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1. Introduction
Traditionally, robust optimization has been used to immu-
nize deterministic optimization problems against infeasi-
bility caused by perturbations in model parameters, while
simultaneously preserving computational tractability. The
general approach involves reformulation of the original
uncertain optimization problem into a deterministic con-
vex program, such that each feasible solution of the
new program is feasible for all allowable realizations
of the model uncertainties. The deterministic program
is therefore “robust” against perturbations in the model
parameters. This approach dates back to Soyster (1973),
who considered a deterministic linear optimization model
that is feasible for all data lying in a convex set. Recent
works using this general approach include Ben-Tal and
Nemirovski (1998, 1999, 2000), Bertsimas and Sim (2004),
and El Ghaoui and Lebret (1997), and El Ghaoui et al.
(1998).
Ben-Tal et al. (2004) noted that the traditional robust

optimization approach was limited in the sense that it
only allowed for all decisions to be made before the real-
ization of the underlying uncertainties. They noted that
in the modeling of real-world problems with multiple
stages it might be permissible for a subset of the deci-
sions to be made after the realization of all or part of the

underlying uncertainties. To overcome this limitation, the
authors introduced the Affinely Adjustable Robust Counter-
part (AARC), which allowed for delayed decisions that are
affinely dependent upon the primitive uncertainties. Chen
and Zhang (2009) also introduced the Extended Affinely
Adjustable Robust Counterpart (EAARC) as an extension
of the AARC by an affine reparameterization the primi-
tive uncertainties. In a related work, Chen et al. (2008)
introduced several piecewise-linear decision rules which
are more flexible than (and improve upon) regular LDRs,
and they show that under their new rules computational
tractability is preserved.
Typically, robust optimization problems do not require

specifications of the exact distribution of the model
uncertainties. This is the general distinction between the
approaches of robust optimization and stochastic program-
ming toward modeling problems with uncertainties. In the
latter, uncertainties are typically modeled as random vari-
ables with known distributions and have been used to obtain
analytic solutions to important classes of problems (see,
e.g., Birge and Louveaux 1997, Ruszczynski and Shapiro
2003). In the framework of robust optimization, however,
uncertainties are usually modeled as random variables with
true distributions that are unknown to the modeler but are
constrained to lie within a known support. Each approach
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has its advantages: if the exact distribution of uncertain-
ties is precisely known, optimal solutions to the robust
problem would be overly and unnecessarily conservative.
Conversely, if the assumed distribution of uncertainties is in
fact different from the actual distribution, the optimal solu-
tion using a stochastic programming approach may perform
poorly. Bertsimas and Thiele (2006) reported computational
results for an inventory model showing that even in the case
when the assumed demand distribution had identical first
and second moments to the actual demand distribution, an
inventory policy which is heavily tuned to the assumed dis-
tribution might perform poorly when used against the true
distribution.
A body which aims to bridge the gap between the conser-

vatism of robust optimization and the specificity of stochas-
tic programming is the minimax stochastic programming
approach, where optimal decisions are sought for the worst-
case probability distributions within a family of possible
distributions, defined by certain properties such as their
support and moments. This approach was pioneered by
Žáčková (1966) and studied in many other works (e.g.,
Dupačová 1987, Breton and El Hachem 1995, Shapiro and
Kleywegt 2002). This approach has seen numerous appli-
cations, dating back to the study by Scarf (1958) of an opti-
mal single-product newsvendor problem under an unknown
distribution with known mean and variance, as well as
the subsequent simplification of Scarf’s proof by Gallego
and Moon (1993) and their extensions to include recourse
and fixed cost. El Ghaoui et al. (2003) developed worst-
case Value-at-Risk bounds for a robust portfolio selection
problem when only the bounds on the means and covari-
ance matrix of the assets are known. Chen et al. (2007)
introduced directional deviations as an additional means to
characterize a family of distributions that were applied by
Chen and Sim (2009) to a goal-driven optimization prob-
lem. In a recent work, Delage and Ye (2010) study dis-
tributionally robust stochastic programs where the mean
and covariance of the primitive uncertainties are themselves
subject to uncertainty.
Our paper aims to extend this body of work in a similar

