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Abstract—We study the problem of finite-time constrained
optimal control of unknown stochastic linear time-invariant
systems, which is the key ingredient of a predictive control
algorithm – albeit typically having access to a model. We propose
a novel distributionally robust data-enabled predictive control
(DeePC) algorithm which uses noise-corrupted input/output data
to predict future trajectories and compute optimal control inputs
while satisfying output chance constraints. The algorithm is based
on (i) a non-parametric representation of the subspace spanning
the system behaviour, where past trajectories are sorted in Page
or Hankel matrices; and (ii) a distributionally robust optimization
formulation which gives rise to strong probabilistic performance
guarantees. We show that for certain objective functions, DeePC
exhibits strong out-of-sample performance, and at the same
time respects constraints with high probability. The algorithm
provides an end-to-end approach to control design for unknown
stochastic linear time-invariant systems. We illustrate the closed-
loop performance of the DeePC in an aerial robotics case study.

Index Terms—Data-driven control, predictive control, distri-
butionally robust optimization.

I. INTRODUCTION

O
PTIMAL control of unknown systems can be approached

in two ways: model-based and data-driven. In model-

based control, a predictive model for the system of inter-

est is first identified from data and subsequently used for

control design. What have come to be known as “data-

driven methods”, on the other hand, aim to design controllers

directly from data, without explicitly identifying a predictive

model. These methods are suitable for applications where first-

principle models are not conceivable (e.g., in human-in-the-

loop applications), when models are too complex for control

design (e.g., in fluid dynamics), and when thorough modelling

and parameter identification is too costly (e.g., in robotics).

Data-driven control has recently gained a lot of popularity,

but most methods cannot be applied (respectively, lack formal

certificates) for real-time control of safety-critical systems.

In this work, we focus on a data-driven control technique for

unknown, stochastic, and constrained linear systems. In partic-

ular, we present a method for finite-horizon optimal predictive

control using input/output data from the unknown system,

where the system behaviour is characterized by a data matrix

time series. This method was first presented for deterministic

systems in [1] and was later extended to stochastic systems

in [2]. These works were motivated by [3] in which a unique

method of direct data-driven open-loop control was conceived

based on the seminal work on behavioural systems theory [4].

All authors are with the Department of Information Technology and Elec-
trical Engineering at ETH Zürich, Switzerland {jcoulson, lygeros,

dorfler}@control.ee.ethz.ch. The research was supported by the
ERC under project OCAL, grant agreement 787845, and ETH Zürich funds.

A key challenge for such data-driven control methods is

ensuring the performance and safety of the system in the pres-

ence of uncertainties, corrupted data, and noise. In this work,

we present an end-to-end optimal data-driven control approach

which comes with such guarantees but without explicitly

identifying a predictive model and is agnostic to the particular

probabilistic uncertainty. The approach combines the so-called

data-enabled predictive control (DeePC) method from [1], [2]

and distributionally robust optimization techniques from [5].

Data-driven control has been historically approached using,

e.g., iterative feedback tuning and virtual reference feedback

tuning [6], [7]. More recently the default approach is of-

ten reinforcement learning. There are many approaches to

reinforcement learning, many of which are episodic, where

learning and control alternate; see [8] for a review of methods

and challenges. Here, we follow different lines of literature.

Behavioural Framework for Control: Instead of learning a

parametric system representation, one can describe the entire

subspace of possible trajectories of a linear time-invariant

(LTI) system only in terms of raw data sorted into a Han-

kel matrix. This result became known as the fundamental

lemma [4], has been inspired by subspace system identifica-

tion [9], and was first leveraged in [3] for the computation of

open-loop control and for simulating system responses. The

result was used in [1] in which a predictive control algorithm

was proposed and was extended for stochastic systems in [2].

Robust closed-loop stability guarantees have been provided

in [10]. Additionally, numerical case studies have illustrated

that the algorithm performs robustly on some stochastic and

weakly nonlinear systems and often outperforms system iden-

tification followed by conventional model predictive control

(MPC) [11]–[13]. The behavioural framework was used in [14]

to construct explicit feedback controllers. Since then, the

behavioural framework has become popular for control design

giving rise to numerous methods [15]–[20].

Learning-based MPC: In learning-based MPC the unknown

system dynamics are substituted with a learned model mapping

inputs to output predictions; see [21] for a comprehensive sur-

vey. A learning MPC approach for iterative tasks is presented

in [22]. Other approaches conceptually related to ours exploit

previously measured trajectories (i.e., motion primitives or

trajectory dictionaries) based on which they synthesize new

trajectories [23]–[25]. These methods, however, require learn-

ing a dictionary of libraries that best fits a dataset, but do not

take into account the control objective.

Sequential System Identification and Control: System iden-

tification (ID) produces a nominal model and an uncertainty

estimate allowing for robust control design. Most approaches

offer asymptotic guarantees, but some provide finite sample
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certificates [26]–[29]. In this spirit, an end-to-end ID and

control pipeline is given in [30], [31] and arrives at a data-

driven control solution with guarantees on the sample effi-

ciency, stability, performance, and robustness. We refer also

to the earlier surveys on identification for control [32], [33].

Well-known short-comings of sequential ID and control are as

follows [32]–[35]: The system ID step is known to be the most

time consuming part of model-based control design. Further-

more, most system ID techniques seek the model that best fits

the data, but do not take into account the control objective,

possibly leading to unsatisfactory performance. Finally, prac-

titioners often demand end-to-end automated solutions. Lastly,

we mention approaches related to subspace identification and

(in hindsight) also to the behavioural perspective: [36] derives

a linear model from a Hankel matrix to be used for predictive

control (see also [37] for an overview of subspace methods

for identification and predictive control). Connections between

indirect data-driven control (sequential system ID and control)

and direct data-driven control are discussed in [38].

Stochastic MPC: To account for the stochastic uncertainty

in the system dynamics, stochastic MPC approaches usually

consider minimizing the expectation of the objective function,

while satisfying chance constraints [39]. While chance con-

straints may be unsuitable for applications where constraint

violation has catastrophic consequences, they are often used

when transient violations are allowed or when violations are

associated with financial penalties. Closest to our work is [40]

in which a stochastic MPC approach is developed for the

case when the probability distribution of the stochastic dis-

turbance is unknown. The authors consider a distributionally

robust approach to safe-guard against the unknown distribution

assuming that an accurate system model is given.

The approach of this paper follows our earlier work [1], [2].

Our contributions are as follows:

Distributionally robust data-driven control formulation:

We formulate a novel distributionally robust data-enabled pre-

dictive control problem based on behavioural systems theory

and distributionally robust optimization.

Probabilistic guarantees on performance: We show that

a distributionally robust optimal control problem admits a

tractable reformulation, and with high confidence, its solutions

exhibit strong out-of-sample guarantees. That is, we prove that

the optimal value of the tractable formulation is an upper

confidence bound on the out-of-sample performance of an

optimal worst-case solution. We provide sample complexity

results, and are able to leverage additional data measurements

in comparison to [2]. Furthermore, the distributional nature

of the robustness means that the method is robust against

a set of systems compatible with the data collected, which

can include non-Gaussian and non-additive noise as well as

(weakly) nonlinear systems.

Safety through chance constraint satisfaction: We enforce

chance constraints on the outputs of the system using a

distributionally robust conditional value-at-risk formulation.

We provide a tractable reformulation of the chance constraints

and provide sample complexity results such that they hold

with high confidence and are agnostic to the underlying

probabilistic uncertainty.

Tight guarantees due to new data structure: We provide a

novel formulation of the so-called fundamental lemma from

behavioural system theory by proving that the subspace of

trajectories of an LTI system can be spanned by trajectories

organized in a Page matrix. This is in contrast with all of the

literature leveraging the behavioural framework for control in

which a Hankel matrix is used. In particular, this provides a

novel contribution relative to [1], [2] as well as the body of

literature leveraging the behavioural framework for control.

Furthermore, we show that this alternative matrix structure

gives tighter guarantees and results in better performance.

The guarantees provided are for the finite-horizon optimal con-

trol problem. Providing guarantees for a closed-loop receding

horizon implementation is a subject for future work. We refer

to [10] for related results in this direction.

Section II reviews preliminaries on behavioural systems

and presents non-parametric representations. In Section III,

we present the data-enabled predictive control algorithm for

deterministic systems. In Section IV we present a distribu-

tionally robust data-enabled predictive control algorithm for

stochastic systems. In Section V, we illustrate the main results

in simulation on a quadcopter and present a detailed analysis

of the hyperparameters involved. We make concluding remarks

in Section VI. All proofs have been deferred to the Appendix.

Notation: We denote by Z≥0, and Z>0 the set of non-

negative and positive integers respectively. Given x, y ∈ Rn,

〈x, y〉 := x⊤y denotes the usual inner product on Rn. We

denote the associated dual norm of a norm ‖ · ‖ on Rn by

‖x‖∗ := sup‖y‖≤1〈x, y〉. The convex conjugate of a function

f : X → R is denoted by f∗(θ) := supx∈X〈θ, x〉 − f(x).
We define the positive part of a real-valued function f as

f+(x) := max{f(x), 0}. We denote by δx the Dirac distribu-

tion at x. Given a signal u : Z → Rm, we denote the restriction

of the signal to an interval by u[1,T ] := col(u1, . . . , uT ),
where col(u1, . . . , uT ) denotes the stacked column vector

(u⊤
1 , . . . , u

⊤
T )

⊤. We use the ·̂ symbol to denote recorded data

samples and to indicate that objects depend on data samples.

II. BEHAVIOURAL SYSTEMS

A. Preliminaries and Notation

Behavioural system theory is a natural way of viewing a

dynamical system when one is not concerned with a particular

system representation. This is in contrast to classical system

theory, where a particular parametric system representation

(such as a state-space model) is used to describe the behaviour,

and system properties are derived by studying the chosen

representation. Following [41], we define a dynamical system

and its properties in terms of its behaviour.

