
Distributionally Robust Joint Chane Constraints withSeond-Order Moment InformationSteve Zymler∗, Daniel Kuhn, and Berç RustemDepartment of Computing, Imperial College London180 Queen's Gate, London SW7 2AZ, United Kingdom.August 13, 2011AbstratWe develop tratable semide�nite programming (SDP) based approximations for distributionallyrobust individual and joint hane onstraints, assuming that only the �rst- and seond-order mo-ments as well as the support of the unertain parameters are given. It is known that robust haneonstraints an be onservatively approximated by Worst-Case Conditional Value-at-Risk (CVaR)onstraints. We �rst prove that this approximation is exat for robust individual hane onstraintswith onave or (not neessarily onave) quadrati onstraint funtions, and we demonstrate thatthe Worst-Case CVaR an be omputed e�iently for these lasses of onstraint funtions. Next, westudy the Worst-Case CVaR approximation for joint hane onstraints. This approximation a�ordsintuitive dual interpretations and is provably tighter than two popular benhmark approximations.The tightness depends on a set of saling parameters, whih an be tuned via a sequential onvexoptimization algorithm. We show that the approximation beomes essentially exat when the salingparameters are hosen optimally and that the Worst-Case CVaR an be evaluated e�iently if thesaling parameters are kept onstant. We evaluate our joint hane onstraint approximation in theontext of a dynami water reservoir ontrol problem and numerially demonstrate its superiorityover the two benhmark approximations.1 IntrodutionA large lass of deision problems in engineering and �nane an be formulated as hane onstrainedprograms of the form
minimize

x∈Rn

cTx

subject to Q

(

ai(ξ̃)Tx ≤ bi(ξ̃) ∀i = 1, . . . , m
)

≥ 1− ǫ

x ∈ X ,

(1)where x ∈ Rn is the deision vetor, X ⊆ Rn is a onvex losed set that an be represented by semidef-inite onstraints, and c ∈ Rn is a ost vetor. Without muh loss of generality, we assume that c isdeterministi. The hane onstraint in (1) requires a set of m unertainty-a�eted inequalities to bejointly satis�ed with a probability of at least 1 − ǫ, where ǫ ∈ (0, 1) is a desired safety fator spei�ed
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by the modeler. The unertain onstraint oe�ients ai(ξ̃) ∈ Rn and bi(ξ̃) ∈ R, i = 1, . . . , m, dependa�nely on a random vetor ξ̃ ∈ Rk, whose distribution Q is assumed to be known. We thus have
ai(ξ̃) = a0

i +

k
∑

j=1

a
j
i ξ̃j and bi(ξ̃) = b0

i +

k
∑

j=1

bj
i ξ̃j .For ease of notation we introdue auxiliary funtions yj

i : Rn → R, whih are de�ned through
yj

i (x) = (aj
i )

Tx− bj
i , i = 1, . . . , n, j = 0, . . . , k.These funtions enable us to rewrite the hane onstraint in problem (1) as

Q

(

y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . , m

)

≥ 1− ǫ, (2)where yi(x) = [y1
i (x), . . . , yk

i (x)]T is a�ne in x for i = 1, . . . , m. By onvention, (2) is referred to as anindividual or joint hane onstraint if m = 1 or m > 1, respetively. Chane onstrained programs were�rst disussed by Charnes et al. [8℄, Miller and Wagner [18℄ and Prékopa [23℄. Although they have beenstudied for a long time, they have not found wide appliation in pratie due to the following reasons.Firstly, omputing the optimal solution of a hane onstrained program is notoriously di�ult. Infat, even heking the feasibility of a �xed deision x requires the omputation of a multi-dimensionalintegral, whih beomes inreasingly di�ult as the dimension k of the random vetor ξ̃ inreases.Furthermore, even though the inequalities in the hane onstraint (2) are bia�ne in x and ξ̃, thefeasible set of problem (1) is typially nononvex and sometimes even disonneted.Seondly, in order to evaluate the hane onstraint (2), full and aurate information about theprobability distribution Q of the random vetor ξ̃ is required. However, in many pratial situations Qmust be estimated from historial data and is therefore itself unertain. Typially, one has only partialinformation about Q, e.g. about its moments or its support. Replaing the unknown distribution Qin (1) by an estimate Q̂ orrupted by measurement errors may lead to over-optimisti solutions whihoften fail to satisfy the hane onstraint under the true distribution Q.In a few speial ases hane onstraints an be reformulated as tratable onvex onstraints. Forexample, it is known that if the random vetor ξ̃ follows a Gaussian distribution and ǫ ≤ 0.5, thenan individual hane onstraint an be equivalently expressed as a single seond-order one onstraint.In this ase, the hane onstrained problem beomes a tratable seond-order one program (SOCP),whih an be solved in polynomial time, see Alizadeh and Goldfarb [1℄. More generally, Cala�ore and ElGhaoui [6℄ have shown that for ǫ ≤ 0.5 individual hane onstraints an be onverted to seond-orderone onstraints whenever the random vetor ξ̃ is governed by a radial distribution. Tratability resultsfor joint hane onstraints are even more sare. In a seminal paper, Prékopa [23℄ has shown thatjoint hane onstraints are onvex when only the right-hand side oe�ients bi(ξ̃) are unertain andfollow a log-onave distribution. However, under generi distributions, hane onstrained programs2



are omputationally intratable. Indeed, Shapiro and Nemirovski [20℄ point out that omputing theprobability of a weighted sum of uniformly distributed variables being nonpositive is already NP-hard.Reently, Cala�ore and Campi [5℄ as well as Luedtke and Ahmed [17℄ have proposed to replae thehane onstraint (2) by a pointwise onstraint that must hold at a �nite number of sample points drawnrandomly from the distribution Q. A similar approah was suggested by Erdo�gan and Iyengar [12℄.The advantage of this Monte Carlo approah is that no strutural assumptions about Q are needed andthat the resulting approximate problem is onvex. Cala�ore and Campi [5℄ showed that one requires
O(n/ǫ) samples to guarantee that a solution of the approximate problem is feasible in the original haneonstrained program. However, this implies that it may be omputationally prohibitive to solve largeproblems or to solve problems for whih a small violation probability ǫ is required.A natural way to immunize the hane onstraint (2) against unertainty in the probability distribu-tion is to adopt a distributionally robust approah. To this end, let P denote the set of all probabilitydistributions on Rk that are onsistent with the known properties of Q, suh as its �rst and seondmoments and/or its support. Consider now the following ambiguous or distributionally robust haneonstraint.

inf
P∈P

P

(

y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . , m

)

≥ 1− ǫ (3)It is easily veri�ed that whenever x satis�es (3) and Q ∈ P , then x also satis�es the hane onstraint (2)under the true probability distribution Q. Replaing the hane onstraint (2) with its distributionallyrobust ounterpart (3) yields the following distributionally robust hane onstrained program
minimize

x∈Rn
cTx

subject to inf
P∈P

P

(

y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . , m

)

≥ 1− ǫ

x ∈ X ,

(4)whih onstitutes a onservative approximation for problem (1) in the sense that it has the same objetivefuntion but a smaller feasible set.A ommon method to simplify the distributionally robust joint hane onstraint (3), whih looks evenless tratable than (2), is to deompose it into m individual hane onstraints by using Bonferroni'sinequality. Indeed, by ensuring that the total sum of violation probabilities of the individual haneonstraints does not exeed ǫ, the feasibility of the joint hane onstraint is guaranteed. Nemirovskiand Shapiro [20℄ propose to divide the overall violation probability ǫ equally among the m individualhane onstraints. However, the Bonferroni inequality is not neessarily tight, and the orrespondingdeomposition ould therefore be over-onservative. In fat, for positively orrelated onstraint funtions,the quality of the approximation is known to derease as m inreases [9℄. Consequently, the Bonferronimethod may result in a poor approximation for problems with joint hane onstraints that involve manyinequalities.A reent attempt to improve on the Bonferroni approximation is due to Chen et al. [9℄. They �rst3