direction: for a linear optimization problem with partially
characterized uncertainties, we seek a solution that is dis-
tributionally robust, i.e., feasible for the worst-case prob-
ability distribution within the family of distributions. The
model that we study is different from most minimax
stochastic programs in that we allow for expectations of
recourse variables in the constraint specifications. In addi-
tion, our model allows for nonanticipativity requirements,
which occurs in many practical problems (e.g., multistage
problems). Such problems are known to be difficult to solve
exactly (see Shapiro and Nemirovski 2005), but are impor-
tant in practice. We approach the problem by first using a
simple LDR model of recourse to tractably approximate the
problem, and subsequently build more complex piecewise-
linear decision rules to improve the quality of the approx-
imation. The overarching motivation for our work is to

design a general framework for modeling and solving lin-
ear robust optimization problems, which can then be auto-
mated. In an ongoing parallel work (Goh and Sim 2009),
we are concurrently designing software to model robust
problems within this framework. The key contributions of
this paper are summarized below:
1. We present a new flexible nonanticipative decision

rule, which we term the bideflected LDR, which general-
izes both the previous deflected LDR of Chen et al. (2008)
and the truncated LDR of See and Sim (2009). Further-
more, being nonanticipative, our new decision rule is also
suitable for multistage modeling. We show that our new
decision rule is an improvement over the original deflected
LDR as well as the standard LDR.
2. We discuss a technique of segregating the primitive

uncertainties to obtain a new set of uncertainties. We show
that by applying LDRs on the new segregated uncertainties,
we obtain decision rules (which we term Segregated LDRs,
or SLDRs) that are more flexible than the original LDRs
and which preserve the nonanticipativity requirements of
the original LDRs. We study how these SLDRs can be used
in conjunction with other partially known characteristics of
the original uncertainty distribution (such as its mean and
covariance) to construct distributionally ambiguous bounds
on the expected positive part of an SLDR.
This paper is structured as follows: In §2 we present the

general optimization problem that we attempt to solve, dis-
cussing our motivation and some applications. In §3 we dis-
cuss the model of uncertainty, which we will use for the rest
of the paper, and highlight the distributional properties of
the model uncertainties which we assume we have knowl-
edge of. In §4 we discuss a tractable linear approximation
to the general problem and how segregated uncertainties
can be used to improve the quality of the approximation.
In §5 we present and extend existing known bounds on the
expected value of the positive part of a random variable.
This is used in §6, where we introduce the two-stage and
nonanticipative bideflected LDR and discuss its properties.
Section 7 concludes. The mathematical proofs in this paper
are relegated to Appendices A, B, and C, which can be
found in the electronic companion to this paper.

Notation. We denote a random variable by the tilde
sign, i.e., x̃. Bold lower case letters such as x represent vec-
tors and the upper case letters such as A denote matrices.
In addition, x+ = max�x�0� and x− = max�−x�0�. The
same notation can be used on vectors, such as y+ and z−,
which denotes that the corresponding operations are per-
formed componentwise. For any set S we will denote by
�S the indicator function on the set. Also we will denote
by �N � the set of positive running indices to N , i.e., �N �=
�1�2� � � � �N �, for some positive integer N . For complete-
ness, we assume �0� = �. We also denote with a super-
scripted letter “c” the complement of a set, e.g., I c. We
denote by e the vector of all ones and by ei the ith stan-
dard basis vector. In addition, we denote the identity matrix
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using the upper case boldface symbol I and, for brevity,
we will omit specifying its dimension where it is contex-
tually clear. We will use superscripted indices on vectors
to index members of a collection of vectors, while sub-
scripted indices on a vector denotes its components, i.e.,
xi = ei ′x. Finally, we distinguish between models which are
intractable against those that are computationally tractable,
by denoting the optimal objectives of intractable functions
with a superscripted asterisk, i.e., Z∗.