Definition 2.1: A dynamical system is a 3-tuple

(Z≥0,W,B) where Z≥0 is the discrete-time axis, W is a

signal space, and B ⊆ WZ≥0 is the behaviour.

Definition 2.2: Let (Z≥0,W,B) be a dynamical system.

(i) (Z≥0,W,B) is linear if W is a vector space and B is a

linear subspace of WZ≥0 .

(ii) (Z≥0,W,B) is time invariant if B ⊆ σB where σ is

the backward time shift defined by (σw)(t) = w(t + 1)
and σB = {σw | w ∈ B}.
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(iii) (Z≥0,W,B) is complete if B is closed in the topology

of pointwise convergence.

Note that if a dynamical system satisfies (i)-(ii) then (iii) is

equivalent to finite dimensionality of W (see [41, Section 7.1]).

We denote the class of systems (Z≥0,R
m+p,B) satisfying (i)-

(iii) by Lm+p, where m, p ∈ Z≥0. With slight abuse of

notation and terminology, we denote a dynamical system in

Lm+p only by its behaviour B.

Definition 2.3: The restricted behaviour in the interval

[1, T ] is the set BT = {w ∈ (Rm+p)T | ∃ v ∈ B s.t. wt =
vt, 1 ≤ t ≤ T}. A vector w ∈ BT is called a T -length

trajectory of the dynamical system B.

Definition 2.4: A system B ∈ Lm+p is controllable if for

every T ∈ Z>0, w1 ∈ BT , w2 ∈ B there exists w ∈ B

and T ′ ∈ Z>0 such that wt = w1
t for 1 ≤ t ≤ T and wt =

w2
t−T−T ′ for t > T + T ′.

In other words, a behavioural system is controllable if any two

trajectories can be patched together in finite time.

B. Parametric system representation

Without loss of generality, any trajectory w ∈ B can be

written as w = col(u, y), where col(u, y) := (u⊤, y⊤)⊤

(see [42, Theorem 2]). In what follows, we will associate u

and y with inputs and outputs. There are several equivalent

ways of representing a behavioural system B ∈ Lm+p, in-

cluding the classical input/output/state representation denoted

by B(A,B,C,D) = {col(u, y) ∈ (Rm+p)Z≥0 | ∃ x ∈
(Rn)Z≥0 s.t. σx = Ax + Bu, y = Cx + Du}. The in-

put/output/state representation of smallest order (i.e., smallest

state dimension) is called a minimal representation, and we

denote its order by n(B). Another important property of a

system B ∈ Lm+p is the lag defined by the smallest integer

ℓ ∈ Z>0 such that the observability matrix Oℓ(A,C) :=
col
(
C,CA, . . . , CAℓ−1

)
has rank n(B). We denote the lag

by ℓ(B) (see [41, Section 7.2] for equivalent definitions). The

lower triangular Toeplitz (impulse response) matrix consisting

of Tf ∈ Z>0 system Markov parameters is denoted by

TTf
(A,B,C,D) :=




D 0 · · · 0
CB D · · · 0
...

. . .
. . .

...

CATf−2B · · · CB D


 .

Lemma 2.1: ([3, Lemma 1]): Let B ∈ Lm+p and

B(A,B,C,D) a minimal input/output/state representation.

Let Tini, Tf ∈ Z>0 with Tini ≥ ℓ(B) and col(uini, u, yini, y) ∈
BTini+Tf

. Then there exists a unique xini ∈ Rn(B) such that

y = OTf
(A,C)xini + TTf

(A,B,C,D)u.

In other words, given a sufficiently long window of initial

system data col(uini, yini), the initial state xini is unique and can

be computed given knowledge of A,B,C,D and col(u, y).

C. Hankel and Page Matrices

We introduce two important matrix structures: the Hankel

matrix and the Page matrix.

Definition 2.5: Let L, T ∈ Z>0. Let u[1,T ] = {uj}
T
j=1 ⊂

Rm be a sequence of vectors.

• We define the Hankel matrix1 of depth L as

HL(u[1,T ]) :=




u1 u2 · · · uT−L+1

u2 u3 · · · uT−L+2

...
...

. . .
...

uL uL+1 · · · uT


 .

• We define the Page matrix of depth L as

PL(u[1,T ]) :=




u1 uL+1 · · · u(⌊T
L ⌋−1)L+1

u2 uL+2 · · · u(⌊T
L ⌋−1)L+2

...
...

. . .
...

uL u2L · · · u⌊T
L ⌋L




,

where ⌊·⌋ is the floor function which rounds its argument

down to the nearest integer.

Note that if T is a multiple of L, then ⌊T
L
⌋L = T and the above

expressions simplify accordingly. Hankel matrices have a long

history in subspace identification [9] and more recently in data-

driven control [1], [3], [10], [14]. Page matrices have also been

used as an alternative to the classical Hankel matrix [43], [44].

Definition 2.6: Let L, T,M ∈ Z>0 and u[1,T ] = {uj}
T
j=1 ⊂

Rm be a sequence of vectors. We call u[1,T ]:

• Hankel exciting of order L if the matrix HL(u[1,T ]) has

full row rank.

• L-Page exciting of order M if the matrix



PL(u[1,T−(M−1)L])
PL(u[L+1,T−(M−2)L])

...

PL(u[L(M−1)+1,T ])




has full row rank.

Roughly speaking, the terms Hankel and Page exciting refer

to a collection of inputs sufficiently rich and long to yield

an output sequence representative for the system’s behaviour.

Note that for a sequence of vectors to be Hankel exciting of

order L, one requires that T ≥ L(m+1)− 1. For a sequence

of vectors to be L-Page exciting of order M , one requires

that T ≥ L((mL + 1)M − 1). We also observe that the

definition of an L-Page exciting sequence of order M depends

on two indices, L and M (the number of block rows of the

Page matrices and the number of vertically concatenated Page

matrices, respectively), whereas the definition of a Hankel

exciting sequence of order L depends only on a single index

L (the number of block rows of the Hankel matrix).

The definition for Hankel exciting appeared in [4] under the

name persistently exciting. A more general notion of persis-

tency of excitation appeared in [18] in the case when the data

matrix was a mosaic Hankel matrix and was termed collective

persistency of excitation. Our notion of Page exciting is a

modification of these notions; the main difference is that there

are no repeated entries in each of the data matrices. This

1The classical definition of a Hankel matrix requires it to be square. We
slightly abuse this classical terminology, allowing for general dimensions.
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has important implications when the entries of the matrix

are corrupted by noise; see Section V-B, the case-study [12],

and references [43], [44]. In short, the independence of the

Page matrix entries leads to statistically and algorithmically

favourable properties, e.g., singular-value thresholding can

be used for de-noising. We will observe later that certain

robustness and optimality guarantees become tight for Page

matrices, and they lead to superior control performance. The

price-to-pay is an increasing number of data samples. Almost

all results within this paper hold for both Hankel and Page

matrix structures, and we will explicitly comment on when

the results differ depending on the matrix structure chosen.

D. Non-parametric System Representation

We now present a result known in behavioural systems the-

ory as the Fundamental Lemma [3]. The result first appeared

in [4, Theorem 1] in the case when the Hankel matrix was

used, and was recently extended in [18, Theorem 2] for more

general mosaic Hankel matrices. We present the result using

the Page matrix data structure introduced in Definition 2.5.

Theorem 2.1: Consider a controllable system B ∈ Lm+p.

Let L, T ∈ Z>0 with L ≥ n(B). Let (û[1,T ], ŷ[1,T ]) =
{(ûj , ŷj)}

T
j=1 ⊂ R(m+p) be a T -length trajectory of B.

Assume û[1,T ] to be L-Page exciting of order n(B) + 1.

Then (u[1,L], y[1,L]) = col(u1, . . . , uL, y1, . . . , yL) ∈ BL if

and only if there exists a vector g ∈ R⌊T
L ⌋ such that

(
PL(û[1,T ])
PL(ŷ[1,T ])

)
g =

(
u[1,L]

y[1,L]

)
(1)

The original result [4, Theorem 1] required Hankel excitation

of order L + n(B), and it coincides with Theorem 2.1 for

L = 1. Theorem 2.1 replaces the need for a model or

system identification process and allows for any trajectory of a

controllable LTI system to be constructed using a finite number

of data samples generated by a sufficiently rich (i.e., L-page

exciting) input sequence. Each column of the Page matrix

in (1) is a trajectory of the system, and can be thought of

as a motion primitive. By linearly combining elements of this

trajectory library, we recover the whole space of trajectories.

In a sense, the Page matrix in (1) is a non-parametric pre-

dictive model based on raw data. To be precise in behavioural

language, the Page matrix in (1) is an image representation

of the restricted behaviour BL. This is in contrast to kernel

representations (with latent variables) such as state-space

models which parameterize BL by means of its orthogonal

complement. In what follows, we will express a linear system

B by its data matrix representation in (1). We refer to the

Page matrix on the left-hand side of (1) as the data matrix.

Remark 2.1: When L ≥ ℓ(B), it can be shown that the

rank of the data matrix in the data matrix representation given

by (1) is mL+n(B) where m is the dimension of the inputs.

Hence, the column span of the data matrix carves out a low-

dimensional subspace of RL(m+p) which coincides with the

restricted behaviour BL, the space of L-length trajectories.

Since in general n(B) is unknown, it suffices to replace n(B)
in Theorem 2.1 with an upper bound on the system order. •

For the rest of the paper, we think of an LTI system B only

in terms of its data matrix representation. We see next that

Theorem 2.1 allows to implicitly estimate the state, predict

the future behaviour, and design optimal control inputs [3].

III. DETERMINISTIC DEEPC

Consider the controllable LTI system B ∈ Lm+p whose

model is unknown. We address the problem of finite-horizon

optimal control, where the goal is to design a finite sequence

of control inputs that result in desirable outputs. In particular,

let t ∈ Z≥0 be the current time, let Tf ∈ Z>0 be the

prediction horizon, and let f1 : R
mTf → R≥0 (respectively,

f2 : R
pTf → R≥0) be a cost function on the future inputs

(respectively, outputs). We wish to design an input sequence

col(ut, . . . , ut+Tf−1) ∈ RmTf such that the corresponding

output sequence col(yt, . . . , yt+Tf−1) ∈ RpTf minimizes the

cost f1+f2. Furthermore, we wish for the inputs and outputs to

lie in the constraint sets U ⊆ RmTf and Y ⊆ RpTf , respectively.