elaborate a onvex onservative approximation for a joint hane onstraint in terms of a Worst-CaseConditional Value-at-Risk (CVaR) onstraint. Then, they rely on a lassial inequality in order statististo determine a tratable onservative approximation for the Worst-Case CVaR and show that the result-ing approximation for the joint hane onstraint neessarily outperforms the Bonferroni approximation.An attrative feature of this method is that the arising approximate onstraints are seond-order onirepresentable. However, the employed probabilisti inequality is not neessarily tight, whih may againrender the approximation over-onservative.The prinipal aim of this paper is to develop new tools and models for approximating robust indi-vidual and joint hane onstraints under the assumption that only the �rst- and seond-order momentsas well as the support of the random vetor ξ̃ are known. We embrae the modern approah to approxi-mate robust hane onstraints by Worst-Case CVaR onstraints, but in ontrast to the state-of-the-artmethods desribed above, we �nd exat semide�nite programming (SDP) reformulations of the Worst-Case CVaR whih do not rely on potentially loose probabilisti inequalities. These reformulations arefailitated by the theory of moment problems and by oni duality arguments. We prove that the CVaRapproximation is in fat exat for individual hane onstraints whose onstraint funtions are either on-ave or (possibly nononave) quadrati in ξ and for joint hane onstraints whose onstraint funtionsdepend linearly on ξ. We also demonstrate that robust individual hane onstraints have manifestlytratable SDP representations in most ases in whih the CVaR approximation is exat.The main ontributions of this paper an be summarized as follows:(1) In Setion 2 we review and extend existing approximations for distributionally robust individualhane onstraints and prove that a robust individual hane onstraint is equivalent to a tratableWorst-Case CVaR onstraint if the underlying onstraint funtion is either onave or (possiblynononave) quadrati in ξ. We also demonstrate that this equivalene an fail to hold even if theonstraint funtion is onvex and pieewise linear in ξ.(2) In Setion 3 we develop a new tratable CVaR approximation for robust joint hane onstraintsand prove that this approximation onsistently outperforms the state-of-the-art methods desribedabove. We show that the approximation quality is ontrolled by a set of saling parameters and thatthe CVaR approximation beomes essentially exat if the saling parameters are hosen optimally.We also present an intuitive dual interpretation for the CVaR approximation in this ase.(3) In Setion 4 we analyze the performane of the new joint hane onstraint approximation whenapplied to a dynami water reservoir ontrol problem.Notation. We use lower-ase bold fae letters to denote vetors and upper-ase bold fae letters todenote matries. The spae of symmetri matries of dimension n is denoted by Sn. For any two matries
X,Y ∈ Sn, we let 〈X,Y〉 = Tr(XY) be the trae salar produt, while the relation X < Y (X ≻ Y)implies that X−Y is positive semide�nite (positive de�nite). Random variables are always representedby symbols with tildes, while their realizations are denoted by the same symbols without tildes. For4



x ∈ R, we de�ne x+ = max{x, 0}.2 Distributionally Robust Individual Chane ConstraintsIt is known that robust individual hane onstraints an be onservatively approximated by Worst-Case CVaR onstraints. In this setion, we �rst show how the theory of moment problems an beused to reformulate these Worst-Case CVaR onstraints in terms of tratable semide�nite onstraints.Subsequently, we prove that the Worst-Case CVaR onstraints are in fat equivalent to the underlyingrobust hane onstraints for a large lass of onstraint funtions.Distributional Assumptions. In the remainder of this paper we let µ ∈ Rk be the mean vetorand Σ ∈ Sk be the ovariane matrix of the random vetor ξ̃ under the true distribution Q. Thus, weimpliitly assume that Q has �nite seond-order moments. Without loss of generality we also assumethat Σ ≻ 0. Furthermore, we let P denote the set of all probability distributions on Rk that have thesame �rst- and seond-order moments as Q. For notational simpliity, we let
Ω =





Σ + µµT µ

µT 1



be the seond-order moment matrix of ξ̃.2.1 The Worst-Case CVaR ApproximationFor m = 1, (3) redues to a distributionally robust individual hane onstraint
inf
P∈P

P

(

y0(x) + y(x)Tξ̃ ≤ 0
)

≥ 1− ǫ, (5)whose feasible set is denoted by
X ICC =

{

x ∈ Rn : inf
P∈P

P

(

y0(x) + y(x)Tξ̃ ≤ 0
)

≥ 1− ǫ

}

.In the remainder of this setion we will demonstrate that X ICC has a manifestly tratable representationin terms of Linear Matrix Inequalities (LMIs). To this end, we �rst reall the de�nition of CVaR due toRokafellar and Uryasev [24℄. For a given measurable loss funtion L : Rk → R, probability distribution
P on Rk, and tolerane ǫ ∈ (0, 1), the CVaR at level ǫ with respet to P is de�ned as

P-CVaRǫ(L(ξ̃)) = inf
β∈R

{

β +
1

ǫ
EP

(

(L(ξ̃)− β)+
)

}

, (6)where EP(·) denotes expetation with respet to P. CVaR essentially evaluates the onditional expeta-tion of loss above the (1 − ǫ)-quantile of the loss distribution. It an be shown that CVaR represents a5



onvex funtional of the random variable L(ξ̃).CVaR an be used to onstrut onvex approximations for hane onstraints. Indeed, it is wellknown that
P

(

L(ξ̃) ≤ P-CVaRǫ(L(ξ̃))
)

≥ 1− ǫfor any measurable loss funtion L, see, e.g., Ben-Tal et al. [3, �4.3.3℄. Thus, P-CVaRǫ(L(ξ̃)) ≤ 0 issu�ient to imply P(L(ξ̃) ≤ 0) ≥ 1 − ǫ. As this impliation holds for any probability distribution andloss funtion, we onlude that
sup
P∈P

P-CVaRǫ

(

y0(x) + y(x)Tξ̃
)

≤ 0 =⇒ inf
P∈P

P

(

y0(x) + y(x)Tξ̃ ≤ 0
)

≥ 1− ǫ. (7)Thus, the Worst-Case CVaR onstraint on the left hand side onstitutes a onservative approximationfor the distributionally robust hane onstraint on the right hand side of (7). The above disussionmotivates us to de�ne the feasible set
ZICC =

{

x ∈ Rn : sup
P∈P

P-CVaRǫ

(

y0(x) + y(x)Tξ̃
)

≤ 0

}

, (8)and the impliation (7) gives rise to the following elementary result.Proposition 2.1 The feasible set ZICC onstitutes a onservative approximation for X ICC, that is,
ZICC ⊆ X ICC.We will now show that ZICC has a tratable representation in terms of LMIs.Theorem 2.1 The feasible set ZICC an be written as

ZICC =































x ∈ Rn :

∃(β,M) ∈ R× Sk+1,

M < 0, β + 1
ǫ 〈Ω,M〉 ≤ 0,

M−





0 1
2y(x)

1
2y(x)T y0(x)− β



 < 0































.Proof: By using (6), the Worst-Case CVaR in (8) an be expressed as
sup
P∈P

P-CVaRǫ

(

y0(x) + y(x)Tξ̃
)

= sup
P∈P

inf
β∈R

{

β +
1

ǫ
EP

(

(y0(x) + y(x)Tξ̃ − β)+
)

}

= inf
β∈R

{

β +
1

ǫ
sup
P∈P

EP

(

(y0(x) + y(x)Tξ̃ − β)+
)

}

, (9)where the interhange of the maximization and minimization operations is justi�ed by a stohasti saddlepoint theorem due to Shapiro and Kleywegt [26℄, see also Delage and Ye [11℄ or Natarajan et al. [19℄. Wenow show that the Worst-Case CVaR (9) of some �xed deision x ∈ Rn an be omputed by solving a
6



tratable SDP. To this end, we �rst derive an SDP reformulation of the worst-ase expetation problem
sup
P∈P

EP

(

(y0(x) + y(x)Tξ̃ − β)+
)

,whih an be identi�ed as the subordinate maximization problem in (9). Lemma A.1 in the Appendixenables us to reformulate this worst-ase expetation problem as
inf

M∈Sk+1
〈Ω,M〉

s. t. M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ y0(x) + y(x)Tξ − β ∀ξ ∈ Rk.
(10)Note that the semi-in�nite onstraint in (10) an be written as the following LMI.





ξ

1





T

M−





0 1
2y(x)

1
2y(x)T y0(x)− β













ξ

1



 ≥ 0 ∀ξ ∈ Rk ⇐⇒ M−





0 1
2y(x)

1
2y(x)T y0(x)− β



 < 0This in turn allows us to reformulate the worst-ase expetation problem as
inf

M∈Sk+1
〈Ω,M〉

s. t. M < 0, M−





0 1
2y(x)

1
2y(x)T y0(x)− β



 < 0.
(11)By replaing the subordinate worst-ase expetation problem in (9) by (11), we obtain

sup
P∈P

P-CVaRǫ

(

y0(x) + y(x)Tξ̃
)

= inf β + 1
ǫ 〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R

M < 0, M−





0 1
2y(x)

1
2y(x)T y0(x)− β



 < 0,

(12)and thus the laim follows.2.2 Exatness of the Worst-Case CVaR ApproximationSo far we have shown that the feasible set ZICC de�ned in terms of a Worst-Case CVaR onstraint on-stitutes a tratable onservative approximation for X ICC. We now demonstrate that this approximationis in fat exat, that is, we show that the impliation (7) is in fat an equivalene. We �rst reall thenonlinear Farkas Lemma as well as the S-lemma, whih are ruial ingredients for the proof of this result.We refer to Pólik and Terlaky [22℄ for a derivation and an in-depth survey of the S-lemma as well as areview of the Farkas Lemma.Lemma 2.1 (Farkas Lemma) Let f0, . . . , fp : Rk → R be onvex funtions, and assume that thereexists a stritly feasible point ξ̄ with fi(ξ̄) < 0, i = 1, . . . , p. Then, f0(ξ) ≥ 0 for all ξ with fi(ξ) ≤ 0,7



i = 1, . . . , p, if and only if there exist onstants τi ≥ 0 suh that
f0(ξ) +

p
∑

i=1

τifi(ξ) ≥ 0 ∀ξ ∈ Rk.Lemma 2.2 (S-lemma) Let fi(ξ) = ξTAiξ with Ai ∈ Sn be quadrati funtions of ξ ∈ Rn for i =

0, . . . , p. Then, f0(ξ) ≥ 0 for all ξ with fi(ξ) ≤ 0, i = 1, . . . , p, if there exist onstants τi ≥ 0 suh that
A0 +

p
∑

i=1

τiAi < 0.For p = 1, the onverse impliation holds if there exists a stritly feasible point ξ̄ with f1(ξ̄) < 0.Theorem 2.2 Let L : Rk → R be a ontinuous loss funtion that is either(i) onave in ξ, or(ii) (possibly nononave) quadrati in ξ.Then, the following equivalene holds.
sup
P∈P