2. Linear Optimization with Expectation
Constraints

2.1. General Model

Let z̃ = �z̃1� � � � � z̃N 	 be a vector of N random variables
defined on the probability space �
�� ��	. z̃ represents the
primitive uncertainties of our model. We do not presume
knowledge of the actual joint distribution of z̃. Instead, we
shall assume that the true joint distribution � lies in some
family of distributions �. We shall denote by x ∈ �n the
vector of decision variables, representing the here-and-now
decisions which are unaffected by realizations of the prim-
itive uncertainties. We also optimize over a set of K wait-
and-see decision rules (also known as recourse variables),
denoted by yk� · 	 ∈�mk , which are functions of the primi-
tive uncertainties. In general, each decision rule may only
depend on a subset of the primitive uncertainties. For each
k ∈ �K�, we denote by Ik ⊆ �N � the index set of depen-
dent uncertainties for yk� · 	. Furthermore, for any index
set I ⊆ �N �, we denote by ��m�N � I	 the space of allow-
able recourse decisions, which are measurable functions,
defined as

��m�N � I	

�

{
f � �N →�m� f

(
z+∑

i	I

�ie
i

)
= f�z	� ∀�∈�N

}
� (1)

and yk ∈ ��mk�N � Ik	� ∀k ∈ �K�. For example, if
I = �1�2� and y ∈ ��m�N � I	, then y only depends on
the first two components of the primitive uncertainty vec-
tor z̃. From a practical perspective, the specific structure
of �Ik�

K
k=1 often translates naturally into practical modeling

phenomena. For example, the condition I1 ⊆ I2 ⊆ · · · ⊆ IK

reflects the nonanticipativity requirement in information-
dependent modeling (of which multistage problems are a
special case) where we have successive revelation of infor-
mation at each stage. We consider the ambiguity-averse
minimization of a linear expected cost, with a finite set of
M linear expectation constraints. The general problem can
be expressed as

Z∗
GEN = min

x� �yk� · 	�K
k=1

c0
′
x+ sup

�∈�
E�

( K∑
k=1

d0� k ′yk�z̃	

)

s.t. cl ′x+ sup
�∈�

E�

( K∑
k=1

dl� k ′yk�z̃	

)
� bl

∀ l ∈ �M��

T �z̃	x+
K∑

k=1

Ukyk�z̃	= v�z̃	�

yk � yk�z̃	� yk ∀k ∈ �K��

x� 0�

yk ∈��mk�N � Ik	 ∀k ∈ �K��

(2)

where the model data (cl�dl�Uk�yk�yk� Ik) is deterministic
and we assume that the model data T�z̃	�v�z̃	 are affinely
dependent on z̃, given by T�z̃	=T0+∑N

j=1 z̃jT
j and v�z̃	=

v0+∑N
j=1 z̃jv

j , and are also given by deterministic parame-
ters �Tj �N

j=0 and �vj �N
j=0. In our model, the matrices Uk are

unaffected by the uncertainties, corresponding to the case
of fixed recourse in the stochastic programming literature.
Uncertainty in the values of cl or bl can be handled by
reformulating the problem and adding slack variables; how-
ever, our model does not handle the cases when Uk�dl� k are
uncertain. In such cases, Ben-Tal et al. (2004, §4) showed
that even using LDRs for recourse decisions can result in
intractability.
The bounds on the recourse variables, yk and yk, for

each k, are specified constants which can be infinite.
Explicitly, yk ∈ ��∪ �−��	mk and yk ∈ ��∪ �+��	mk . For
ease of exposition later, we will denote the index sets for
the noninfinite bounds as follows:

J k = �i ∈ �mk�� yk

i
>−���

J̄ k = �i ∈ �mk�� yk
i <+���

(3)

For brevity, we adopt the convention here and throughout
this paper that (in)equalities involving recourse variables
hold almost surely for all probability distributions � in the
family �, i.e., y�z̃	� u⇔ ��y�z̃	� u	= 1� ∀� ∈ �.

2.2. Motivation

The general model (2) that we consider has a linear struc-
ture, which may appear overly restrictive. In this section,
however, we will proceed to show how (2) can be used to
model important classes of problems with piecewise-linear
structures.