The conventional formulation of this finite-time optimal

control problem uses a parametric input/output/state represen-

tation B(A,B,C,D) for prediction and estimation:

min
u,y,x

f1(u) + f2(y)

s.t. xk+1 = Axk +Buk ∀k ∈ {0, . . . , Tf − 1}

yk = Cxk +Duk ∀k ∈ {0, . . . , Tf − 1}

x0 = x̂t

u ∈ U , y ∈ Y .

(2)

Here, x̂t is the current state at time t, which in the de-

terministic case can be obtained, e.g., by propagating the

model equations backward in time by Tini ≥ ℓ(B) steps; see

Lemma 2.1. When optimization problem (2) is implemented

in a receding horizon fashion it is known as model-predictive

control (MPC) and is a widely celebrated control technique.

Typically, in receding horizon MPC problems the constraints

take the form of separable stage constraints with an additional

terminal constraint (similarly for the cost functions) [45].

Using Theorem 2.1, we can see that raw data collected from

system B can be used to perform implicit state estimation at

the same time as predict forward trajectories of B. Indeed,

let Tini, Tf ∈ Z>0 and let (û[1,T ], ŷ[1,T ]) = {(ûj , ŷj)}
T
j=1 ⊂

R(m+p) be a T -length trajectory of B collected offline. As-

sume that û[1,T ] is (Tini+Tf)-Page exciting of order n(B)+1.

We partition the data matrices into two parts; one will be

used to perform the implicit state estimation and the other

to perform forward predictions. More formally, we use the

language of subspace system identification [9] and define
(
Ûp

Ûf

)
:= PTini+Tf

(û[1,T ]),

(
Ŷp

Ŷf

)
:= PTini+Tf

(ŷ[1,T ]),

(3)

where Ûp ∈ R
mTini×⌊ T

Tini+Tf
⌋

consists of the first Tini block

rows of PTini+Tf
(û[1,T ]) and Ûf ∈ R

mTf×⌊ T
Tini+Tf

⌋
the last Tf

block rows (similarly for Ŷp and Ŷf ). Let t ∈ Z≥0 be the

current time and denote by col(ûini, ŷini) the most recent Tini-

length trajectory measured from B. Then given a sequence of
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inputs u = col(ut, . . . , uTf−1) of length Tf ∈ Z>0, one may

solve for a vector g ∈ R
⌊ T
Tini+Tf

⌋
satisfying



Ûp

Ŷp

Ûf


 g =



ûini

ŷini

u


 . (4)

By Theorem 2.1, the predicted Tf-length output of B is then

given by y = Ŷfg. Note that in general the g satisfying (4)

is non-unique. However, by Lemma 2.1, if Tini ≥ ℓ(B) then

the predicted output y is unique. The top two block equations

of (4) can be thought of as implicitly fixing the initial state

from which the future trajectory will depart.

We now recall the deterministic DeePC method presented

in [1] (using Hankel matrices) for controlling the system B.

Data Collection (offline): Apply to B a T -length input se-

quence û[1,T ] that is (Tini+Tf)-Page exciting of order n(B)+
1. Measure the corresponding output trajectory ŷ[1,T ]. Form

data matrices Ûp, Ûf , Ŷp, Ŷf according to (3).

DeePC (online): Let f1 : R
mTf → R≥0, f2 : R

pTf → R≥0

be cost functions describing the costs on future inputs and

outputs of B, respectively. Collect the most recent Tini-length

trajectory col(ûini, ŷini) measured from B. Solve the finite-

horizon optimal control problem:

min
g

f1(Ûfg) + f2(Ŷfg)

s.t.

(
Ûp

Ŷp

)
g =

(
ûini

ŷini

)

Ûfg ∈ U

Ŷfg ∈ Y.

(5)

Similar to MPC, the online DeePC optimization can be im-

plemented in a receding horizon fashion. Note that the opti-

mization problem (5) only requires input/output measurements

from the system and does not require the identification of a

model. The equivalence of DeePC to classical model predictive

control when a system model for B is given, is established

in [1] in the case when the data matrix is a Hankel matrix.

Proposition 3.1: Consider an LTI system B whose in-

put/output/state representation is given by B(A,B,C,D).
Consider the MPC optimization problem (2) and the optimiza-

tion problem (5) with Tini ≥ ℓ(B). Then g satisfying the

constraints of (5) implies that (u, y) = (Ûfg, Ŷfg) satisfies the

constraints of (2). Conversely, (u, y) satisfying the constraints

of (2) implies the existence of g satisfying the constraints of (5)

where (u, y) = (Ûfg, Ŷfg).

As a direct corollary of Proposition 3.1, DeePC problem (5)

and MPC problem (2) result in equivalent and unique (as-

suming convexity) open-loop (resp., closed-loop) behaviour

when applied in an open-loop (resp., receding horizon) fashion

to a deterministic LTI system B. As a major difference,

most MPC approaches assume direct state measurements,

which allows certain methods to be applied (e.g., inclusion of

terminal state constraints). We remark that (uini, yini, u, y) are

coordinates of a (generally non-minimal) realization allowing

for similar methodologies. See [10] in which stability and

recursive feasibility for a variant of (5) have been shown.

IV. DISTRIBUTIONALLY ROBUST DEEPC

We now consider the case where system B is subject to

stochastic disturbances, which result in noisy output measure-

ments in the data matrices. We begin with modifying the

objective function and constraints of the deterministic DeePC

problem (5) to robustify against the stochastic disturbances.

This leads to a semi-infinite optimization problem which we

reformulate under reasonable assumptions into a finite, con-

vex, and tractable program termed the distributionally robust

DeePC problem. Finally, we show that the distributionally

robust DeePC problem enjoys robust performance guarantees.

A. Problem Setup

We view the output data matrices Ŷp and Ŷf given by (3) as

particular realizations of random variables which we denote

by Yp and Yf , respectively. Recall that we use the ·̂ notation

to denote recorded data samples and to indicate that objects

depend on recorded data samples. Define the random variable

ξ = (ξ⊤1 , . . . , ξ⊤p(Tini+Tf)
)⊤ where ξ⊤i ∈ R

⌊ T
Tini+Tf

⌋
denotes

the i-th row of the matrix (Yp
⊤ Yf

⊤)⊤. We denote the

support set of the random variable ξ by Ξ. We denote the

probability distribution of the random variable ξ by P. Note

that this distribution is induced by the system B itself, and

any stochastic disturbance acting on the system.

Due to the stochastic nature of the system, the future

trajectory predictions obtained from the deterministic DeePC

optimization problem (5) are uncertain. Furthermore, the re-

alized data matrix (1) may not describe a low-dimensional

subspace as described in Remark 2.1. In fact, the data matrix

in (1) will likely have full rank and can thus predict arbitrary

future trajectories. Finally, the distribution P itself is unknown

since we do not have models of the system and disturbances.

Hence, we make some changes to the objective function and

the constraints in (5) to robustify against the noisy data.

Objective Function: Since the constraint used to obtain the

initial condition of the future trajectory given by Ŷpg = ŷini is

affected by the stochastic disturbance and may not be feasible,

we lift it into the objective function using an estimation

function f3 : R
pTini → R≥0 mapping Ypg − ŷini to a penalty.

Including f3 in the objective function can be thought of as

an implicit estimation of the initial condition from which the

predicted future trajectory must evolve. Choosing f3(·) = ‖·‖2
would result in a least-squares type initial condition estimate

reminiscent of moving horizon estimation [45].

Since the system is stochastic, we focus on minimizing

the expectation of the objective function in (5), where the

expectation is taken with respect to the true distribution P, i.e.,

we wish to minimize EP[f1(Ûfg)+ f2(Yfg)+ f3(Ypg− ŷini)].
Recall that the distribution P pertains to the offline sam-

ples (û[1,T ], ŷ[1,T ]) and not to the real-time measurement

ŷini addressed through the above least-square estimation. As

discussed before, the distribution P itself is unknown, and

must be estimated from data. In order to be robust to errors

in this estimate, we use distributionally robust optimization

techniques; namely, we construct a so-called ambiguity set

P̂ depending on the collected data (specified precisely later)

such that the true distribution lies in the ambiguity set with
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high confidence. We then optimize the expectation of the

cost function, where the expectation is taken with respect

to the worst-case distribution in P̂ . This leads us to the

distributionally robust objective

sup
Q∈P̂

EQ

[
f1(Ûfg) + f2(Yfg) + f3(Ypg − ŷini)

]
.

We note that this formulation leads to robustness against a “set

of systems” compatible with the (possibly noisy) data samples,

and that this “set of systems” is broader than mere LTI systems

with additive process and measurement noise.

Constraints: Requiring the future outputs to lie in a particu-

lar subset Y almost surely as in (5) may not be possible. Thus,

we relax the hard output constraint to a so-called conditional

value at risk (CVaR) constraint. Let the output constraint be

written as Y = {y | h(y) ≤ 0}, where h : RpTf → R describes

desired constraints on future trajectories y. We define

CVaRP
1−α(h(y)) := inf

τ∈R

{
τ +

1

α
EP[(h(y)− τ)+]

}
,

where α ∈ (0, 1) is a user-chosen confidence parameter. It

is well known that the constraint CVaRP
1−α(h(y)) ≤ 0 is a

convex relaxation of the classical chance constraint (or VaR)

given by P(h(y) ≤ 0) ≥ 1−α (see, e.g., [46]). In other words,

the CVaR constraint ensures that the constraint y ∈ Y will hold

with high probability. In the case when the stochastic distur-

bance is a continuous random variable, the CVaR constraint

can be interpreted as penalizing the expected violation in the

α percent of cases where violations do occur (see Figure 1).