P-CVaRǫ

(

L(ξ̃)
)

≤ 0 ⇐⇒ inf
P∈P

P

(

L(ξ̃) ≤ 0
)

≥ 1− ǫ (13)Proof: Consider the Worst-Case Value-at-Risk of the loss funtion L, whih is de�ned asWC-VaRǫ(L(ξ̃)) = inf
γ∈R

{

γ : inf
P∈P

P

(

L(ξ̃) ≤ γ
)

≥ 1− ǫ

}

. (14)By de�nition, the WC-VaR is indeed equal to the (1−ǫ)-quantile of L(ξ̃) evaluated under some worst-asedistribution in P . We �rst show that the following equivalene holds.
inf
P∈P

P

(

L(ξ̃) ≤ 0
)

≥ 1− ǫ ⇐⇒ WC-VaRǫ

(

L(ξ̃)
)

≤ 0 (15)Indeed, if the left hand side of (15) is satis�ed, then γ = 0 is feasible in (14), whih implies thatWC-VaRǫ(L(ξ̃)) ≤ 0. To see that the onverse impliation holds as well, we note that for any �xed
P ∈ P , the mapping γ 7→ P(L(ξ̃) ≤ γ) is upper semi-ontinuous, see [21℄. Thus, the related mapping
γ 7→ inf

P∈P
P(L(ξ̃) ≤ γ) is also upper semi-ontinuous. If WC-VaRǫ(L(ξ̃)) ≤ 0, there exists a sequene

{γn}n∈N that onverges to zero and is feasible in (14), whih implies
inf
P∈P

P

(

L(ξ̃) ≤ 0
)

≥ lim sup
n→∞

inf
P∈P

P

(

L(ξ̃) ≤ γn

)

≥ 1− ǫ.Thus, (15) follows.
8



To prove the postulated equivalene (13), it is now su�ient to show that
sup
P∈P

P-CVaRǫ

(

L(ξ̃)
)

= WC-VaRǫ

(

L(ξ̃)
)

.Note that (14) an be rewritten asWC-VaRǫ(L(ξ̃)) = inf
γ∈R

{

γ : sup
P∈P

P

(

L(ξ̃) > γ
)

≤ ǫ

}

. (16)We proeed by simplifying the subordinate worst-ase probability problem sup
P∈P

P(L(ξ̃) > γ), whih, byLemma A.2 in the Appendix, an be expressed as
inf

M∈Sk+1

{

〈Ω,M〉 : M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ 1 ∀ξ : γ − L(ξ) < 0
}

. (17)We will now argue that for all but one value of γ problem (17) is equivalent to
inf 〈Ω,M〉

s. t. M ∈ Sk+1, τ ∈ R, M < 0, τ ≥ 0
[

ξT 1
]

M
[

ξT 1
]T

− 1 + τ (γ − L(ξ)) ≥ 0 ∀ξ ∈ Rk.

(18)For ease of exposition, we de�ne h = inf
ξ∈Rk

γ − L(ξ). The equivalene of (17) and (18) is proved aseby ase. Assume �rst that h < 0. Then, the strit inequality in the parameter range of the semi-in�nite onstraint in (17) an be replaed by a weak inequality without a�eting its optimal value. Theequivalene then follows from the Farkas Lemma (when L(ξ) is onave in ξ) or from the S-lemma (when
L(ξ) is quadrati in ξ). Assume next that h > 0. Then, the semi-in�nite onstraint in (17) beomesredundant and, sine Ω ≻ 0, the optimal solution of (17) is given by M = 0 with a orrespondingoptimal value of 0. The optimal value of problem (18) is also equal to 0. Indeed, by hoosing τ = 1/h,the semi-in�nite onstraint in (18) is satis�ed for any M < 0. Finally, note that (17) and (18) may bedi�erent for h = 0.Sine (17) and (18) are equivalent for all but one value of γ and sine their optimal values arenoninreasing in γ, we an express WC-VaRǫ(L(ξ̃)) in (16) asWC-VaRǫ(L(ξ̃)) = inf γ

s. t. M ∈ Sk+1, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ ǫ, M < 0, τ ≥ 0
[

ξT 1
]

M
[

ξT 1
]T

− 1 + τ (γ − L(ξ)) ≥ 0 ∀ξ ∈ Rk.

(19)It an easily be shown that 〈Ω,M〉 ≥ 1 for any feasible solution of (19) with vanishing τ -omponent.However, sine ǫ < 1, this is in on�it with the onstraint 〈Ω,M〉 ≤ ǫ. We thus onlude that nofeasible point an have a vanishing τ -omponent. This allows us to divide the semi-in�nite onstraint in9



problem (19) by τ . Subsequently we perform variable substitutions in whih we replae τ by 1/τ and Mby M/τ . This yields the following reformulation of problem (19).WC-VaRǫ(L(ξ̃)) = inf γ

s. t. M ∈ Sk+1, τ ∈ R, γ ∈ R

1
ǫ 〈Ω,M〉 ≤ τ, M < 0, τ ≥ 0
[

ξT 1
]

M
[

ξT 1
]T

− τ + γ − L(ξ) ≥ 0 ∀ξ ∈ RkNote that, sine Ω ≻ 0 and M < 0, we have 1
ǫ 〈Ω,M〉 ≥ 0. This allows us to remove the redundantnonnegativity onstraint on τ . We now introdue a new deision variable β = γ − τ , whih allows us toeliminate γ. WC-VaRǫ(L(ξ̃)) = inf β + τ

s. t. M ∈ Sk+1, τ ∈ R, β ∈ R

1
ǫ 〈Ω,M〉 ≤ τ, M < 0
[

ξT 1
]

M
[

ξT 1
]T

+ β − L(ξ) ≥ 0 ∀ξ ∈ RkNote that at optimality τ = 1
ǫ 〈Ω,M〉, whih �nally allows us to express WC-VaRǫ(L(ξ̃)) asWC-VaRǫ(L(ξ̃)) = inf β + 1

ǫ 〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R, M < 0
[

ξT 1
]

M
[

ξT 1
]T

+ β − L(ξ) ≥ 0 ∀ξ ∈ Rk.

(20)Reall now that by Lemma A.1 we have
sup
P∈P

P-CVaRǫ

(

L(ξ̃)
)

= inf
β∈R

{

β +
1

ǫ
sup
P∈P

EP

(

(L(ξ̃)− β)+
)

}

= inf β + 1
ǫ 〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R, M < 0
[

ξT 1
]

M
[

ξT 1
]T

+ β − L(ξ) ≥ 0 ∀ξ ∈ Rk,whih is learly equivalent to (20). This observation ompletes the proof.Corollary 2.1 The following equivalene holds
sup
P∈P

P-CVaRǫ

(

y0(x) + y(x)Tξ̃
)

≤ 0 ⇐⇒ inf
P∈P

P

(

y0(x) + y(x)Tξ̃ ≤ 0
)

≥ 1− ǫ,whih implies that ZICC = X ICC.Proof: The laim follows immediately from Theorem 2.2 by observing that L(ξ) = y0(x) + y(x)Tξ islinear (and therefore onave) in ξ. 10



In the following example we demonstrate that the equivalene (13) an fail to hold even if the lossfuntion L is onvex and pieewise linear in ξ.Example 2.1 Let ξ̃ be a salar random variable with mean µ = 0 and standard deviation σ = 1.Moreover, let P be the set of all probability distributions on R onsistent with the given mean andstandard deviation. Consider now the loss funtion L(ξ) = max{ξ−1, 4ξ−4}, and note that L is stritlyinreasing and onvex in ξ. In partiular, L is neither onave nor quadrati and thus falls outsidethe sope of Theorem 2.2. We now show that for this partiular L the Worst-Case CVaR onstraint
sup
P∈P

P-CVaR 1
2
(L(ξ̃)) ≤ 0 is violated even though the distributionally robust individual hane onstraint

inf
P∈P

P(L(ξ̃) ≤ 0) ≥ 1/2 is satis�ed. To this end, we note that the Chebyhev inequality P(ξ̃ − µ ≥ κσ) ≤

1/(1 + κ2) for κ = 1 implies
sup
P∈P

P

(

ξ̃ ≥ 1
)

≤
1

2
⇐⇒ sup

P∈P

P

(

L(ξ̃) ≥ L(1) = 0
)

≤
1

2

=⇒ sup
P∈P

P

(

L(ξ̃) > 0
)

≤
1

2

⇐⇒ inf
P∈P

P

(

L(ξ̃) ≤ 0
)

≥
1

2
,where the �rst equivalene follows from the monotoniity of L. Assume now that the true distribution

Q of ξ̃ is disrete and de�ned through Q(ξ̃ = −2) = 1/8, Q(ξ̃ = 0) = 3/4, and Q(ξ̃ = 2) = 1/8. It iseasy to verify that Q ∈ P and that Q-CVaR 1
2
(L(ξ̃)) = 0.25. Thus, sup

P∈P

P-CVaR 1
2
(L(ξ̃)) ≥ 0.25 > 0. Wetherefore onlude that the Worst-Case CVaR onstraint is not equivalent to the robust hane onstraint.2.3 Tratability of the Worst-Case CVaR ApproximationWe have already seen that Worst-Case CVaR onstraints are equivalent to distributionally robust haneonstraints when the loss funtion is ontinuous and either onave or quadrati in ξ. We now provethat the Worst-Case CVaR an also be omputed e�iently for these lasses of loss funtions.Theorem 2.3 Assume that L : Rk → R is either(i) onave pieewise a�ne in ξ with a �nite number of piees or(ii) (possibly nononave) quadrati in ξ.Then, sup

P∈P

P-CVaRǫ(L(ξ̃)) an be omputed e�iently as the optimal value of a tratable SDP.Proof: Assume that (i) holds and that L(ξ̃) = mini=1,...,l{ai + bT
i ξ̃} for some ai ∈ R and bi ∈ Rk,

i = 1, . . . , l. Then, the Worst-Case CVaR is representable as
inf
β∈R

{

β +
1

ǫ
sup
P∈P

EP

(

[

min
i=1,...,l

{ai + bT
i ξ̃} − β

]+
)}

. (21)11



By Lemma A.1, the subordinate worst-ase expetation problem in (21) an be rewritten as
inf

M∈Sk+1
〈Ω,M〉

s. t. M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ min
i=1,...,l

{ai + bT
i ξ} − β ∀ξ ∈ Rk.