2.2.1. Piecewise-Linear Utility Functions. In the
modeling of certain problems, such as newsvendor-type
models, it is common to encounter constraints of the form
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sup�∈� E��y�z̃	+	 � b, which can be modeled in the form
of (2) using a slack decision rule s�z̃	 as follows:

sup
�∈�

E��s�z̃		� b�

s�z̃	� 0�

s�z̃	� y�z̃	�

s�y ∈��m�N � I	�

(4)

2.2.2. CVaR Constraints. The Conditional Value-at-
Risk (CVaR) risk metric was popularized by Rockafellar
and Uryasev (2000) and is the smallest law-invariant
convex risk measure which is continuous from above that
dominates Value-at-Risk (VaR) (Föllmer and Schied 2002,
Theorem 4.61). CVaR is a coherent measure of risk (as
axiomatized by Artzner et al. 1999) and is typically param-
eterized by a level  ∈ �0�1	. Furthermore, the -CVaR
can be derived as a special case of the negative opti-
mized certainty equivalent (OCE) introduced by Ben-Tal
and Teboulle (1986, 2007). The worst-case -CVaR, when
the actual uncertainty distribution � lies in a family of dis-
tributions �, can be expressed as

-CVaR��x̃	� inf
v∈�

{
v+ 1

1−
sup
�∈�

E���x̃− v	+	

}
� (5)

The -CVaR can be used to approximate chance constraints
by using the relation -CVaR��x̃	� b ⇒ ��x̃ � b	� 1−,
which holds for any distribution � in the family of distri-
butions �. Using a similar argument as (4), the constraint
-CVaR��y�z̃		� b, for a scalar-valued decision rule y�z̃	,
can therefore be expressed as

v+ 1
1−

sup
�∈�

E��s�z̃		� b�

s�z̃	� 0�

s�z̃	� y�z̃	− v�

s� y ∈��1�N � I	�

(6)

3. Model of Uncertainty, U
In the modeling of most problems, even though the prob-
lem data contains elements of uncertainty, the modeler may
have access to some crude or partial information about the
data. We assume that we may have knowledge of certain
descriptive statistics of the primitive uncertainty vector z̃,
as follows.
Support. We denote by� ⊆�N the smallest convex set

containing the support of z̃, which can also be unbounded.
For example, if the actual support of z̃ is nonconvex, we
can take � as its convex hull. We further assume that � is
a full-dimensional tractable conic representable set, which
we take to mean a set that can be represented (exactly or
approximately) by a polynomial number of linear and/or
second order conic constraints.1

Mean. We denote by �z the mean of z̃. Instead of model-
ing the mean as a precisely known quantity, we consider a
generalization in which the mean �z is itself uncertain, with
corresponding (possibly unbounded) support contained in a
set �� . We again assume that �� is a tractable conic rep-
resentable set. This includes the case of a known mean,
which corresponds to �� being a singleton set.

Covariance. We denote by � the covariance of z̃.
Unlike the mean, which we assume to be known to lie
within a set, we assume that the covariance is precisely
known.2

Directional Deviations. While z̃ may not have stochas-
tically independent components, we may be able to find
a linear transformation of z̃, parameterized by a matrix
H� ∈�N�×N , generally with N� � N , that yields a vector
H� z̃ = z̃� , which has stochastically independent compo-
nents. We denote by �z� the mean of z̃� , which lies in a set
��� � �H��z� �z ∈ �� �. We denote by �f and �b the upper
bounds of the forward and backward deviations of z̃� , i.e.,
�f � �f� �z̃�	 and �b � �b� �z̃�	, where �f �� � · 	, �b�� � · 	
are defined componentwise by Chen et al. (2007) as

�f� �z̃�	′ej = �f �
�z̃�� j 	

� sup
�>0

{√
2 lnE��exp���z̃�� j − ẑ��j 			/�2

}
�

�b� �z̃�	′ej = �b� �z̃�� j 	

� sup
�>0

{√
2 lnE��exp�−��z̃��j − ẑ��j 			/�2

}
�

for j ∈ �N��. We consider upper bounds of directional devi-
ations in order to characterize a family of distributions. We
note that numerical values of these bounds can be esti-
mated from empirical data, and we refer interested readers
to Chen et al. (2007), Natarajan et al. (2008), or See and
Sim (2009) for examples of how directional deviations can
be estimated and used.
These distributional properties characterize the family of

distributions �. We will see in §5 how each property can be
used to construct bounds to approximately solve the general
problem (2), which will, in turn, be used in §6 where we
introduce the deflected linear decision rules.