The latter point is particularly important in control applications

where large violations of constraints could lead to catastrophic

system behaviour. Hence, the CVaR constraint is not merely a

relaxation of the classical VaR constraint, but often the more

reasonable constraint formulation for control problems.

CVaR
P

1−α
(X)

Fig. 1: Depiction of the conditional value at risk at level α =
0.15 for a Gaussian random variable X . The shaded region

accounts for α×100% of the mass of the Gaussian distribution.

Similar to minimizing the worst case expected objective func-

tion, we ask that the CVaR constraint be satisfied for the worst-

case distribution in P̂ . This leads us to the robust constraint

sup
Q∈P̂

CVaR
Q
1−α(h(y)) ≤ 0.

One particular ambiguity set P̂ that offers strong perfor-

mance guarantees as well as mathematical tractability while

allowing the user to adjust its conservatism is the Wasserstein

ambiguity set centred around the so-called empirical distribu-

tion, i.e., the sample distribution [5]. In particular, let M(Ξ)
be the set of all distributions Q supported on Ξ such that

EQ[‖ξ‖r] < ∞, where ‖·‖r is the r-norm for some r ∈ [1,∞].

Definition 4.1: Let r ∈ [1,∞]. The Wasserstein metric

dW : M(Ξ)×M(Ξ) → R≥0 is defined as

dW(Q1,Q2) := inf
Π

{∫

Ξ2

‖ξ1 − ξ2‖rΠ(dξ1, dξ2)

}
,

where Π is a joint distribution of ξ1 and ξ2 with marginal

distributions Q1 ∈ M(Ξ) and Q2 ∈ M(Ξ), respectively.

The Wasserstein metric can be viewed as a distance between

probability distributions, where the distance is calculated via

an optimal mass transport plan Π. For ǫ ≥ 0, we denote the

Wasserstein ball of radius ǫ centred around distribution Q by

Bǫ(Q) := {Q′ ∈ M(Ξ) | dW(Q,Q′) ≤ ǫ} .

We chose the Wasserstein ball as the ambiguity set as opposed

to other popular ambiguity sets such as f -divergence or

moment-based ambiguity sets since the latter require prior

knowledge and assumptions on the true data generating dis-

tribution (absolute continuity with respect to a nominal distri-

bution or known moments).

We now present the distributionally robust DeePC method

for controlling stochastic systems.

Data Collection (offline): We collect N ∈ Z>0 trajectories

via repeated identical experiments. We start by fixing an input

sequence û[1,T ] that is (Tini + Tf)-Page exciting of order

n(B) + 1. For each experiment i ∈ {1, . . . , N}, we assume

that the system is initialized to the same (unknown) state, apply

inputs û[1,T ], and measure the corresponding output trajectory

ŷ
(i)
[1,T ]. The superscript (i) denotes the trajectory obtained from

the i-th experiment. For each data batch i ∈ {1, . . . , N}, build

data matrices Ûp, Ûf , Ŷ
(i)
p , and Ŷ

(i)
f using (3). The output data

matrices implicitly define N data samples which we denote

by ξ̂(i) for i ∈ {1, . . . , N}. Lastly, we use the data collected

to build the empirical distribution P̂N = 1
N

∑N
i=1 δξ̂(i) . Note

that collecting only one T -length trajectory (i.e., N = 1) is

possible. As we will see in Section V-B though, choosing N

larger can lead to less uncertainty and better performance.

Distributionally Robust DeePC (online): We consider the

Wasserstein ball of radius ǫ (which will be chosen as a

hyperparameter quantifying a desired robustness level) around

the empirical distribution P̂N as the ambiguity set. Hence, the

distributionally robust DeePC problem is given by

min
g

sup
Q∈Bǫ(P̂N )

EQ

[
f1(Ûfg) + f2(Yfg) + f3(Ypg − ŷini)

]

s.t. Ûpg = ûini

Ûfg ∈ U

sup
Q∈Bǫ(P̂N )

CVaR
Q
1−α(h(Yfg)) ≤ 0

(6)

By assuming that the system is initialized to the same (un-

known) state at the beginning of each experiment and applying

an identical input sequence for each experiment, we ensure

that the collection of data matrices Ŷ
(i)
p and Ŷ

(i)
f describe

N independent and identically distributed (i.i.d.) samples of

the random variable ξ. Before their realization, the collection

{ξ̂(i)}Ni=1 can be viewed as a random object governed by the

N -fold product distribution PN . The empirical distribution P̂N
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is our sample average estimate for the true distribution P and

is set as the centre of the ambiguity set in (6).

Compared to MPC or deterministic DeePC discussed in

Section III, the distributional robust program (6) features the

additional robustness parameter ǫ, whose selection will be

discussed later, and α whose value is usually chosen to be 0.1,

0.05, or 0.01. One notable feature of (6) is that it is robust to

all probability distributions within the ambiguity set that could

describe the data matrices Yp and Yf . Hence, the above formu-

lation is robust to a “set of systems” which captures more than

LTI systems with additive noise. In fact, for a sufficiently large

robustness parameter ǫ, the ambiguity set considers all time

series originating from linear or nonlinear systems as long as

they have “finite expectation”, i.e., the integrals defining the

Wasserstein metric exist. This follows from the fact that the

Wasserstein ball contains all Dirac distributions generated by

time series ξ satisfying dW(δξ, P̂N ) ≤ ǫ. Hence, for ǫ large

enough, the time series ξ can be arbitrary.

Problem (6) is a semi-infinite optimization problem due to

the supremums over the space of distributions in the cost and in

the constraints. Moreover, the Wasserstein metric (resp. CVaR)

are themselves defined via infinite (resp. finite) programs.

Thus, (6) does not immediately present itself as a tractable

program. Below, we show that under reasonable assumptions

on the objective and constraint function, the semi-infinite

optimization problem above admits a tractable reformulation.

B. Main results

We provide a tractable reformulation of the distributionally

robust DeePC problem (6) which depends on two intermediate

lemmas (Lemma A.3 and A.4 in the Appendix) providing sep-

arate reformulations for the objective function and constraints.

In the statement of the result below, we make use of the dual

norm ‖ · ‖q = ‖ · ‖r,∗, where, q and r satisfy 1
r
+ 1

q
= 1.

Theorem 4.1: (Tractable Reformulation): Assume that

f1 is convex and f2, f3, and h are convex and Lipschitz

continuous. Specifically, let Lobj > 0 (resp., Lcon > 0) be the

Lipschitz constant with respect to the r-norm of the mapping

(x, y) 7→ f2(x) + f3(y) (resp., h). Then the optimal value of

problem (6) is upper bounded by the optimal value of

min
g,τ,si

f1(Ûfg) +
1

N

N∑

i=1

(
f2(Ŷ

(i)
f g) + f3(Ŷ

(i)
p g − ŷini)

)

+ Lobjǫ‖g‖r,∗

s.t. Ûpg = ûini

Ûfg ∈ U

− τα+ Lconǫ‖g‖r,∗ +
1

N

N∑

i=1

si ≤ 0

τ + h(Ŷ
(i)
f g) ≤ si ∀i ≤ N

si ≥ 0 ∀i ≤ N.
(7)

Moreover, the solution ĝ⋆ to the above will satisfy

CVaR
Q
1−α(h(Yf ĝ

⋆)) ≤ 0 for all Q ∈ Bǫ(P̂N ). The objec-

tive of (7) coincides with the objective of (6) when Ξ =

R
p(Tini+Tf)⌊

T
Tini+Tf

⌋
.

Observe that when the data matrices in (3) are Hankel matri-

ces, then Ξ is always a strict subspace of R
p(Tini+Tf)⌊

T
Tini+Tf

⌋
en-

coding the Hankel structure. When the matrices are Page ma-

trices, the support set Ξ may coincide with R
p(Tini+Tf)⌊

T
Tini+Tf

⌋

(e.g., if the measurements are affected by Gaussian noise). A

similar result holds for piecewise affine constraint functions by

combining Lemma A.3 and A.5. In this case, the reformulated

constraint set can be made tight at the cost of making the

objective an upperbound (see Remark A.1). Since, we treat the

objective and constraints separately (via Lemma A.3 and A.4),

it is possible to choose different values of ǫ in the constraint

and objective of (6), though we refrain from doing so for

clarity of exposition. Furthermore, by treating the objective

and the constraints separately, their worst case distributions

may differ leading to a more conservative solution.

The above result shows that the distributionally robust

objectives can be reformulated as the sample average of the

objective function plus an additional regularization term. To

the best of our knowledge this observation was first made

in [47] in the context of machine learning problems. Hence,

being robust in the trajectory space (data space) in the sense of

the r-norm requires regularizing the sample average objective

with the dual q-norm, where the weight of regularization

depends on the Lipschitz constant of the objective function

and the radius of the Wasserstein ball. For example, the 1-

norm regularization adopted in [1] corresponds to ∞-norm

robustness in the trajectory space.

We now show that the robust DeePC problem (7) exhibits

strong probabilistic guarantees. We need the following aux-

iliary measure concentration result under a light-tailedness

assumption.

Theorem 4.2: (Measure Concentration [48, Theorem 2]):

Assume that EP[exp(‖ξ‖ar)] < ∞ for some a > 1. Then

PN
{
dW(P, P̂N ) ≥ ǫ

}

≤

{
c1exp(−c2Nǫ

⌊ T
Tini+Tf

⌋
) if ǫ ≤ 1

c1exp(−c2Nǫa) if ǫ > 1

for all N ≥ 1, and ǫ > 0, where PN is the N -fold product

distribution, and c1, c2 are positive constants depending on a,

⌊ T
Tini+Tf

⌋ and the value of EP[exp(‖ξ‖ar)].

