1.34e7 and 1.33e7 for
K = 2, 4, 7, 10, 14, respectively. Further, Fig. 4 shows the changing KL divergence for
each product across the numbers of components. For ERA5 and TRMM, it appears that
most of the differences between the product in question and APHRODITE are captured at
K = 4, as the increase in KL divergence and decrease in DIC slow there. However, we
selected K = 7 (for all data products) to better capture the differences between MERRA-2
and APHRODITE, since the KL divergence for MERRA-2 did not plateau as quickly and
the DIC value was lower.

Convergence was assessed by examining trace plots (from one of the chains) and calcu-
lating Monte Carlo standard error (Flegal et al. 2008) and the Gelman–Rubin diagnostic
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Figure 5. Mixture weights of the zero component and the first, fourth, and last lognormal components of the
mixture distribution across space.

(Cowles and Carlin 1996). While some parameters mixed and converged better than others,
overall the convergence diagnostics indicated that we achieved sufficient mixing.

3.1. MODEL FIT AND QUALITATIVE PRODUCT COMPARISON

The first step in performing product validation according to the abovemethods is ensuring
that the fitted mixture distributions match the each data product individually. However,
examining the model fit for the spatially varying mixture model is a daunting task since
there are distributional fits for each data product across over 4000 locations in our example.
Further, in many of the locations, there were very few nonzero precipitation values to
assess the model fit on. Thus, to assess model fit, we first examined the difference in the
estimated probability of the precipitation being zero (ω0) compared to the actual proportion
of zero values in the data across space (see Figure 1 in the supplementary material). We also
examined the estimated distribution compared with a kernel density estimate of the data at
a few example locations. Both of these comparisons indicated a model fit that is satisfactory
for all the data products. Admittedly, however, both of these comparisons do not necessarily
constitute a full model fit evaluation since our model includes spatial smoothing constraints.
However, the results from these comparisons give confidence in our data validation below.

As a first qualitative validation of the data products, because we fixed themixture compo-
nents, we can compare the data products based on the probability of precipitation belonging
to any given mixture component. It is clear from Fig. 5 that the model fits for the ERA5 and
MERRA-2 data products heavily utilize the zero component in much of the desert regions,
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Figure 6. Expected value (mm/month) of the distributions at each location across the region.

while APHRODITE and TRMM use it to a lesser degree. APHRODITE and TRMM appear
to detect (or predict) more small, nonzero precipitation events, which are captured in the
small andmoderate components (components 1 and 4 are shown as examples). The different
data product fits all appear to use the most extreme component (component 7) to similar
degrees.

To further qualitatively compare the different data products, we examined the expected
value of the distributions at each location as shown in Fig. 6. These figures also seem to
indicate a closer similarity between APHRODITE and TRMM than between APHRODITE
and ERA5 or MERRA-2. These differences can be seen in the amount of area that have
expected values close to zero, and in the higher extremes along the ridge.

3.2. QUANTITATIVE PRODUCT COMPARISON

In order to quantitatively compare ERA5, MERRA-2, and TRMM relative to APHRO-
DITE, the Kullback–Leibler divergence was calculated between the model fit to each of
the data products and the model fit to APHRODITE (the reference distribution). The KL
divergence was calculated between the distributions at each individual location. The KL
divergence across the region for each comparison can be seen in Fig. 7.

Consistent with the qualitative analysis in the previous section, it seems that TRMM is
most similar to APHRODITE in nearly every region according to thismetric (though parts of
the high KL region in TRMMmay be outperformed by ERA5). For ERA5 and MERRA-2,
the similarities are much closer along the Himalayan crest, while the desert regions are more
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Figure 7. Kullback–Leibler divergence from APHRODITE for each of the three other data products across the
region of interest. According to this metric, TRMM has the precipitation distributions closest to APHRODITE’s
over most of the region .

Table 1. Average KL divergence for the overall region, region 1, and region 2 (as highlighted in Fig. 8) for each
of the three data product comparisons to APHRODITE

Overall Region 1 Region 2

ERA5 1.678 0.194 2.240
MERRA-2 1.610 0.297 1.979
TRMM 0.155 0.018 0.385

dissimilar to APHRODITE (likely because of their inability to detect smaller precipitation
events as discussed above). As an overall measure of data product validation, the average
KL divergence values across the region can be seen in Table 1.