4. Linear Approximations of
the General Model

Solving model (2) exactly is generally a computationally
intractable endeavor. For instance, when the family � con-
tains a single distribution, Dyer and Stougie (2006) for-
mally showed that a two-stage problem is #P -hard to solve.
In the robust case, i.e., when � is solely defined by a
support set, a two-stage problem can be NP-hard (see the
Adjustable Robust Counterpart of Ben-Tal et al. 2004).
However, by applying a suitable restriction to the space of
allowable decision rules, we can obtain a tractable approx-
imation to the problem. Instead of considering all possible
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choices of yk� · 	 from ��m�N � I	, we restrict ourselves to
Linear Decision Rules (LDRs), where each yk� · 	 is instead
chosen from the space of affine functions of z̃, denoted by
	�m�N � I	⊂��m�N � I	, and defined as follows:

	�m�N � I	
�=
{
f � �N →�m� ∃�y0�Y	 ∈�m ×�m×N �

f�z	= y0 +Yz

Yei = 0�∀ i 	 I

}
� (7)

We notice that the final condition, Yei = 0 enforces the
information dependency upon the index set I . Therefore,
using a linear model of recourse, the recourse decision can
be written explicitly as yk�z̃	= y0� k+Ykz̃, for each k ∈ �K�.
Using LDRs as our model of recourse and denoting by �

the family of distributions � with distributional properties
as specified in the Model of Uncertainty, problem (2) is
approximated as

ZLDR

= min
x��y0�k�Yk�K

k=1

c0 ′x+
K∑

k=1

d0�k ′y0�k+sup
ẑ∈ ��

( K∑
k=1

d0�k ′Yk�z
)

s.t. cl ′x+
K∑

k=1

dl�k ′y0�k

+sup
ẑ∈ ��

( K∑
k=1

dl�k ′Yk�z
)
�bl ∀l∈ �M��

T0x+
K∑

k=1

Uky0�k=v0�

Tjx+
K∑

k=1

UkYkej =vj ∀j ∈ �N ��

yk�y0�k+Ykz�yk ∀z∈� �∀k∈ �K��

Ykej =0 ∀j	 Ik� ∀k∈ �K��

x�0�

(8)

We formalize this in the following proposition:

Proposition 1. If 	�mk�N � Ik	 is used to approximate
��mk�N � Ik	, then under the approximation, Problem (2)
is equivalent to Problem (8).

Proof. Please see Appendix A.1 of the electronic compan-
ion, which is available as part of the online version that can
be found at http://or.journal.informs.org/.
In the transformed problem, we notice that the con-

straints yk � y0� k + Ykz � yk over all z ∈ � as well as
the suprema over �z ∈ �� in the objective and first M con-
straints can be converted into their robust counterparts. This
will render Problem (8) as a tractable conic optimization
problem, since � and �� are tractable conic representable
sets (see Ben-Tal and Nemirovski 1998, Bertsimas and Sim
2004). In particular, if � and �� are polyhedral, then Prob-
lem (8) becomes a linear program.

While the LDR approximation is computationally
tractable, the quality of the approximation can be very poor,
even being infeasible for very simple constraints (see, e.g.,
the discussion by Chen et al. 2008). In the remainder of
this section, we discuss how we may segregate the prim-
itive uncertainty vector to obtain a more flexible model
of recourse. In §6, we further discuss how to exploit the
structure of the constraints to construct even more flexible
piecewise-linear decision rules.

4.1. Remapping the Primitive Uncertainty Vector

In the positive-and-negative Segregated LDR introduced by
Chen et al. (2008), the authors split the original uncertainty
vector into positive and negative half spaces and applied
LDRs to the split uncertainties in order to increase the flex-
ibility of the LDR. We extend their result and discuss here
how we may segregate primitive uncertainties into inter-
vals and, more importantly, how we can use the segregated
uncertainties in our modeling framework. To begin, we con-
sider a functional mapping M� �N →�NE , where NE �N ,
that satisfies the following relationship for any z ∈�N , for
some given matrix F ∈�N×NE and vector g ∈�N , such that

z= FM�z	+ g� (9)

We notice that F has to be full rank since � is assumed
to have a nonempty interior. We denote by 
 ∗ the image
of M� · 	 corresponding to the domain � , i.e.,


 ∗ � �M�z	� z ∈� �� (10)

and similarly by �
 ∗
the image of M� · 	 corresponding to

the domain �� , i.e., �
 ∗
� �M��z	� �z ∈ �� �.