We can use Theorem 4.2 in order to compute the mini-

mum Wasserstein radius ǫ such that the true data-generating

distribution P lives inside the Wasserstein ball Bǫ(P̂N ) with

confidence at least 1 − β. Indeed, by inverting the above

inequalities the minimum radius is given by

ǫ(β,N) =





(
log(c1β

−1)
c2N

) 1

⌊ T
Tini+Tf

⌋
if N ≥ log(c1β

−1)
c2(

log(c1β
−1)

c2N

) 1
a

if N <
log(c1β

−1)
c2

(8)

Theorem 4.3: (Robust Performance Guarantee): Assume

that EP[e
‖ξ‖a

r ] < ∞ for some a > 1. Let β ∈ (0, 1) be

the desired level of confidence. Let J(g) := EP[f1(Ûfg) +
f2(Yfg) + f3(Ypg − ŷini)]. Let Ĵ(g) denote the value of the
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objective function in (7) evaluated at g and ĝ⋆ denote an

optimizer of problem (7) with ǫ(β,N) chosen as in (8). Then

PN
{
J(ĝ⋆) ≤ Ĵ(ĝ⋆)

}
≥ 1− β, and

PN
{

CVaRP
1−α(h(Yf ĝ

⋆)) ≤ 0
}
≥ 1− β.

Theorem 4.3 shows that with probability 1−β (with respect

to the N -fold product distribution PN of P), the optimal

value of the robust DeePC problem (7) is an upper bound

for the expected cost with respect to the true distribution P.

Furthermore, the CVaR constraint with respect to the true

distribution P holds with probability 1− β.

Remark 4.1: The Wasserstein radius given by (8) decays

with a rate of N
1

⌊T/(Tini+Tf)⌋ . To decrease the radius by 50%,

the number of samples N must increase by 2
⌊ T
Tini+Tf

⌋
. This rate

(albeit unfortunate) is tight [49]. In practice, the Wasserstein

ball radius given by (8) is often larger than necessary, i.e.,

P 6∈ Bǫ(P̂N ) with probability much less than β. Furthermore,

even when P 6∈ Bǫ(P̂N ), the robust quantity Ĵ(ĝ⋆) may still

serve as an upper bound for the out-of-sample performance

J(ĝ⋆) [5]. In addition to this conservativeness, we note that

the Wasserstein radius provided by (8) is hardly quantifiable

as it depends on constants which are unknown to us in our

data-driven setting. For practical purposes, one should choose

the radius of Bǫ(P̂N ) in a data-driven fashion (e.g., as we have

done via tuning in experiments in Section V-B). Alternatively,

one could use standard cross-validation techniques (some of

which are stated in [5]) or more advanced techniques (albeit

only providing asymptotic guarantees) provided in [50]. •

The robust DeePC Algorithm 1 implements (7) in a receding

horizon fashion. We note that all results in this section

hold when the data matrices are Hankel matrices in (3).

However, the upper bound and set inclusions presented in

Lemmas A.3, A.4 and Theorem 4.1 are not tight because

the Hankel structure restricts Ξ to a strict subspace of

R
p(Tini+Tf)⌊

T
Tini+Tf

⌋
. If the constraints are piecewise affine (see

Lemma A.5), then the constraint reformulation can be tight for

Hankel matrices. In the following case study we will compare

performance of Hankel and Page matrix structures.

Algorithm 1 Robust DeePC

Input: data trajectories col(û, ŷ(i)) ∈ R(m+p)T for i ∈
{1, . . . , N} with û (Tini+Tf)-Page exciting of order n(B)+1,

most recent input/output measurements col(ûini, ŷini) ∈
R(m+p)Tini

1: Solve (7) for ĝ⋆.

2: Compute optimal input sequence u⋆ = Ûf ĝ
⋆.

3: Apply optimal input sequence (ut, . . . , ut+ν−1) =
(u⋆

1, . . . , u
⋆
ν) for some ν ≤ Tf.

4: Set t to t + ν and update ûini and ŷini to the Tini most

recent input/output measurements.

5: Return to 1.

V. NUMERICAL RESULTS

A. Nonlinear and Stochastic Aerial Robotics Case Study

We illustrate the performance of distributionally robust

DeePC with a high-fidelity nonlinear quadcopter simula-

tion [13]. The output measurements are the 3 spatial coor-

dinates (px, py, pz) of the quadcopter. We denote the output

at time t by yt = (px,t, py,t, pz,t) ∈ R3 and the i-th component

of yt by yt,i. The inputs are the total thrust produced by all

4 rotors ftot, and the angular body rates around the x and y

body axes of the quadcopter, ωx, ωy respectively. We denote

the input at time t by ut = (ftot,t, ωx,t, ωy,t) ∈ R3 and

the i-th component of ut by ut,i. The output measurements

are affected by additive zero-mean Gaussian noise during the

data collection phase (offline) and the control phase (online)

in which the distributionally robust DeePC Algorithm 1 is

implemented. Statistics of the noise were chosen to closely

match the experimental setup [13].

The output measurements were taken at a rate of 25Hz (i.e.,

every 40ms). We performed N = 10 offline experiments each

of which yielded 15500 input/output measurements to populate

the Page matrices Ûp, Ûf , Ŷ
(i)
p , and Ŷ

(i)
f for i ∈ {1, . . . , 10}.

The inputs used to excite the system were drawn from a Gaus-

sian distribution. The same randomly generated inputs were

used for every repeated experiment. Due to the fact that the

quadcopter system is open-loop unstable, these randomly gen-

erated inputs were added to an existing control that maintains

the quadcopter around a hover state. This existing controller

was only used during the offline data collection phase, and was

not used during the online control phase. Since the randomly

generated inputs were much larger in magnitude than the

adjustments made by the existing stabilizing controller during

data collection, the matrices Ŷ
(i)
p , Ŷ

(i)
f are approximately i.i.d.

The future prediction horizon was chosen as Tf = 25 (1

second in real time), and the time horizon used to implicitly

estimate the initial condition was set to Tini = 6. The inputs

were constrained to the set [0.1597, 0.4791] × [−π
2 ,

π
2 ]

2. The

output constraint function h was chosen such that (px, py, pz)
was constrained in the set [−0.6, 1.6]3 with α = 0.1 the

confidence parameter in the CVaR constraint. The composite

objective function consisted of weighted 2-norms

f1(u[1,Tf]) = 16‖u[1,Tf],1 − fref‖2 + 4‖(u[1,Tf],2, u[1,Tf],3)‖2

f2(y[1,Tf])
2 = 16002

∑Tf

t=1
‖yt − yref‖

2
2

f3(σ) = 750000‖σ‖2,

where fref = (0.27, . . . , 0.27) is the thrust needed to hover the

quadcopter and yref = (px,ref, py,ref, pz,ref) = (0.5, 0.5, 1.5).
The Wasserstein norm was chosen as the 2-norm and ǫ =
0.003. The optimization problem (7) was implemented in a

receding horizon fashion with control horizon ν = 1 (see

Algorithm 1). A representative trajectory of the nonlinear and

stochastic closed-loop system is illustrated in Figure 2(a),

where the distributionally robust DeePC succeeds in steering

the quadcopter to the reference trajectory while satisfying

output constraints.
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B. Choosing the Hyperparameters

In this section we study the effect of the hyperparameters on

the performance of distributionally robust DeePC. To compare

the performance of Algorithm 1 for different hyperparameters,

we simulated the nonlinear stochastic quadcopter in receding

horizon with control horizon ν = 1. We computed the tracking

error
∑Tsim

t=0 ‖yt − yref‖
2
2 where Tsim = 250 (corresponding to

10 seconds in real time).

1) ǫ: We varied the Wasserstein radius for fixed N = 1
and N = 10, Tini = 6, and 300 columns in the data matrix.

Figures 2(b) and 2(c) show the relationship between tracking

error and ǫ for Page and Hankel matrix structures, respectively.

Increasing the number of data batches N increases the range

of radii that lead to satisfactory tracking performance. This

is because the empirical distribution P̂N at the centre of the

Wasserstein ball in problem (6) gets closer (in the Wasserstein

sense) to the true distribution P from which the data is drawn.

This allows the user to decrease ǫ. Since the optimal value of

the distributionally robust DeePC problem (7) is monotonically

increasing with ǫ, choosing the minimum epsilon such that

P ∈ Bǫ(P̂N ), gives the minimum upper bound on the out-of-

sample performance that holds with high confidence. Hence,

increasing N decreases this minimum ǫ leading to better out-

of-sample performance with high confidence. We note that the

effect of increasing N is more pronounced for the Hankel

matrices. This may be due to the fact that Page matrices

already require more data points to construct when compared

to a Hankel matrix with the same number of columns.

Performing experiments to obtain the range of ǫ resulting

in stable flight (Figures 2(b) and 2(c)) may not always be

possible. We refer the reader to [5, Section 7.2.2] for methods

approximating an optimal ǫ using the data already collected.

2) T : We varied the number of data points used in the

data matrices constructed in (3). In particular, we studied the

effect of adding additional columns into the data matrices

with N = 1, Tini = 6, and choosing ǫ ∈ {a × 10−b |
a ∈ {1, . . . , 9}, b ∈ {2, 3, 4}} which minimizes the tracking

error. In these simulations the number of data points used

to construct the Page matrices did not meet the theoretical

minimum required by Theorem 2.1, but still exhibits good

tracking performance. Figure 2(d) indicates that increasing

the amount of data in the data matrices can significantly

improve the tracking performance. Past a certain threshold

(200 columns for Page matrix structure, 300 columns for

Hankel matrix structure), the tracking performance remains

approximately constant. This is likely due to the fact that

with this amount of data, the data matrices characterize a

rich enough subspace of trajectories well approximating the

nonlinear dynamics. This intuition is drawn from the fact that

nonlinear dynamics (under certain assumptions) can be lifted

to large (often infinite) dimensional linear dynamics, and a

large enough data set well approximates the dominant modes.