(22)Noting that
min

i=1,...,l
{ai + bT

i ξ} = min
λ∈∆

l
∑

i=1

λi(ai + bT
i ξ),where ∆ = {λ ∈ Rl :

∑l
i=1 λi = 1, λ ≥ 0} denotes the probability simplex in Rl, we an use tehniquesdeveloped in [4, Theorem 2.1℄ to reexpress the semi-in�nite onstraint in (22) as
[

ξT 1
]

M
[

ξT 1
]T

−min
λ∈∆

l
∑

i=1

λi(ai + bT
i ξ) + β ≥ 0 ∀ξ ∈ Rk

⇐⇒ min
ξ∈Rk

max
λ∈∆

{

[

ξT 1
]

M
[

ξT 1
]T

−
l
∑

i=1

λi(ai + bT
i ξ) + β

}

≥ 0

⇐⇒ max
λ∈∆

min
ξ∈Rk

{

[

ξT 1
]

M
[

ξT 1
]T

−
l
∑

i=1

λi(ai + bT
i ξ) + β

}

≥ 0

⇐⇒ min
ξ∈Rk

{

[

ξT 1
]

M
[

ξT 1
]T

−
l
∑

i=1

λi(ai + bT
i ξ) + β

}

≥ 0, λ ∈ ∆

⇐⇒ M−





0
∑l

i=1
λi

2 bi

∑l
i=1

λi

2 bT

i

∑l
i=1 λiai − β



 < 0, λ ∈ ∆.The seond equivalene in the above expression follows from the lassial saddle point theorem. Thus,the Worst-Case CVaR (21) an be rewritten as the optimal value of the following tratable SDP.
inf β + 1

ǫ 〈Ω,M〉

s. t. β ∈ R, M ∈ Sk+1, λ ∈ Rl

M < 0, M−





0
∑l

i=1
λi

2 bi

∑l
i=1

λi

2 bT

i

∑l
i=1 λiai − β



 < 0, λ ∈ ∆

(23)Assume now that (ii) holds and that L(ξ) = ξTQξ + qTξ + q0 for some Q ∈ Sk, q ∈ Rk, and q0 ∈ R.In this ase we have
sup
P∈P

P-CVaRǫ(L(ξ̃)) = inf
β∈R

{

β +
1

ǫ
sup
P∈P

EP

(

[

ξ̃TQξ̃ + ξ̃Tq + q0 − β
]+
)}

. (24)As usual, we �rst �nd an SDP reformulation of the subordinate worst-ase expetation problem in (24).
12



By Lemma A.1, this problem an be rewritten as
inf

M∈Sk+1
〈Ω,M〉

s. t. M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ ξTQξ + ξTq + q0 − β ∀ξ ∈ Rk.
(25)Note that the semi-in�nite onstraint in (25) is equivalent to





ξ

1





T

M−





Q 1
2q

1
2qT q0 − β













ξ

1



 ≥ 0 ∀ξ ∈ Rk ⇐⇒ M−





Q 1
2q

1
2qT q0 − β



 < 0,whih enables us to rewrite the Worst-Case CVaR (24) as the optimal value of
inf β + 1

ǫ 〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R

M < 0, M−





Q 1
2q

1
2qT q0 − β



 < 0,whih is indeed a tratable SDP.Remark If the loss funtion is onave but not pieewise a�ne, the Worst-Case CVaR an sometimesstill be evaluated e�iently, though not by solving an expliit SDP. Indeed, the Worst-Case CVaRan be omputed in polynomial time with an ellipsoid method if L(ξ) is onave and if, for any ξ ∈

Rk, one an evaluate both L(ξ) as well as a super-gradient ∇ξL(ξ) in polynomial time. This is animmediate onsequene of a result on the omputation of worst-ase expetations by Delage and Ye [11,Proposition 2℄.3 Distributionally Robust Joint Chane ConstraintsWe de�ne the feasible set X JCC of the distributionally robust joint hane onstraint (3) as
X JCC =

{

x ∈ Rn : inf
P∈P

P

(

y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . , m

)

≥ 1− ǫ

}

.The aim of this setion is to investigate the struture of X JCC and to elaborate tratable onservativeapproximations. We �rst review two existing approximations and disuss their bene�ts and shortomings.
13



3.1 The Bonferroni ApproximationA popular approximation for X JCC is based on Bonferroni's inequality. Note that the robust joint haneonstraint (3) is equivalent to
inf
P∈P

P

(

m
⋂

i=1

{

y0
i (x) + yi(x)Tξ̃ ≤ 0

}

)

≥ 1− ǫ ⇐⇒ sup
P∈P

P

(

m
⋃

i=1

{

y0
i (x) + yi(x)Tξ̃ > 0

}

)

≤ ǫ.Furthermore, Bonferroni's inequality implies that
P

(

m
⋃

i=1

{

y0
i (x) + yi(x)Tξ̃ > 0

}

)

≤
m
∑

i=1

P

(

y0
i (x) + yi(x)Tξ̃ > 0

)

∀P ∈ P .For any vetor of safety fators ǫ ∈ E = {ǫ ∈ Rm
+ :

∑m
i=1 ǫi ≤ ǫ}, the system of distributionally robustindividual hane onstraints

inf
P∈P

P

(

y0
i (x) + yi(x)Tξ̃ ≤ 0

)

≥ 1− ǫi ∀i = 1, . . . , m (26)represents a onservative approximation for the distributionally robust joint hane onstraint (3). ByTheorem 2.1, we an reformulate eah of the individual hane onstraints in (26) in terms of tratableLMIs. In fat, we an further redue these LMIs to SOCP onstraints, but this further simpli�ation isirrelevant for our purposes. Thus, for any ǫ ∈ E , the assertion that x ∈ ZJCCB (ǫ), where
ZJCCB (ǫ) =































x ∈ Rn :

∃(βi,Mi) ∈ R× Sk+1 ∀i = 1, . . . , m,

Mi < 0, βi + 1
ǫi
〈Ω,Mi〉 ≤ 0 ∀i = 1, . . . , m,

Mi −





0 1
2yi(x)

1
2yi(x)T y0

i (x)− βi



 < 0 ∀i = 1, . . . , m































,is a su�ient ondition to guarantee that x satis�es the original distributionally robust joint haneonstraint (3). The above arguments ulminate in the following result.Theorem 3.1 (Bonferroni Approximation) For any ǫ ∈ E we have ZJCCB (ǫ) ⊆ X JCC.A major shortoming of the Bonferroni approximation is that the approximation quality dependsritially on the hoie of ǫ ∈ E . Unfortunately, the problem of �nding the best ǫ ∈ E for a generihane onstrained problem of type (4) is nononvex and believed to be intratable [20℄. As a result, inmost appliations of Bonferroni's inequality the �risk budget� ǫ is equally divided among the m individualhane onstraints in (26) by setting ǫi = ǫ/m for i = 1, . . . , m. This approah was �rst advoated byNemirovski and Shapiro [20℄.The Bonferroni approximation an be overly onservative even if ǫ ∈ E is hosen optimally. Thefollowing example, whih is adapted from Chen et al. [9℄, highlights this shortoming.14



Example 3.1 Assume that the inequalities in the hane onstraint (3) are perfetly positively orrelatedin the sense that
y0

i (x) = δiŷ
0(x) and yi(x) = δiŷ(x)for some a�ne funtions ŷ0 : Rn → R and ŷ : Rn → Rk and for some �xed onstants δi > 0 for

i = 1, . . . , m. In this ase, it an readily be seen that the joint hane onstraint (3) is equivalent to therobust individual hane onstraint
inf
P∈P

P

(

y0(x) + y(x)Tξ̃ ≤ 0
)

≥ 1− ǫ. (27)Thus, the least onservative hoie for ǫi whih guarantees that (26) implies (3) is ǫi = ǫ for i = 1, . . . , m.However, this means that the ǫi sum to mǫ instead of ǫ as required by the Bonferroni approximation.In fat, the optimal hoie for ǫ ∈ E is ǫi = ǫ/m for i = 1, . . . , m. This example demonstrates that thequality of the Bonferroni approximation diminishes as m inreases if the inequalities in the joint haneonstraint are positively orrelated.3.2 Approximation by Chen, Sim, Sun and TeoIn order to mitigate the potential over-onservatism of the Bonferroni approximation, Chen et al. [9℄proposed an approximation based on a di�erent inequality from probability theory. The starting pointis the observation that the joint hane onstraint (3) an be reformulated as
inf
P∈P