Again, we require M� · 	 to be such that the convex hull
of 
 ∗ is full dimensional. We notice that while M� · 	 is
invertible by an affine mapping, M� · 	 itself is not required
to be affine in its argument. Indeed, in the example which
follows, we present a piecewise-affineM� · 	, and show how
it can be used to segregate a scalar primitive uncertainty
into different regions of interest.

4.2. Example: Segregating a Scalar Uncertainty

Suppose we have a scalar primitive uncertainty, z̃ with
support �, that we wish to segregate into three regions,
�−��−1�, �−1�1�, and �1�+�	. Denoting the points,
�p1� p2� p3� p4	 = �−��−1�1�+�	, we can construct the
segregated uncertainty by applying the following nonlinear
mapping: ��=M�z̃	, where

�̃i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z̃ if pi � z̃� pi+1�

pi if z̃� pi�

pi+1 if z̃� pi+1�
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for i ∈ �1�2�3�. We notice that

�̃1 + �̃2 + �̃3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z̃− 1+ 1= z̃ if z̃�−1�

−1+ z̃+ 1= z̃ if −1< z̃ < 1�

−1+ 1+ z̃= z̃ if z̃� 1�

and therefore Equation (9) holds with F = �1�1�1� and
g = 0.

4.3. Mappings That Represent Segregations

In the preceding example, we notice that the segregation
resulted in a new uncertainty vector ��, the components
of which provide local information of the original scalar
uncertainty z̃. In general, the purpose of segregating uncer-
tainties into intervals is to obtain a finer resolution of the
original uncertainty. In §4.4, we will use segregated uncer-
tainties to define more flexible decision rules. To better
understand how we can construct such segregations, we
proceed to characterize the mapping functions M� · 	 which
represents a segregation of a primitive uncertainty vector.
For some positive integer L, we consider a collection

of N × �L + 1	 distinct points on the extended real line,
denoted by �ij for some i ∈ �N �� j ∈ �L+ 1�, with the fol-
lowing properties ∀ i ∈ �N �:

�i�1 =−��

�i�L+1 =+��

�i� j1
< �i� j2

iff j1 < j2�

(11)

Furthermore, we denote by � the N × �L+1	 matrix which
collects these points. We call M� · 	 a segregation if ∀� =
M�z	, its components ∀ j ∈ �NE�, are given by

�j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zi if �i�k � zi � �i�k+1�

�i� k if zi � �i�k�

�i� k+1 if zi � �i�k+1�

(12)

where j = i + �k − 1	N for some i ∈ �N �� k ∈ �L�. We
notice that for a particular j ∈ �NE�, i and k can be uniquely
obtained as

i = ��j − 1	 mod N	+ 1�

k = �j/N ��
In the following proposition, we prove that if M� · 	 is a
segregation, it is also affinely invertible by proper choice
of F and g.

Proposition 2. If M� · 	 is a segregation and if we choose
F and g to be

F= �I I · · · I�� g=−
L∑

i=2

�ei�

then z = FM�z	 + g ∀ z ∈�N , where F ∈�N×LN �g ∈�N ,
and I is the N ×N identity matrix.

Proof. Please see Appendix A.2 in the electronic
companion.

Remark. Although we consider a segregation M� · 	 which
segments each component of z̃ uniformly into L parts, it is
clear from the proof that Proposition 2 still holds even if
each component of z̃ was segmented into a different num-
ber of positive integer parts, �Li�

N
i=1, albeit with a different

choice of F and g. This would come at the expense of more
notation and bookkeeping. Hence, for simplicity, here and
for the rest of this paper, we will discuss only the case of
uniform segregation.