One particular advantage of our method is that it allows for comparison in certain regions
of interest. For example, we can calculate the KL divergence between the model fit for
APHRODITE and the model fits for the other data products specifically for the two regions
highlighted in Fig. 8. The average KL divergence for each of those regions, as well as the
overall KL divergence, is shown in Table 1 for each data product. Notably, each data product
seems to perform the best (in terms of comparison to APHRODITE) along the Himalayan
crest (Region 1). However, there is more discrepancy between the data products on the
western edge of HMA (Region 2).

Our validation approach here focuses on estimating the entire distribution of precipi-
tation across the spatial domain. However, because we estimate the distribution, we can
easily perform validation of the different data products for various statistics of interest. For
example, we can compare the different data products based on the mean, median, or 95th
quantile of the fitted distribution. An example of such statistical validation (as opposed to
distributional validation) is given in Fig. 9, which displays a spatial map of the difference
in the 95th quantile (similar maps showing the difference in mean and median are included
in supplementary materials).

Figure 9 shows that each data product differs quite substantially from APRHODITE in
terms of extreme precipitation. That is, along the Himalayan crest, ERA5, MERRA-2 and
TRMM all seem to understate extreme precipitation (compared with APHRODITE), while
overstating extreme precipitation in the high plains and valleys. It is important to note that
the greatest discrepancies in the 95th quantiles occur along the Himalayan crest, while the
Himalayan crest has relatively small discrepancies according to the KL divergence metric.



Distributional Validation of Precipitation… 113

Figure 8. Highlighted regions (red) indicate regions that KL divergence is calculated for in Table 1. Region 1 is
on the left, and region 2 is on the right.

Figure 9. Difference in 95th quantile (mm/month) of precipitation distributions between APHRODITE and the
other data products across the region. The difference is calculated as the 95th quantile of the fitted distribution to
APHRODITE subtracted from the 95th quantile of the fitted distribution to the other data product.

This demonstrates the use of KL divergence as a general distribution summary that is not
oversensitive to outliers. We would argue this is a better representation of the distribution
as a whole.

4. CONCLUSION

In this research, we developed a spatially varying mixture model to estimate the density
of precipitation across a heterogeneous region in High Mountain Asia. Through the use
of latent variable techniques, we also developed a computationally feasible way of fitting
the associated mixture to big data. Having a fitted distribution for precipitation, we then
validated various precipitation data products for the region using KL divergence and other
distribution summary statistics. Importantly, this validation enables either point-by-point or
global comparisons of the products so as to inform scientists on the strengths andweaknesses
of each product.

While this work is an interesting first validation of data products, this work does not
answer why observed differences occur. For example, does elevation explain the difference
in the distributions? An interesting follow-up analysis would be to develop some sort of
regression model that explains the differences between the distributions. This, in its own
right, has various statistical challenges including defining a regression model with a dif-
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ference between distributions as a response. These are important questions that we hope to
address in future research.

Though the various metrics for comparison reveal different information about the dis-
tribution similarities between data products, all the validation metrics used in this research
indicate that TRMMprecipitation is themost similar toAPHRODITE precipitation inmodel
fit at most locations. However, the approach used here allows for the identification of specific
locations where another data product may be more comparable according to the preferred
metric. In other words, using ourmodelingmethodswe are able to validate each data product
in any given user-defined region.

We specifically recommend using theKLdivergencemetric for comparison as it evaluates
the entire distribution and is not overly sensitive to outliers. Because of these features, we
believe it provides a better picture of the water resources available (which is especially
important around the Himalayan crest since that is where most of the precipitation occurs).

While the proposed mixture model generally fit the precipitation data well, the μ and
σ parameters could also be estimated to potentially improve model fit. In early phases of
this research, estimating μ and σ was attempted for this problem but there were issues
with convergence and identifiability that made the implementation difficult. Furthermore,
in terms of model fit, the locations with small amounts of precipitation were most prevalent
because they far outnumber the high precipitation locations. This resulted in poor fits for
the high precipitation locations, which may be unacceptable for applications where the right
tail is of scientific interest.

For this research, we considered validation of data products on the same resolution.
However, different data products are often available on different resolutions and grids. A
potential future research avenue is to develop similar methodology that can be applied to
different data products at different resolutions and grids.
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