Aside from comparing the number of columns (and thus

the size of the optimization variables), we also compare the

Hankel and Page matrices given the same fixed amount of data

T . A representative comparison is presented in Table I. The

mean solve time represents the average time in seconds it took

to solve (7) with N = 1, Tini = 6 and choosing ǫ ∈ {a×10−b |
a ∈ {1, . . . , 9}, b ∈ {2, 3, 4}} which minimizes the tracking

error. The optimization was performed using MOSEK [51] on

a 3.4 GHz Intel Core i5 with 16GB of RAM.

When T = 527, the number of columns in the Hankel and
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Fig. 2: (a) Step trajectory of quadcopter using distributionally robust DeePC Algorithm 1; (b)–(c) Dependence of tracking error

on the Wasserstein radius ǫ; (d) Dependence of tracking error on the number of columns in the data matrix; (e) Comparison

of tracking error for Page and Hankel matrices; (f) Dependence of tracking error on the initial condition horizon Tini.
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TABLE I: Comparison of mean solve times and tracking error

for Hankel and Page matrices for varying data lengths.

Mean solve time (s) Tracking error

Data length T = 527 T = 15407 T = 527 T = 15407

Hankel 0.182 3.70 33.94 34.35

Page 0.007 0.166 7× 10
6 33.97

Page matrices are 497 and 17 respectively. When T = 15407,

the number of columns in the Hankel and Page matrices are

15377 and 497 respectively. Each additional Tini + Tf data

points allow the addition of one column to the Page matrix

and Tini +Tf columns to the Hankel matrix. Hence, the size of

the optimization variable g in (7) when using a Hankel matrix

increases Tini + Tf times faster than that of a Page matrix.

In terms of tracking error, we see that for T = 527 the

performance of the Page matrix is poor (i.e., the quadcopter

crashes) since there are not enough columns in the Page matrix

to construct a rich enough subspace of trajectories. Increasing

to T = 15407 results in good performance for both the Hankel

and Page matrices at the cost of a much larger solve time for

the Hankel matrix. Furthermore, the tracking errors confirm

the observation from Figure 2(d) that there is a threshold on

the number of data points above which the tracking errors

remain approximately constant.

3) Data matrix structure: We performed simulations with

hyperparameters N ∈ {1, 2, 5, 10}, Tini = 6, number of

columns in data matrix ranging from 150 to 500, and ǫ ∈ {a×
10−b | a ∈ {1, . . . , 9}, b ∈ {2, 3, 4}}. Over all simulations, the

same data set was used to populate the Page/Hankel matrices

constructed in (3). The 273 simulations with tracking error

no larger than 200 (i.e., those exhibiting stable flight of the

quadcopter) are plotted in the histogram in Figure 2(e). The

Page matrix significantly outperforms the Hankel matrix in

terms of tracking performance. This observation may be due to

the fact that the tractable reformulation of the distributionally

robust DeePC objective in (7) is tight for the Page matrix.

Additionally, the entries of the Hankel matrix are repeated

which may result in a higher sensitivity to noise compared

to the Page matrix whose entries are not repeated. Lastly, we

note that using a Page matrix allows one to perform singular

value decomposition (SVD) to optimally preprocess the data.

This is not the case for the Hankel matrix since SVD does not

preserve Hankel structure. See [52] for a relevant case study.

4) Tini: We varied the horizon over which the initial

condition is implicitly estimated while fixing N = 1,

and 300 columns in the data matrix. For each value of

Tini ∈ {1, . . . , 10}, a simulation was performed for every

ǫ ∈ {a × 10−b | a ∈ {1, . . . , 9}, b ∈ {2, 3, 4}}. For the best

performing ǫ, the value of the tracking error for each Tini is

reported in Figure 2(f). Once Tini is past a certain threshold

(Tini = 5), the distributionally robust DeePC algorithm exhibits

satisfactory tracking performance. This is because Tini is the

main parameter to fix the “system complexity” inside the

DeePC algorithm (see Lemma 2.1).

VI. CONCLUSION

We presented a data-driven method for controlling stochas-

tic constrained LTI systems only using raw data collected from

the system and without the need to explicitly identify a model.

The method comes with strong out-of-sample performance

guarantees and ensures constraint satisfaction with high con-

fidence. Furthermore, we discussed how the performance of

the algorithm is affected by the hyperparameters. Future work

includes exploring the extension of this method to strongly

nonlinear systems, extending to closed-loop guarantees, and

comparison to identification-based control approaches. Fur-

thermore, our Page excitation condition is only sufficient, and

we seek relaxed conditions. Finally, we are interested in an

online adaptation of the data matrix.
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APPENDIX

Proof of Theorem 2.1: The “if” part of the statement

is obvious by linearity and time-invariance of the system. We

now prove the “only if” part. Our proof strategy is partially

inspired by arguments in [18]. Let ū[1,L] = (ū1, . . . , ūL),
ȳ[1,L] = (ȳ1, . . . , ȳL) be a trajectory of B. Hence, there exist

matrices A,B,C,D such that (ū[1,L], ȳ[1,L]) is a trajectory

of B(A,B,C,D) with initial state x̄1 ∈ Rn(B). For ease of

notation, throughout the proof we will denote n(B) by n.

Define the matrix of state sequences from xi to xi+jL as

Xi,j =
(
xi xi+L · · · xi+jL

)
.

Then by the system dynamics we have that
(

PL(u[1,T ])
PL(y[1,T ])

)

=

(
0 I

OL(A,C) TL(A,B,C,D)

)(
X1,⌊T

L ⌋−1

PL(u[1,T ])

)
,

where I is the identity matrix. Furthermore,
(
ū[1,L]

ȳ[1,L]

)
=

(
0 I

OL(A,C) TL(A,B,C,D)

)(
x̄1

ū[1,L]

)
.

If there exists a vector g such that
(

x̄1

ū[1,L]

)
=

(
X1,⌊T

L ⌋−1

PL(u[1,T ])

)
g, (9)

then
(
ū[1,L]

ȳ[1,L]

)
=

(
0 I

OL(A,C) TL(A,B,C,D)

)(
X1,⌊T

L ⌋−1

PL(u[1,T ])

)
g

=

(
PL(u[1,T ])
PL(y[1,T ])

)
g,

which is what we wanted to show. Hence it remains to prove

that there always exists a vector g satisfying (9) for any

x̄1 and ū[1,L]. Equivalently, we will show that the matrix(
X1,⌊T

L ⌋−1

PL(u[1,T ])

)
has full row rank. Let

(
ξ η

)
be an arbitrary

vector in the left kernel of this matrix where ξ⊤ ∈ Rn and
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η⊤ ∈ RmL. We will show that
(
ξ η

)
must be the zero vector.

To do this, we switch our attention to the matrix

(
X

U

)
:=




X1,⌊T
L ⌋−n−1

PL(u[1,T−nL])
PL(u[L+1,T−(n−1)L])

...

PL(u[nL+1,T ])




(10)

and follow arguments from [18] to construct n + 1 vectors

in the left kernel of (10). By definition,
(
ξ η 0nmL

)
is in

the left kernel of (10), where 0
⊤
nmL ∈ RnmL denotes a vector

containing nmL zeros. Furthermore, we have that

(
XL+1,⌊T

L ⌋−n−1

PL(u[L+1,T−(n−1)L])

)
= M

(
X

U

)
, (12)

where M is defined in (11) and 0n×n is the zero matrix. Since(
XL+1,⌊T

L ⌋−n−1

PL(u[L+1,T−(n−1)L])

)
is a submatrix of

(
X1,⌊T

L ⌋−1

PL(u[1,T ])

)

then by definition of
(
ξ η

)
, we have

(
ξ η

)( XL+1,⌊T
L ⌋−n−1

PL(u[L+1,T−(n−1)L])

)
= 0(⌊T

L ⌋−n−1)L+1.

Hence, by (12) we have that

(
ξAL ξAL−1B · · · ξAB ξB η 0(n−1)mL

)

is in the left kernel of (10). Note also that

X2L+1,⌊T
L ⌋−n−1

=
(
A2L A2L−1B · · · AB B 0n×(n−1)mL

)(X
U

)
.

Proceeding as above we find that the vector

(
ξA2L ξA2L−1B · · · ξAB ξB η 0(n−2)mL

)

is in the left kernel of (10). Continuing in this way, we obtain

n+ 1 vectors in the left kernel of (10) given by

w0 =
(
ξ η 0nmL

)

w1 =
(
ξAL ξAL−1B · · · ξAB ξB η 0(n−1)mL

)

w2 =
(
ξA2L ξA2L−1B · · · ξAB ξB η 0(n−2)mL

)

...

wn =
(
ξAnL ξAnL−1B · · · ξAB ξB η

)

However, since the input vectors are L-Page exciting of order

n + 1 the left kernel of (10) has dimension at most n. This

implies that the vectors w0, . . . , wn are linearly dependent.

From the structure of the vectors we see that η = 0mL. By

Cayley-Hamilton, there exist αi ∈ R, i ∈ {0, . . . , n} with

αn = 1 such that
∑n

i=0 αi(A
L)i = 0. Define

v =

n∑

i=0

αiwi

=

(
ξ

n∑
i=0

αi(A
L)i · · · ξAL−1Bαn · · · ξBαn 0mL

)

=

(
0n ξ

n∑
i=1

αiA
iL−1B · · · ξAL−1B · · · ξB 0mL

)
.

Since v is a linear combination of vectors wi

then it is itself in the left kernel of (10). Hence,(
ξ
∑n

i=1 αiA
iL−1B · · · ξAL−1B · · · ξB 0mL

)

is in the left kernel of U . However, U has full row rank by

the excitation assumption implying the above vector must

be the zero vector. Thus, ξ
(
AL−1B · · · B

)
= 0mL. By

assumption we have that L ≥ n and B is controllable. Thus

ξ = 0n. Hence,
(
ξ η

)
= 0n+mL implying that (10) has full

row rank which concludes the proof.