P

(

max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

≤ 0

)

≥ 1− ǫ (28)for any vetor of stritly positive saling parameters α ∈ A = {α ∈ Rm : α > 0}. Note that the hoieof α ∈ A does not a�et the feasible region of the hane onstraint (28). Although these salingparameters are seemingly unneessary, it turns out that they an be tuned to improve the approximationto be developed below. Chen et al. [9℄ note that (28) represents a distributionally robust individualhane onstraint, whih an be onservatively approximated by a Worst-Case CVaR onstraint. Thus,for any α ∈ A, the requirement
x ∈ ZJCC(α) =

{

x ∈ Rn : sup
P∈P

CVaRǫ

(

max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

)

≤ 0

} (29)implies that x ∈ X JCC, see Proposition 2.1. It is important to note that, in ontrast to the haneonstraint (28), the Worst-Case CVaR onstraint x ∈ ZJCC(α) does depend on the hoie of α ∈ A.Thus, the Worst-Case CVaR onstraint in (29) is not equivalent to the robust hane onstraint (28)sine the max funtion in (28) is onvex pieewise linear, see also Theorem 2.2 and Example 2.1.The following theorem due to Chen et al. [9℄ relies on a lassial result in order statistis and providesa tratable SOCP-based onservative approximation for ZJCC(α).15



Theorem 3.2 (Approximation by Chen et al.) For any α ∈ A we have ZJCCU (α) ⊆ ZJCC(α) ⊆

X JCC where ZJCCU (α) = {x ∈ Rn : Ĵ (x, α) ≤ 0} and
Ĵ (x, α) = min

w0∈R,w∈Rk

{

min
β∈R

[

β +
1

ǫ
π
(

w0 − β, w
)

]

+
1

ǫ

[

m
∑

i=1

π
(

αiy
0
i (x)− w0, αiyi(x)−w

)

]}

,where
π
(

z0, z
)

=
1

2

(

z0 + µTz
)

+
1

2

∥

∥

∥

(

z0 + µTz, Σ1/2z
)∥

∥

∥

2Note that, sine the feasible set ZJCCU (α) onstitutes a tratable onservative approximation for X JCCfor any α ∈ A, the union ⋃α∈A
ZJCCU (α) still onstitutes a onservative approximation for X JCC. Chenet al. [9℄ prove also that their approximation is tighter than the Bonferroni approximation by showingthat ZJCCB (ǫ) ⊆

⋃

α∈A
ZJCCU (α) for all ǫ ∈ E . Unfortunately, similar to the Bonferroni approah, theapproximation by Chen et al. depends ritially on the hoie of α, while the problem of �nding the best

α ∈ A for a generi hane onstrained program of the type (4) is nononvex and therefore believed tobe intratable.3.3 The Worst-Case CVaR ApproximationBoth approximations disussed so far rely on inequalities from probability theory, whih are not nees-sarily tight. In this setion we show that the set ZJCC(α) has in fat an exat tratable representationin terms of LMIs and therefore promises to provide a tight onvex approximation for X JCC.Theorem 3.3 For any �xed x ∈ Rn and α ∈ A, we have
ZJCC(α) =































x ∈ Rn :

∃(β,M) ∈ R× Sk+1,

β + 1
ǫ 〈Ω,M〉 ≤ 0, M < 0,

M−





0 1
2αiyi(x)

1
2αiy

T

i αiy
0
i (x)− β



 < 0 ∀i = 1, . . . , m































. (30)Proof: We note that the onstraint x ∈ ZJCC(α) is equivalent to J (x, α) ≤ 0, where
J (x, α) = sup

P∈P

CVaRǫ

(

max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

)

= inf
β∈R

{

β +
1

ǫ
sup
P∈P

EP

(

[

max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

− β

]+
)} (31)denotes the Worst-Case CVaR. As in Setion 2, the �rst step towards a tratable reformulation of J (x, α)is to solve the worst-ase expetation problem

sup
P∈P

EP

(

[

max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

− β

]+
)

. (32)16



For any �xed x ∈ X , β ∈ R, and α ∈ A, Lemma A.1 enables us to reformulate (32) as
inf

M∈Sk+1
〈Ω,M〉

s. t. M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

− β ∀ξ ∈ Rk.
(33)We emphasize that (33) represents a lossless reformulation of the worst-ase expetation problem (32).The semi-in�nite onstraint in (33) an be expanded into m simpler semi-in�nite onstraints of the form

[

ξT 1
]

M
[

ξT 1
]T

≥ αi

(

y0
i (x) + yi(x)Tξ

)

− β ∀ξ ∈ Rk, i = 1, . . . , m,whih an be equivalently expressed as the following system of LMIs.
M−





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x)− β



 < 0 ∀i = 1, . . . , mWe an therefore reformulate the worst-ase expetation problem (32) as
inf

M∈Sk+1
〈Ω,M〉

s. t. M < 0, M−





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x)− β



 < 0 ∀i = 1, . . . , m.
(34)Substituting (34) into (31) yields

J (x, α) = inf β +
1

ǫ
〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R

M < 0, M−





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x)− β



 < 0 ∀i = 1, . . . , m,

(35)
and thus the laim follows.Theorem 3.3 establishes that ZJCC(α) has an exat representation in terms of LMIs. We have alreadyseen in Setion 3.2 that ZJCC(α) ⊆ X JCC for all α ∈ A and that ZJCCU (α) ⊆ ZJCC(α), see Theorem 3.2.Thus, ZJCC(α) onstitutes a tratable onservative approximation for X JCC whih is at least as tight as
ZJCCU (α).Reall from Setion 3.2 that ZJCCB (ǫ) ⊆

⋃

α∈A
ZJCCU (α) for all ǫ ∈ E . Moreover, we have ZJCCU (α) ⊆

ZJCC(α) ⊂ X JCC for all α ∈ A. This allows us to onlude that our new approximation is at least astight as the two state-of-the-art approximations disussed above.Remark 3.1 In ontrast to the lassial Bonferroni approximation, the Worst-Case CVaR approxima-tion behaves reasonably in situations in whih the m inequalities in the hane onstraint (3) are posi-tively orrelated. Indeed, by hoosing αi := 1/δi > 0 for all i = 1, . . . , m in Example 3.1, the onstraint17



x ∈ ZJCC(α) is equivalent to
∃β ∈ R, M ∈ Sk+1 : β +

1

ǫ
〈Ω,M〉 ≤ 0, M < 0, M−





0 1
2y(x)

1
2y(x)T y0(x)− β



 < 0,whih an easily be identi�ed as the SDP reformulation of the individual hane onstraint (27). Thisimplies that ZJCC(α) = X ICC for all α ∈ A in Example 3.1, see also Theorem 2.1. Thus, by hoosing
α appropriately, our method an provide tight approximations for distributionally robust joint haneonstraints, even in situations when the m inequalities are positively orrelated.3.4 Dual Interpretation of the Worst-Case CVaR ApproximationIn this setion we explore a di�erent way to �nd a tratable onservative approximation for the haneonstraint (3). Subsequently, we will prove that this approximation is equivalent to the Worst-CaseCVaR approximation.Consider again the robust individual hane onstraint (28) whih is equivalent to the robust jointhane onstraint (3) for any �xed α ∈ A. Instead of approximating (28) by a Worst-Case CVaRonstraint, we an approximate the max-funtion in the hane onstraint (28) by a quadrati majorantof the form q(ξ) = ξTQξ + ξTq + q0 that satis�es

q(ξ) ≥ max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ

)}

∀ξ ∈ Rk,

⇐⇒ q(ξ) ≥ αi

(

y0
i (x) + yi(x)Tξ

)

∀ξ ∈ Rk, i = 1, . . . , m.

(36)Replaing the max funtion in (28) by q(ξ) yields the distributionally robust (individual) quadratihane onstraint
inf
P∈P

P

(

ξ̃TQξ̃ + ξ̃Tq + q0 ≤ 0
)

≥ 1− ǫ. (37)For further argumentation, we de�ne
ZJCCQ (α) =







x ∈ Rn :
∃Q ∈ Sk, q ∈ Rk, q0 ∈ R suh that
q(ξ) = ξTQξ + ξTq + q0 satis�es (36) and (37)  . (38)Proposition 3.1 For any �xed α ∈ A the feasible set ZJCCQ (α) onstitutes a onservative approximationfor X JCC, that is, ZJCCQ (α) ⊆ X JCC.Proof: Note that any x feasible in (28) is also feasible in (38) sine

P

(

ξ̃TQξ̃ + ξ̃Tq + q0 ≤ 0
)

≤ P

(

max
i=1,...,m

{

αi(y
0
i (x) + yi(x)Tξ̃)

}

≤ 0

)

∀P ∈ P .Sine x is feasible in (28) if and only if x ∈ X JCC, the laim follows.18



Theorem 3.4 For any �xed x ∈ Rn and α ∈ A we have
ZJCCQ (α) =











































x ∈ Rn :

∃Q ∈ Sk, q ∈ Rk, q0 ∈ R, β ∈ R, M ∈ Sk+1,

β + 1
ǫ 〈Ω,M〉 ≤ 0, M < 0, M−





Q 1
2q

1
2qT q0 − β



 < 0,





Q 1
2 (q − αiyi(x))

1
2 (q − αiyi(x))T q0 − αiy

0
i (x)



 < 0 ∀i = 1, . . . , m











































.