Proof of Proposition 3.1: We first look at the feasible

set of (2). By rewriting the constraints in (2) we obtain

y = OTf
(A,C)x̂t + TTf

(A,B,C,D)u, u ∈ U , y ∈ Y,

where x̂t is the state at time t. We now look at the feasible

set of (5). Since û[1,T ] is (Tini + Tf)-Page exciting of order

n(B)+1, then by Theorem 2.1 image
(

col(Ûp, Ŷp, Ûf , Ŷf)
)
=

BTini+Tf
, where Ûp, Ŷp, Ûf , Ŷf are defined as in (3). Hence,

the feasible set of (5) is equal to {(u, y) ∈ U × Y |
col(ûini, u, ŷini, y) ∈ BTini+Tf

}. Since the system B yields an

equivalent representation given by B(A,B,C,D), then by

Lemma 2.1 the feasible set of (5) can be written as the set

of pairs (u, y) ∈ U × Y satisfying

y = OTf
(A,C)x̂ini + TTf

(A,B,C,D)u,

where x̂ini is uniquely determined from col(ûini, ŷini) and hence

coincides with x̂t. This proves the claim.

The following two lemmas will serve as essential corner-

stones of our subsequent results.

Lemma A.1: Assume that ϕ is proper, convex, and lower

semicontinuous. Then

sup
Q∈Bǫ(P̂N )

EQ[ϕ(ξ)] = inf
λ≥0

λǫ+
1

N

N∑

i=1

sup
ξ∈Ξ

(ϕ(ξ)−λ‖ξ−ξ̂(i)‖r)

Proof: The proof follows from [5, Theorem 4.2], specif-

ically from Equation (12b) in [5] which relies on a marginal-

ization and dualization of the constraint Q ∈ Bǫ(P̂N ).
Next we present a similar result as [2, Lemma 4.1]. The result

relaxes the conservative assumption that Ξ =
∏p(Tini+Tf)

i=1 Ξi for

M :=




AL AL−1B · · · AB B 0n×mL · · · 0n×mL

0m×n 0m×m · · · 0m×m 0m×m

[
I · · · 0m×m

]
· · ·

[
0m×m · · · 0m×m

]

...
...

. . .
...

...
...

. . .
...

0m×n 0m×m · · · 0m×m 0m×m

[
0m×m · · · I

]
· · ·

[
0m×m · · · 0m×m

]


 (11)
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appropriately defined Ξi imposed in [2]. The proof strategy is

partially inspired by arguments in [5].

Lemma A.2: Let c, d ∈ Z>0 and Ω ⊆ Rcd. Let q be such

that 1
r
+ 1

q
= 1. Let ζ̂ = col(ζ̂1, . . . , ζ̂c) ∈ Ω be given where

each ζ̂i ∈ Rd. Let λ ∈ R>0 and ϕ : Rc → R be a convex

and Lipschitz continuous function with Lipschitz constant Lϕ

with respect to the r-norm. Then for b ∈ Rd,

sup
ζ∈Ω

ϕ(ζ⊤1 b, . . . , ζ⊤c b)− λ‖ζ − ζ̂‖r

≤

{
ϕ(ζ̂⊤1 b, . . . , ζ̂⊤c b) if Lϕ‖b‖q ≤ λ

∞ otherwise

The above is an equality when Ω = Rcd.

Proof: We begin by first noting that

sup
ζ∈Ω

ϕ(ζ⊤1 b, . . . , ζ⊤c b)− λ‖ζ − ζ̂‖r

≤ sup
ζ∈Rcd

ϕ(ζ⊤1 b, . . . , ζ⊤c b)− λ‖ζ − ζ̂‖r

with equality when Ω = Rcd. Let Φ(ζ) = ϕ(ζ⊤1 b, . . . , ζ⊤c b).
By definition of the conjugate function,

Φ∗(z) = sup
ζ∈Rcd

〈z, ζ〉 − Φ(ζ)

= sup
ζ∈Rcd

〈z, ζ〉 − ϕ(ζ⊤1 b, . . . , ζ⊤c b)

= sup
ζ∈Rcd,s∈Rc

{
〈z, ζ〉 − ϕ(s)

∣∣∣∣∣ sj = ζ⊤j b
∀j∈{1,...,c}

}
,

where s = col(s1, . . . , sc). The Lagrangian of the above is

given by

L (s, ζ, θ) = 〈z, ζ〉+ 〈θ, (s1 − ζ⊤1 b, . . . , sc − ζ⊤c b)〉 − ϕ(s),

By strong duality (see, e.g., [53, Proposition 5.3.1]),

Φ∗(z) = inf
θ

sup
ζ∈Rcd,s

〈z, ζ〉

+ 〈θ, (s1 − ζ⊤1 b, . . . , sc − ζ⊤c b)〉 − ϕ(s)

= inf
θ

sup
ζ∈Rcd

〈z, ζ〉 − 〈θ, (ζ⊤1 b, . . . , ζ⊤c b)〉+ ϕ∗(θ)

= inf
θ

sup
ζ∈Rcd

〈(z1 − θ1b, . . . , zc − θcb), ζ〉+ ϕ∗(θ)

where z = col(z1, . . . , zc). The above problem may take the

value ∞ unless zi = θib for all i ∈ {1, . . . , c}. Hence, by

taking Θ := {θ | ϕ∗(θ) < ∞} as the effective domain of the

conjugate function of ϕ, we obtain

Φ∗(z) = inf
θ
{ϕ∗(θ) | zi = θib, ∀i ∈ {1, . . . , c}}

= inf
θ∈Θ

{ϕ∗(θ) | zi = θib, ∀i ∈ {1, . . . , c}} .

Since Φ is convex and continuous, the biconjugate Φ∗∗ coin-

cides with the function Φ itself. Hence,

Φ(ζ) = sup
z
〈z, ζ〉 − Φ∗(z)

= sup
z

{
〈z, ζ〉 − inf

θ∈Θ
ϕ∗(θ)

∣∣∣∣zi = θib, ∀i ∈ {1, . . . , c}

}

= sup
θ∈Θ

〈(θ1b, . . . , θcb), ζ〉 − ϕ∗(θ).

Hence,

sup
ζ∈Rcd

Φ(ζ)− λ‖ζ − ζ̂‖r

= sup
ζ∈Rcd

sup
θ∈Θ

〈(θ1b, . . . , θcb), ζ〉 − ϕ∗(θ)− λ‖ζ − ζ̂‖r

= sup
ζ∈Rcd

sup
θ∈Θ

inf
‖µ‖q≤λ

〈(θ1b, . . . , θcb), ζ〉 − ϕ∗(θ)− 〈µ, ζ − ζ̂〉,

where the last equality comes from the definition of the

dual norm and homogeneity of the norm. Using the minimax

theorem (see, e.g., [53, Proposition 5.5.4]) we switch the

supremum and infimum in the above giving

sup
ζ∈Rcd

Φ(ζ)− λ‖ζ − ζ̂‖r

= sup
θ∈Θ

inf
‖µ‖q≤λ

sup
ζ∈Rcd

〈(θ1b, . . . , θcb), ζ〉 − ϕ∗(θ)− 〈µ, ζ − ζ̂〉

= sup
θ∈Θ

inf
‖µ‖q≤λ

sup
ζ∈Rcd

〈(θ1b− µ1, . . . , θcb− µc), ζ〉

− ϕ∗(θ) + 〈µ, ζ̂〉,

where µ = col(µ1, . . . , µc). Carrying out the supremum over

ζ yields

sup
ζ∈Rcd

Φ(ζ)− λ‖ζ − ζ̂‖r

= sup
θ∈Θ

inf
‖µ‖q≤λ





〈(θ1b, . . . , θcb), ζ̂〉 − ϕ∗(θ) if µi = θib

∀i ∈ {1, . . . , c}

∞ otherwise

= sup
θ∈Θ

{
〈(θ1b, . . . , θcb), ζ̂〉 − ϕ∗(θ) if ‖(θ1b, . . . , θcb)‖q ≤ λ

∞ otherwise

=

{
ϕ(ζ̂⊤1 b, . . . , ζ̂⊤c b) if supθ∈Θ ‖(θ1b, . . . , θcb)‖q ≤ λ

∞ otherwise
,

where we used the definition of the biconjugate function

and ϕ∗∗ = ϕ (due to convexity and continuity). Note that

‖(θ1b, . . . , θcb)‖q = ‖θ‖q‖b‖q . From [5, Proposition 6.5],

we know that ‖θ‖q ≤ Lϕ. In fact, one can show that

supθ∈Θ ‖θ‖q = Lϕ [49, Remark 3]. Substituting this into the

expression above proves the result.

The following lemmas enable our main results and provide

separate reformulations for the objective function and con-

straints. The proofs strategies are partially inspired by [5],

[47], [54].

Lemma A.3: (Objective Reformulation): Assume that

f2 and f3 are convex and Lipschitz continuous functions.

Specifically, let Lobj > 0 be the Lipschitz constant with respect

to the r-norm of the mapping (x, y) 7→ f2(x) + f3(y). Then

sup
Q∈Bǫ(P̂N )

EQ

[
f1(Ûfg) + f2(Yfg) + f3(Ypg − ŷini)

]
≤

f1(Ûfg)+
1

N

N∑

i=1

(
f2(Ŷ

(i)
f g)+f3(Ŷ

(i)
p g − ŷini)

)
+Lobjǫ‖g‖r,∗

The above is an equality when Ξ = R
p(Tini+Tf)⌊

T
Tini+Tf

⌋
.
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Proof: By definition of ξ, we have f2(Yfg) + f3(Ypg −
ŷini) = f2(ξ

⊤
pTini+1g, . . . , ξ

⊤
p(Tini+Tf)

g)+f3((ξ
⊤
1 g, . . . , ξ⊤pTini

g)−
ŷini). Define

ϕ(ξ⊤1 g, . . . , ξ⊤p(Tini+Tf)
g) :=f2(ξ

⊤
pTini+1g, . . . , ξ

⊤
p(Tini+Tf)

g)

+ f3((ξ
⊤
1 g, . . . , ξ⊤pTini

g)− ŷini)

By definition, we have Lϕ = Lobj. Define also Φ(ξ) :=
ϕ(ξ⊤1 g, . . . , ξ⊤p(Tini+Tf)

g). Then from Lemma A.1 applied to Φ
we obtain

sup
Q∈Bǫ(P̂N )

EQ

[
f1(Ûfg) + f2(Yfg) + f3(Ypg − ŷini)

]

= inf
λ≥0

λǫ+ f1(Ûfg)

+
1

N

N∑

i=1

sup
ξ∈Ξ

(ϕ(ξ⊤1 g, . . . , ξ⊤p(Tini+Tf)
g)− λ‖ξ − ξ̂(i)‖r)

Applying Lemma A.2 yields

sup
Q∈Bǫ(P̂N )

EQ

[
f1(Ûfg) + f2(Yfg) + f3(Ypg − ŷini)

]
≤

ǫLϕ‖g‖r,∗+f1(Ûfg)+
1

N

N∑

i=1

(
f2(Ŷ

(i)
f g)+f3(Ŷ

(i)
p g − ŷini)

)
.