Proof: Note that the onstraints in (36) are equivalent to




Q 1
2 (q − αiyi(x))

1
2 (q − αiyi(x))T q0 − αiy

0
i (x)



 < 0 ∀i = 1, . . . , m.Moreover, by Theorem 2.2, the robust quadrati hane onstraint (37) is equivalent to the Worst-CaseCVaR onstraint
sup
P∈P

P-CVaR(ξ̃TQξ̃ + ξ̃Tq + q0
)

= inf
β∈R

{

β +
1

ǫ
sup
P∈P

EP

(

[

ξ̃TQξ̃ + ξ̃Tq + q0 − β
]+
)}

≤ 0. (39)By the proof of part (ii) in Theorem 2.3, we know that (39) an be written as
0 ≥ inf β + 1

ǫ 〈Ω,M〉

s. t. M ∈ Sk+1, β ∈ R

M < 0, M−





Q 1
2q

1
2qT q0 − β



 < 0.Thus, the laim follows.In the following theorem we show that the approximate feasible set ZJCCQ (α) is equivalent to theset ZJCC(α) found in Setion 3.3. This implies that the approximation of a distributionally robustjoint hane onstraint by a Worst-Case CVaR onstraint is equivalent to the approximation of the maxfuntion implied by the joint hane onstraint by a quadrati majorant. Note that both approximationsdepend of the hoie of the saling parameters α.Theorem 3.5 For any α ∈ A we have ZJCCQ (α) = ZJCC(α).Proof: By de�ning the ombined variable
Y =





Q 1
2q

1
2qT q0



 ,

19



the set ZJCCQ (α) an be rewritten as
ZJCCQ (α) =































x ∈ Rn :

∃Y ∈ Sk, β ∈ R, M ∈ Sk+1,

β + 1
ǫ 〈Ω,M〉 ≤ 0, M < 0

M +





0 0

0T β



 < Y <





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x)



 ∀i = 1, . . . , m































,It is easy to see that Y may be eliminated from the above representation of ZJCCQ (α) by rewriting thelast onstraint group as
M−





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x)− β



 < 0 ∀i = 1, . . . , m.This observation establishes the postulated equivalene.3.5 Exatness of the Worst-Case CVaR ApproximationSo far we have shown that, for any �xed α ∈ A, the feasible set ZJCC(α) onstitutes a tratable on-servative approximation for X JCC. This implies that the union ZJCC =
⋃

α∈S
ZJCC(α) still onstitutesa onservative approximation for X JCC. We now demonstrate that this improved approximation isessentially exat. To this end, we introdue the feasible set

X JCC
◦ =

{

x ∈ Rn : sup
P∈P

P

(

m
⋂

i=1

{

y0
i (x) + yi(x)Tξ̃ < 0

}

)

≥ 1− ǫ

}orresponding to a strit version of the joint hane onstraint.Theorem 3.6 The Worst-Case CVaR approximation is essentially exat if α is treated as a deisionvariable. Formally, we have X JCC
◦ ⊆ ZJCC ⊆ X JCC.Proof: The theorem an be proved by invoking a Chebyshev-type bound for the worst-ase probabilityof a random vetor to lie in the intersetion of a set of quadrati (or, a fortiori, linear) inequalities, seeVandenberghe et al. [28℄. To keep this paper self-ontained, we provide here an elementary proof whihis reminisent of the exatness proof in Setion 3.5.The seond inlusion follows immediately from the known onservativeness of the CVaR approxima-tion. Therefore, it is su�ient to prove the �rst inlusion. By using similar arguments as in Setion 3.1,we an rewrite X JCC

◦ as
X JCC

◦ =

{

x ∈ Rn : sup
P∈P

P

(

m
⋃

i=1

{

y0
i (x) + yi(x)Tξ̃ ≥ 0

}

)

≤ ǫ

}

.
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By Lemma A.2 in the Appendix we may thus onlude that
X JCC

◦ =







x ∈ Rn :
∃M ∈ Sk+1, 〈Ω,M〉 ≤ ǫ, M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ 1 ∀ξ ∈
⋃m

i=1

{

y0
i (x) + yi(x)Tξ ≥ 0

}







.The semi-in�nite onstraint in the above representation of X JCC
◦ an be reexpressed as

[

ξT 1
]

M
[

ξT 1
]T

≥ 1 ∀ξ : y0
i (x) + yi(x)Tξ ≥ 0, ∀i = 1, . . . , m,whih, by the S-lemma, is equivalent to

∃α ≥ 0, M−





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x) + 1



 < 0 ∀i = 1, . . . , m.Thus, the feasible set X JCC
◦ an be written as

X JCC
◦ =































x ∈ Rn :

∃M ∈ Sk+1, α ∈ Rm,

〈Ω,M〉 ≤ ǫ, M < 0, α > 0,

M−





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x) + 1



 < 0 ∀i = 1, . . . , m































. (40)Note that we require here without loss of generality that α is stritly positive. Indeed, it an be shownthat no feasible α has any vanishing omponents. By Theorem 3.3, we have
ZJCC =































x ∈ Rn :

∃β ∈ R, M ∈ Sk+1, α ∈ A

β + 1
ǫ 〈Ω,M〉 ≤ 0, M < 0,

M−





0 1
2αiyi(x)

1
2αiy

T

i αiy
0
i (x)− β



 < 0 ∀i = 1, . . . , m































. (41)It is now lear that X JCC
◦ ⊆ ZJCC sine we are free to set β = −1 in (41) and sine −1 + 1

ǫ 〈Ω,M〉 ≤ 0is equivalent to 〈Ω,M〉 ≤ ǫ. This observation ompletes the proof.Remark 3.2 Note that ZJCC = X JCC for m = 1; see Corollary 2.1. In general, however, both inlusionsin Theorem 3.6 an be strit. If there is no degenerate onstraint funtion with (y0
i (x), yi(x)T)T = 0

∀x ∈ Rn, then N =
⋃m

i=1

{

x ∈ Rn : (y0
i (x), yi(x)T)T = 0

} onstitutes a Lebesgue null set as it is a �niteunion of strit a�ne subspaes of Rn. By using similar arguments as in the proof of Theorem 3.6 onean show that X JCC\X JCC
◦ ⊆ N , whih implies that X JCC and X JCC

◦ di�er at most by a Lebesgue nullset for well-spei�ed hane onstraints.Theorem 3.6 implies that the original joint hane onstrained program
minimize
x∈X∩X JCC cTx21



and its Worst-Case CVaR approximation
minimize

x∈X∩Z
JCC(α)

α∈A

cTx (42)attain the same optimal value exept in degenerate ases. Unfortunately, optimizing jointly over x ∈

X ∩ ZJCC(α) and α ∈ A in (42) involves Bilinear Matrix Inequalities (BMIs). It is known that generiBMI onstrained problems are NP-hard, see [27℄. Similar nononvexities arise also in the approxima-tions disussed in Setions 3.1 and 3.2, whih underlines the general pereption that problems withdistributionally robust joint hane onstraints are hard to solve.Reall, however, that for any �xed α ∈ A, the set ZJCC(α) is representable in terms of tratable LMIonstraints involving the auxiliary variables β and M. In partiular, the onstraints in (41) are onvexin β,M, and x for any �xed α, and onvex in α for any �xed β,M, and x. In Setion 3.7 we will usethis property to propose an algorithm for solving (42) approximately.3.6 Injeting Support InformationIn many pratial appliations the support of the (true) distribution Q of ξ̃ is known to be a strit subsetof Rk. Disregarding this information in the de�nition of P an result in unneessarily onservative robusthane onstraints. In this setion we brie�y outline how support information an be used to tightenrobust joint hane onstraints and their approximations developed in Setion 3. To this end, we �rstrevise our distributional assumptions.Distributional Assumptions. The random vetor ξ̃ has a distribution Q with mean vetor µ andovariane matrix Σ ≻ 0. We assume that Q is supported on Ξ = {ξ ∈ Rk : [ξT 1]Wi[ξ
T 1]T ≤ 0 ∀i =

1, . . . , l}, where Wi ∈ Sk+1 for all i = 1, . . . , l.1 Thus, we have Q(ξ̃ ∈ Ξ) = 1. We de�ne PΞ as the set ofall probability distributions supported on Ξ that have the same �rst- and seond-order moments as Q.In this setion we are interested in tratable onservative approximations for the feasible set
X JCC

Ξ =

{

x ∈ Rn : inf
P∈PΞ

P

(

y0
i (x) + yi(x)Tξ̃ ≤ 0 ∀i = 1, . . . , m

)

≥ 1− ǫ

}

.As before, we study approximate feasible sets of the form
ZJCC

Ξ (α) =

{

x ∈ Rn : sup
P∈PΞ

CVaRǫ

(

max
i=1,...,m

{

αi

(

y0
i (x) + yi(x)Tξ̃

)}

)

≤ 0

}for α ∈ A. By using similar arguments as in Setion 2.1, one an show that ZJCC
Ξ (α) ⊆ X JCC

Ξ for all
α ∈ A. However, the sets ZJCC

Ξ (α) have no longer an exat representation in terms of LMIs. Instead,they need to be onservatively approximated.1Note that every �nite intersetion of half-spaes and ellipsoids in Rk is representable as a set of the form Ξ.22



Theorem 3.7 For any �xed α ∈ A, we have YJCCΞ (α) ⊆ ZJCC
Ξ (α) ⊆ X JCC

Ξ , where YJCCΞ (α) has thefollowing tratable reformulation in terms of LMIs.
YJCCΞ (α) =











































x ∈ Rn :

∃M ∈ Sk+1, β ∈ R, τi ∈ Rl,

β + 1
ǫ 〈Ω,M〉 ≤ 0, τi ≥ 0 ∀i = 0, . . . , m

M +
∑l

j=1 τ0,jWj < 0

M +
∑l

j=1 τi,jWj −





0 1
2αiyi(x)

1
2αiyi(x)T αiy

0
i (x)− β



 < 0 ∀i = 1, . . . , m











































. (43)
Furthermore, for l = 1, we have YJCCΞ (α) = ZJCC

Ξ (α).Proof: The proof widely parallels the proof of Theorem 3.3. The only di�erene is that Rk is replaedby Ξ and that we use the S-lemma to approximate (for l > 1) or reformulate (for l = 1) the semi-in�niteonstraints over Ξ by LMI onstraints.Remark 3.3 While ZJCC(α) is exatly representable in terms of LMIs in the absene of support infor-mation, Theorem 3.7 only provides a onservative LMI approximation for ZJCC
Ξ (α). Nevertheless, it iseasily veri�ed that ZJCC(α) ⊆ YJCCΞ (α) and therefore YJCCΞ (α) onstitutes a better approximation for

ZJCC
Ξ (α) than ZJCC(α). In fat, by setting τi = 0 for all i = 0, . . . , m, (43) redues to (35).Remark 3.4 Support information an also be used in a straightforward way to tighten the approxima-tions disussed in Setions 3.1 and 3.2.3.7 Optimizing over the Saling ParametersBy Theorem 3.6, the original distributionally robust hane onstrained program (4) an be written as

minimize
x∈Rn,α∈A

cTx

subject to J (x, α) ≤ 0

x ∈ X ,

(44)where the Worst-Case CVaR funtional J (x, α) is de�ned as in (31). Unfortunately, as disussed inSetion 3.3, J (x, α) is merely bionvex, but not jointly onvex in x and α. Thus, optimization prob-lem (44) is nononvex. By Theorem 3.3, however, the problem beomes onvex and tratable when thevalues of the saling parameters α are frozen.For the further argumentation we de�ne the set Ā = {α : α ≥ δe}, where e denotes the vetor ofones and δ > 0 represents a small tolerane, whih we set to 10−7. Note that, unlike A, the set Ā is
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losed. Consider now the following optimization model where α ∈ Ā is �xed.
min
x∈Rn

cTx

s. t. J (x, α) ≤ 0

x ∈ X

(45)We emphasize again that by Theorem 3.3 (45) is equivalent to a tratable SDP and that any x feasiblein (45) is also feasible in the original hane onstrained problem (4). In the remainder of this setion wedevelop an algorithm that repeatedly solves (45) while systematially improving the saling parameters
α. The main idea of this approah, whih is inspired by [9℄, is to minimize J (x, α) over α ∈ Ā with theaim of enlarging the feasible region of problem (45) and thereby improving the objetive value. To thisend, we introdue the following optimization model whih depends parametrially on x ∈ X .

min
α∈Rm

J (x, α)

s. t. α ∈ Ā

(46)Theorem 3.3 implies that (46) an also be expressed as a tratable SDP.Assume that x∗ is an optimal solution of problem (45) for a given α ∈ Ā. By the feasibility of x∗in (45) we know that J (x∗, α) ≤ 0. Keeping x∗ �xed, we then solve problem (46) to obtain the optimalsaling parameters α∗ orresponding to x∗. By onstrution, we �nd
J (x∗, α∗) ≤ J (x∗, α) ≤ 0. (47)The above inequalities imply that the optimal objetive value of problem (45) with input α∗ must notexeed cTx∗. Therefore, by solving the problems (45) and (46) in alternation, we obtain a sequene ofmonotonially dereasing objetive values. This motivates the following algorithm, whih relies on theavailability of an initial feasible solution xinit for problem (45).Algorithm 3.1 Sequential Convex Optimization Proedure1. Initialization. Let xinit be some feasible solution of problem (45). Set the urrent solution to

x0 ← xinit, the urrent objetive value to f0 ← cTx0, and the iteration ounter to t← 1.2. Saling Parameter Optimization. Solve problem (46) with input xt−1 and let α∗ denote anoptimal set of saling parameters. Set αt ← α∗.3. Deision Optimization. Solve problem (45) with input αt and let x∗ denote an optimal solution.Set xt ← x∗ and f t ← cTxt.4. Termination. If (f t− f t−1)/|f t−1| ≤ γ (where γ is a given small tolerane), output xt and stop.Otherwise, set t← t + 1 and go bak to Step 2.24



Theorem 3.8 Assume that xinit is feasible in problem (45) for some α ∈ Ā. Then, the sequene ofobjetive values {f t} generated by Algorithm 3.1 is monotonially dereasing. If the set X is bounded,then the sequene {xt} is also bounded, while the sequene {f t} onverges to a �nite limit.Proof: By the inequality (47), an update of the saling parameters from αt−1 to αt in Step 2 of thealgorithm preserves the feasibility of xt−1 in problem (45). This guarantees that the sequene of objetivevalues {f t} is monotonially dereasing. Furthermore, it is readily seen that the solution sequene {xt} isbounded if the feasible set X is bounded. Sine (45) has a ontinuous objetive funtion, the monotoniityof the objetive value sequene implies that {f t} has a �nite limit.Remark 3.5 Algorithm 3.1 an also be used in the presene of support information as disussed inSetion 3.6. In this ase, the Worst-Case CVaR funtional J (x, α) has to be rede�ned in the obvious way.Algorithm 3.1 an further be used in the ontext of the approximation by Chen et al., see Setion 3.2. Inthis ase, J (x, α) is replaed by its onservative approximation Ĵ (x, α) de�ned in Theorem 3.2. Detailsare omitted for brevity of exposition.We emphasize that Algorithm 3.1 does not neessarily �nd the global optimum of problem (44).Nevertheless, as on�rmed by the numerial results in the next setion, the method an perform well inpratie.4 Numerial ResultsWe onsider a dynami water reservoir ontrol problem for hydro power generation, whih is inspiredby a model due to Andrieu et al. [2℄. Let ξ̃ = (ξ̃1, ξ̃2, . . . , ξ̃T ) denote the sequene of stohasti in�ows(preipitation) into the reservoir at time instanes t = 1, . . . , T . The history of in�ows up to time t isdenoted by ξ̃t = (ξ̃1, . . . , ξ̃t), where ξ̃T = ξ̃. We let µ ∈ RT and Σ ∈ ST denote the mean vetor andovariane matrix of ξ̃, respetively. Furthermore, ξ̃ is supported on a retangle of the form Ξ = [l, u].However, we assume that no further information about the true distribution of ξ̃ is available. As usual, welet PΞ denote the set of all distributions supported on Ξ with mathing �rst- and seond-order moments.We denote by xt(ξ̃
t) the amount of water released from the reservoir in period t. Note that the deision

xt(ξ̃
t) is seleted at time t after ξ̃t has been observed and is therefore a funtion of the observationhistory. We require xt(ξ̃

t) ≥ 0 almost surely for all P ∈ PΞ and t = 1, . . . , T . The water level at time tis omputed as the sum of the initial level l0 and the umulative in�ows minus the umulative releasesup to time t, that is,
l0 +

t
∑

i=1

ξ̃i −
t
∑

i=1

xt(ξ̃
t).We require that the water level remains between some upper threshold lhigh (�ood reserve) and somelower threshold llow (dead storage) over all time periods t = 1, . . . , T with probability 1 − ǫ, where

ǫ ∈ (0, 1). The water released in any period t is used to produe eletri energy whih is sold at a25



periodi prie
ct = 10 + 5 sin

[

π(1 − t)

3

]

∀t = 1, . . . , T.The worst-ase expeted pro�t over all time periods is omputed as
inf

P∈PΞ

EP

(

T
∑

t=1

ctxt(ξ̃
t)

)

.In order to determine an admissible ontrol strategy that maximizes the worst-ase pro�t, we mustsolve the following distributionally robust joint hane onstrained problem.
maximize

x1(·),...,xT (·)
inf

P∈PΞ

EP

(

T
∑

t=1

ctxt(ξ̃
t)

)

subject to inf
P∈PΞ

P

(

llow ≤ l0 +

t
∑

i=1

ξ̃i −
t
∑

i=1

xt(ξ̃
t) ≤ lhigh ∀t = 1, . . . , T

)