The above is an equality when Ξ = R
p(Tini+Tf)⌊

T
Tini+Tf

⌋
.

Substituting Lϕ = Lobj yields the result.

The following two results depend on the constraint set

GCVaR :=

{
g

∣∣∣∣∣ sup
Q∈Bǫ(P̂N )

CVaR
Q
1−α (h(Yfg)) ≤ 0

}
.

Lemma A.4: (Lipschitz Constraint Reformulation): Let

h be convex and Lipschitz continuous with Lipschitz constant

Lcon with respect to the r-norm. Then




g

∣∣∣∣∣∣∣∣∣∣

∃τ, λ, si such that

−τα+ Lconǫ‖g‖r,∗ +
1
N

∑N
i=1 si ≤ 0

τ + h(Ŷ
(i)
f g) ≤ si

si ≥ 0
∀i ≤ N





⊆ GCVaR .

The sets coincide if Ξ = R
p(Tini+Tf)⌊

T
Tini+Tf

⌋
and h(Yfg) is

bounded on Ξ for all g.

Remark A.1: Note that if Ξ = R
p(Tini+Tf)⌊

T
Tini+Tf

⌋
, then

h(Yfg) can only be bounded on Ξ for all g if h is constant.

Thus, for non-constant constraint functions h, the above will

be an inner approximation of GCVaR. •
Proof of Lemma A.4: By definition of CVaR,

CVaRP
1−α(h(y)) ≤ 0 ⇐⇒ inf

τ∈R
−τα+ EP[(h(y) + τ)+] ≤ 0

This can be shown by multiplying the definition of CVaR

by α > 0 and changing τ to −τ . Letting ℓ(g, ξ) :=
h(ξ⊤pTini+1g, . . . , ξ

⊤
p(Tini+Tf)

g), the constraint g ∈ GCVaR is

equivalent to g satisfying

sup
Q∈Bǫ(P̂N )

inf
τ∈R

−τα+ EQ

[
(ℓ(g, ξ) + τ)+

]
≤ 0. (13)

We have

sup
Q∈Bǫ(P̂N )

inf
τ∈R

−τα+ EQ[(ℓ(g, ξ) + τ)+]

≤ inf
τ∈R

−τα+ sup
Q∈Bǫ(P̂N )

EQ[(ℓ(g, ξ) + τ)+]
(14)

by the max-min inequality. From Lemma A.1 we have

sup
Q∈Bǫ(P̂N )

EQ[(ℓ(g, ξ) + τ)+]

= inf
λ≥0

λǫ+
1

N

N∑

i=1

sup
ξ∈Ξ

((ℓ(g, ξ) + τ)+ − λ‖ξ − ξ̂(i)‖r).

Recalling that ℓ(g, ξ) = h(ξ⊤pTini+1g, . . . , ξ
⊤
p(Tini+Tf)

) and using

Lemma A.2 gives

sup
Q∈Bǫ(P̂N )

EQ[(ℓ(g, ξ) + τ)+]

≤




infλ≥0 λǫ+

1
N

N∑
i=1

(ℓ(g, ξ̂(i)) + τ)+ if Lcon‖g‖r,∗ ≤ λ

∞ otherwise
(15)

Hence, by resolving the inf and resorting to an epigraph

formulation, we arrive at

inf
τ∈R

−τα+ sup
Q∈Bǫ(P̂N )

EQ[(ℓ(g, ξ) + τ)+]

≤





infτ∈R,si∈R −τα+ ǫLcon‖g‖r,∗ +
1
N

∑N
i=1 si

s.t. τ + ℓ(g, ξ̂(i)) ≤ si

si ≥ 0

∀i ≤ N

Substituting the definition for ℓ and recalling from (13) that

we wish for the right hand side of the above inequality to be

nonnegative gives




g

∣∣∣∣∣∣∣∣∣∣

infτ,si −τα+ Lconǫ‖g‖r,∗
+ 1

N

∑N
i=1 si ≤ 0

τ + h(Ŷ
(i)
f g) ≤ si

si ≥ 0
∀i ≤ N





⊆ GCVaR .

We can remove the infimum from the above formulation by

noting that there exist variables τ, si satisfying the constraints

above if and only if the above infimum constraint holds.

The “only if” part is obvious. The “if” part can be split

into two cases: the infimum is achieved, or the infimum is

not achieved. If the infimum is achieved then the optimizer

of the infimum satisfies the above. If the infimum is not

achieved (i.e., the infimum is −∞), then the first constraint is

trivially satisfied, and one can find variables τ, si satisfying

the remaining constraints. Note that (14) is an equality if

g 7→ ℓ(g, ξ) is convex for every ξ and ξ 7→ ℓ(g, ξ) is bounded

on Ξ for every g (see, [54, Theorem 2.2]). Furthermore, (15)

is an equality if Ξ = R
p(Tini+Tf)⌊

T
Tini+Tf

⌋
. Since h is convex,

this proves the claim.

We present an alternative result for the special case of

piecewise affine constraints in which it is possible to obtain a

tight set reformulation.
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Lemma A.5: (Piecewise Affine Constraint Reformula-

tion): Let Ξ = {ξ | Fξ ≤ d} for some F and d of appro-

priate dimensions. Let ℓ(g, ξ) := h(ξ⊤pTini+ig, . . . , ξ
⊤
p(Tini+Tf)

g).
Assume ℓ is piecewise affine in ξ, i.e., ℓ(g, ξ) =
maxk≤K〈Mkg, ξ〉+bk for matrices Mk, bk ∈ R and K ∈ Z>0.

Then




g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃τ, λ, si, γik such that

−τα+ λǫ+ 1
N

∑N
i=1 si ≤ 0

bk + τ + 〈Mkg, ξ̂
(i)〉

+〈γik, d− F ξ̂(i)〉 ≤ si
‖F⊤γik −Mkg‖r,∗ ≤ λ

si ≥ 0
∀i ≤ N, ∀k ≤ K





⊆ GCVaR .

The sets coincide when ℓ(g, ξ) is bounded on Ξ for all g.

Proof: Recall that the support set of the random variable

ξ is defined as Ξ = {ξ | Fξ ≤ d}. Substituting ℓ(g, ξ) =
maxk≤K〈Mkg, ξ〉 + bk and applying [5, Corollary 5.1] we

have that

sup
Q∈Bǫ(P̂N )

EQ[(ℓ(g, ξ) + τ)+]

=





infλ,si,γik
λǫ+ 1

N

∑N
i=1 si

s.t. bk + τ + 〈Mkg, ξ̂
(i)〉+ 〈γik, d− F ξ̂(i)〉 ≤ si

‖F⊤γik −Mkg‖r,∗ ≤ λ

si ≥ 0

∀i ≤ N, ∀k ≤ K

Invoking (13) and (14) and substituting the above yields the

following set inclusion





g

∣∣∣∣∣∣∣∣∣∣∣∣

infτ,λ,si,γik
−τα+ λǫ+ 1

N

∑N
i=1 si ≤ 0

s.t. bk + τ + 〈Mkg, ξ̂
(i)〉

+〈γik, d− F ξ̂(i)〉 ≤ si
‖F⊤γik −Mkg‖r,∗ ≤ λ

si ≥ 0
∀i ≤ N, ∀k ≤ K





⊆ GCVaR .

Similarly as in the proof of Lemma A.4, we can replace

the infimum from the above formulation with existence of

variables τ, λ, si, γik satisfying the constraints above. Hence,





g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃τ, λ, si, γik such that

−τα+ λǫ+ 1
N

∑N
i=1 si ≤ 0

bk + τ + 〈Mkg, ξ̂
(i)〉

+〈γik, d− F ξ̂(i)〉 ≤ si
‖F⊤γik −Mkg‖r,∗ ≤ λ

si ≥ 0
∀i ≤ N, ∀k ≤ K





⊆ GCVaR .

If g 7→ ℓ(g, ξ) is convex for every ξ and ξ 7→ ℓ(g, ξ)
is bounded on Ξ for every g then (14) reduces to equality

(see, [54, Theorem 2.2]) which proves the claim.

Proof of Theorem 4.1: Applying Lemma A.3 to the

objective function and Lemma A.4 to the constraint of op-

timization problem (6) gives the result.

Proof of Theorem 4.3: Choosing ǫ(β,N) as in (8) ensures

that PN (P ∈ Bǫ(P̂N )) ≥ 1−β. Hence, J(g) is upper bounded

by sup
Q∈Bǫ(P̂N )

EQ

[
f1(Ûfg) + f2(Yfg) + f3(Ypg − ŷini)

]
with

confidence 1 − β. Furthermore, by Theorem 4.1, J(g) is

upper bounded by Ĵ(g) with confidence 1 − β for all g.

Choosing g = ĝ⋆ proves the first statement. From Lemma A.4,

the constraint set of (7) is a subset of the set of vectors g

satisfying sup
Q∈Bǫ(P̂N )

CVaR
Q
1−α(h(Yfg)) ≤ 0. Invoking the fact

that PN (P ∈ Bǫ(P̂N )) ≥ 1 − β proves the second statement.
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