≥ 1− ǫ

xt(ξ̃
t) ≥ 0 P-a.s. ∀P ∈ PΞ, t = 1, . . . , T

(48)
Note that (48) is an in�nite dimensional problem sine the ontrol deisions xt(·) are generi measurablefuntionals of the unertain in�ows. To redue the problem omplexity, we fous on poliies that area�ne funtions of ξ̃. Thus, we optimize over a�ne disturbane feedbak poliies of the form

xt(ξ̃
t) = x0

t + xT

t Ptξ̃ ∀t = 1, . . . , T, (49)where x0
t ∈ R, xt ∈ Rt and Pt : RT → Rt is a trunation operator that maps ξ̃ to ξ̃t. By fousing ona�ne ontrol poliies we onservatively approximate the in�nite dimensional dynami problem (48) bya problem with a polynomial number of variables, namely, the oe�ients {x0

t , xt}Tt=1. For more detailson the use of a�ne ontrol poliies in robust ontrol and stohasti programming, see, e.g., Ben-Tal etal. [3℄, Chen et al. [10℄, and Kuhn et al. [15℄.By applying now standard robust optimization tehniques [3℄, the requirement that xt(ξ̃
t) ≥ 0 holdsalmost surely an be expressed as

x0
t + xT

t Ptξ ≥ 0 ∀ξ ∈ Ξ

⇐⇒ 0 ≤ min
ξ∈RT

{

x0
t + xT

t Ptξ : l ≤ ξ ≤ u
}

⇐⇒ 0 ≤ max
λt∈RT

{

x0
t + xT

t Ptu + λT

t (l− u) : λt ≥ PT

t xt, λt ≥ 0
}

⇐⇒ ∃λt ∈ RT : x0
t + xT

t Ptu + λT

t (l− u) ≥ 0, λt ≥ PT

t xt, λt ≥ 0.
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By substituting (49) into (48) we thus obtain the following onservative approximation for (48).
maximize

T
∑

t=1

ct

(

x0
t + xT

t Ptµ
)

subject to λt ∈ RT , xt ∈ Rt ∀t = 1, . . . , T

inf
P∈PΞ

P













l0 − lhigh +
t
∑

i=1

ξ̃i −

(

t
∑

i=1

x0
i + xT

i Piξ̃

)

≤ 0 ∀t = 1, . . . , T

llow − l0 −
t
∑

i=1

ξ̃i +

(

t
∑

i=1

x0
i + xT

i Piξ̃

)

≤ 0 ∀t = 1, . . . , T













≥ 1− ǫ

x0
t + xT

t Ptu + λT

t (l − u) ≥ 0

λt ≥ PT

t xt, λt ≥ 0







∀t = 1, . . . , T

(50)
Note that the joint hane onstraint in (50) involves 2T inequalities that are bilinear in the deisions
{xt}Tt=1 and the random vetor ξ̃. Problem (50) an therefore be identi�ed as a speial instane ofproblem (4) and is amenable to the approximation methods desribed in Setion 3. In the remainder ofthis setion, we ompare the performane of these approximation methods.In the subsequent tests, we set T = 5, l0 = 1, llow = 1, and lhigh = 5. The mean value of ξ̃t isassumed to be 1, while its standard deviation is set to 10%, over all time periods. Furthermore, we setthe orrelation of di�erent stohasti in�ows to 25% for adjaent time periods and 0% otherwise. Finally,we assume that Ξ = [0, 2]T . All tests are run for a range of reliability levels ǫ between 1% and 10% insteps of 1%.We �rst solve problem (50) using the Bonferroni approximation by deomposing the joint haneonstraint into 2T individual hane onstraints with reliability fators ǫi = ǫ/(2T ) for i = 1, . . . , 2T .The resulting optimal objetive value is denoted by V B , and the assoiated optimal solution is used toinitialize Algorithm 3.1. We run the algorithm using the Worst-Case CVaR approximation as well as theapproximation by Chen et al. desribed in Setion 3.2. We denote the resulting optimal objetive valuesby V M and V U , respetively. In both ases the algorithm's onvergene threshold is set to γ = 10−6.All SDPs arising from the Worst-Case CVaR approximation are solved with SDPT3 using the YALMIPinterfae [16℄, while all SOCPs arising from the Bonferroni approximation and the approximation byChen et al. are solved with MOSEK using the algebrai modeling toolbox ROME [13℄.Table 1 reports the optimal objetive values and the improvement of V M relative to V U and V B .As expeted, all three methods yield optimal objetive values that inrease with ǫ beause the jointhane onstraint beomes less restritive as ǫ grows. At ǫ = 1% the objetive values of the di�erentapproximations oinide. However, V M exeeds V U and V B for all the other values of ǫ. In this partiularexample, our method outperforms the Bonferroni approximation by up to 25% and the approximationby Chen et al. by up to 12%. Table 1 also reports the runtimes of the di�erent algorithms. All instanesbased on the Worst-Case CVaR approximation are solved in less then 20 seonds, while the instanesbased on the approximation by Chen et al. and the Bonferroni approximation are solved in less then 527



ǫ V M V U V B (V M − V U )/V U (V M − V B)/V B RM RU RB1% 44.3 44.3 44.3 0.0% 0.0% 2.18 2.50 0.822% 44.9 44.3 44.3 1.4% 1.3% 17.47 2.51 0.823% 49.4 44.4 44.3 11.3% 11.4% 14.99 4.19 0.814% 52.4 46.7 44.5 12.2% 17.6% 14.14 4.17 0.825% 54.5 49.0 45.2 11.2% 20.5% 15.79 4.18 0.816% 56.3 50.9 46.0 10.6% 22.5% 17.30 4.24 0.827% 57.8 53.0 46.7 9.1% 23.6% 15.98 4.54 0.868% 58.9 54.7 47.3 7.7% 24.5% 13.82 4.62 0.829% 59.9 56.0 47.8 7.0% 25.2% 17.70 4.16 0.8210% 60.7 57.1 48.8 6.3% 24.5% 14.29 4.24 0.81Table 1: Optimal objetive values of the water reservoir ontrol problem for the Worst-Case CVaR approximation (V M ), theapproximation by Chen et al. (V U ), and the Bonferroni approximation (V B). The table also reports the perentage gaps (V M
−

V U )/V U and (V M
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A Worst-Case Expetation and Probability ProblemsLemma A.1 Let f : Rk → R be a measurable funtion, and de�ne the worst-ase expetation θwc as
θwc = sup

P∈P

EP

(

(f(ξ̃))+
)

,where P represents the usual set of all probability distributions on Rk with given mean vetor µ andovariane matrix Σ ≻ 0. Then,
θwc = inf

M∈Sk+1

{

〈Ω,M〉 : M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ f(ξ) ∀ξ ∈ Rk
}

,where Ω is the seond-order moment matrix of ξ̃.Proof: The worst-ase expetation θwc an equivalently be expressed as
θwc = sup

µ∈M+

∫

Rk

max{0, f(ξ)}µ(dξ)

s. t.

∫

Rk

µ(dξ) = 1

∫

Rk

ξµ(dξ) = µ

∫

Rk

ξξTµ(dξ) = Σ + µµT,

(51)
whereM+ represents the one of nonnegative Borel measures on Rk. The optimization variable of thesemi-in�nite linear program (51) is the nonnegative measure µ. Note that the �rst onstraint fores µto be a probability measure. The other two onstraints enfore onsisteny with the given �rst- andseond-order moments, respetively. We now assign dual variables y0 ∈ R, y ∈ Rk, and Y ∈ Sk to theequality onstraints in (51), respetively, and introdue the following dual problem (see, e.g., [25℄).

inf y0 + yTµ + 〈Y,Σ + µµT〉

s. t. y0 ∈ R, y ∈ Rk, Y ∈ Sk

y0 + yTξ + 〈Y, ξξT〉 ≥ max{0, f(ξ)} ∀ξ ∈ Rk

(52)Beause Σ ≻ 0, it an be shown that strong duality holds [14℄. Therefore, the worst-ase probability θwcoinides with the optimal value of the dual problem (52). By de�ning the ombined variable
M =





Y 1
2y

1
2yT y0



 ,
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problem (52) redues to
inf

M∈Sk+1
〈Ω,M〉

s. t.
[

ξT 1
]

M
[

ξT 1
]T

≥ max{0, f(ξ)} ∀ξ ∈ Rk.
(53)Note that the semi-in�nite onstraint in (53) an be expanded in terms of two equivalent semi-in�niteonstraints.

[

ξT 1
]

M
[

ξT 1
]T

≥ 0 ∀ξ ∈ Rk (54a)
[

ξT 1
]

M
[

ξT 1
]T

≥ f(ξ) ∀ξ ∈ Rk (54b)Sine (54a) is equivalent to M < 0, the laim follows.Lemma A.2 Let S ⊆ Rk be any Borel measurable set (whih is not neessarily onvex), and de�ne theworst-ase probability πwc as
πwc = sup

P∈P

P{ξ̃ ∈ S}, (55)Then,
πwc = inf

M∈Sk+1

{

〈Ω,M〉 : M < 0,
[

ξT 1
]

M
[

ξT 1
]T

≥ 1 ∀ξ ∈ S
}

..Proof: The proof is due to Cala�ore et al. [7℄, see also Zymler et al. [29℄. A sketh of the proof isprovided here to keep this paper self-ontained. De�ne the indiator funtion of the set S as
IS(ξ) =











1 if ξ ∈ S,

0 otherwise.The worst-ase probability problem (55) an equivalently be expressed as
πwc = sup

µ∈M+

∫

Rk

IS(ξ)µ(dξ)

s. t.

∫

Rk

µ(dξ) = 1

∫

Rk

ξµ(dξ) = µ

∫

Rk

ξξT µ(dξ) = Σ + µµT .By dualizing this problem and applying similar manipulations as in the proof of Lemma A.1 we obtainthe postulated result.
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