4.4. Segregated Linear Decision Rules

As seen above, the segregation M� · 	 can be used to define
a new uncertainty vector �� ∈ �NE , which we will term
the segregated uncertainty vector. By considering LDRs
on the segregated uncertainty vector ��, we obtain a new
set of decision rules, which we term segregated LDRs or
SLDRs for short. By using the SLDRs, the recourse deci-
sions become

yk�z̃	= rk�M�z̃		= r0� k +RkM�z̃	� ∀k ∈ �K��

which is effectively the composition of an affine functional
with the segregating mapping M� · 	. Under these SLDRs,
Problem (2) becomes

ZSLDR
∗= min

x��rk�·	�K
k=1

c0 ′x+sup
�∈�

E�

( K∑
k=1

d0�k ′rk�M�z̃		
)

s.t. cl ′x+sup
�∈�

E�

( K∑
k=1

dl�k ′rk�M�z̃		
)
�bl

∀l∈ �M��

T�z̃	x+
K∑

k=1

Ukrk�M�z̃		=v�z̃	�

yk�rk�M�z̃		�yk ∀k∈ �K��

x�0�

rk�M�z̃		=r0�k+RkM�z̃	 ∀k∈ �K��

rk �M∈��mk�N �Ik	 ∀k∈ �K��

(13)

Problem (A.4) of Appendix A in the electronic compan-
ion presents an equivalent, and more explicit formulation
of Problem (13). We notice that Problem (A.4) and, equiv-
alently (13), is generally intractable, since 
 ∗ and �
 ∗

are
generally nonconvex. Furthermore, it is not obvious how to
handle the non-anticipativity constraints. We therefore aim
to construct an approximation of Problem (13) that would
still improve upon the standard LDR.

4.5. Approximating 
 ∗ and �
 ∗

We begin by constructing sets 
 ⊇
 ∗ and �
 ⊇ �
 ∗
which

approximate the sets 
 ∗ and �
 ∗
. Both 
 and �
 should
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be tractable conic representable sets and should satisfy the
implicit set relations

� = �F�+ g� � ∈
 ��

�� = �F��+ g� �� ∈ �
 ��
(14)

To begin explicit construction of 
 , we note that the best
convex approximant of 
 ∗ is its convex hull, conv�
 ∗	
and, ideally, we would choose 
 = conv�
 ∗	. Indeed,
Wang et al. (2008) show how to describe conv�
 ∗	 when
� has a special structure, which they term an absolute set.
However, in general, for � of arbitrary structures, it may
not be easy to describe conv�
 ∗	. Instead, we construct 

using a proxy set � by defining


 � �� ∈� � F�+ g ∈� �� (15)

where � is explicitly defined as

� � �� ∈�NE � �i� k � �j � �i�k+1 ∀ j ∈ �NE��

i ∈ �N �� k ∈ �L�� j = i+ �k− 1	N�� (16)

We observe that from the definition of a segregation (12),
� satisfies the property that z ∈ � ⇒ M�z	 ∈ � and,
clearly, 
 defined in this manner will satisfy (14). The
motivation for this seemingly extraneous construction of 

is that � depends only on the segregation M� · 	 and is
decoupled from � , making it easy to specify in practice. In
particular, for the example presented in §4.2, � can be rep-
resented by � = �� ∈ �3� �1 � −1�−1 � �2 � 1� �3 � 1�.
Using a similar argument, we define �
 by the same set �
as �
 � ��� ∈� � F��+ g ∈ �� �.

4.6. Approximating Problem (13)

After constructing 
 and �
 , we now discuss how we can
approximate Problem (13). For convenience, we define the
collection of index sets for each k ∈ �K� as

�k = �j ∈ �NE�� ∃i ∈ Ik� �i− 1	≡ �j − 1	 mod N�� (17)

We then define the tractable SLDR approximation to Prob-
lem (13) as the following:

ZSLDR

= min
x��r0�k�Rk�K

k=1

c0 ′x+
K∑

k=1

d0�k ′r0�k+sup
�̂∈
̂

( K∑
k=1

d0�k ′Rk��
)

s.t. cl ′x+
K∑

k=1

dl�k ′r0�k+sup
�̂∈
̂

( K∑
k=1

dl�k ′Rk ��
)
�bl

∀l∈ �M��

� 0x+
K∑

k=1

Ukr0�k=�0�

� jx+
K∑

k=1

UkRkej =�j ∀j ∈ �NE��

yk�r0�k+Rk��yk ∀�∈
 ∀k∈ �K��

Rkej =0 ∀j	�k�∀k∈ �K��

x�0�

(18)

where the transformed model data is defined as

�0 = v0 +
N∑

i=1

giv
i� � 0 =T0 +

N∑
i=1

giT
i�

�j =
N∑

i=1

Fijv
i� � j =

N∑
i=1

FijT
i ∀ j ∈ �NE��

(19)

The following proposition relates the objectives under the
exact (intractable) SLDR, the approximate SLDR, and the
LDR models of recourse.

Proposition 3. The following inequality holds: ZSLDR
∗ �

ZSLDR �ZLDR.

Proof. Please see Appendix A.3 in the electronic
companion.

Remark 1. Proposition 3 shows that irrespective of how
crudely �
 � �
 	 approximates �
 ∗� �
 ∗

	, using the approx-
imate SLDR will nonetheless not be worse than using the
original LDR. Furthermore, using the SLDR retains the
linear structure of the problem. Specifically, if 
 and �

are polyhedral, the SLDR approximation (Problem (18))
reduces to a linear program.

Remark 2. A key difference in the SLDR that we describe
here and the SLDR of Chen et al. (2008) is that they assume
precise knowledge of the mean and covariance of the seg-
regated uncertainty vector. In our tractable SLDR model,
we only exploit the support information of the segregated
uncertainty vector, which is captured by the set � . Our
SLDR however, does include their model as a special case,
since, if we did have knowledge of the segregated moments,
we could simply reformulate the problem, expressing what
they term as the segregated uncertainty vector as our prim-
itive uncertainty vector.

4.7. Interpreting the SLDR Approximation (18)

We notice that the structure of the SLDR approximation
(18) above closely resembles the form of the LDR approx-
imation (8). Indeed, we can interpret the SLDR as a lin-
ear approximation of the following uncertain optimization
problem, defined over a different uncertainty vector ��:

Z∗
GEN�2 = min

x� �rk� · 	�K
k=1

c0 ′x+ sup
�∈�

E�

( K∑
k=1

d0� k ′rk���	

)

s.t. cl ′x+ sup
�∈�

E�

( K∑
k=1

dl� k ′rk���	

)
� bl

∀ l ∈ �M��

� ���	x+
K∑

k=1

Ukrk���	= ����	�

yk � rk���	� yk ∀k ∈ �K��

x� 0�

rk ∈��mk�NE��k	 ∀k ∈ �K��

(20)
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where

� ���	=� 0 +
N∑

j=1

�̃j
j � ����	= �0 +

N∑
j=1

�̃j�
j �

After approximating ��mk�NE��k	 with 	�mk�NE��k	
and following the same steps as the LDR approximation
(see the online Appendix A.1), (20) will reduce to (18).
When we interpret (18) as an LDR approximation of Prob-
lem (20) above, the approximate sets 
 and �
 should
therefore be interpreted respectively as supersets of the sup-
port and mean support of the new uncertainty vector ��.
Furthermore, the collection of index sets ��k�

K
k=1, which

was somewhat arbitrarily defined before, now has the nat-
ural interpretation as the information index sets of the new
decision rules, rk� · 	.

4.8. Example: Specifying Distributional Properties
for Segregated Uncertainties

We provide a concrete example of how various distribu-
tional properties can be specified for segregated uncertain-
ties to illustrate how segregations might work in practice.
Consider a primitive uncertainty vector z̃ ∈�4, where only
z̃2 and z̃3 are stochastically independent. The distributional
properties � , �� , and � of the primitive uncertainty vector
z̃ can be specified directly. Furthermore, we wish to seg-
regate each component of z̃ into three regions, �−��−1�,
�−1�1�, and �1��	 as in the earlier example of §4.2. This
results in a segregated uncertainty vector �� ∈ �12, which
obeys the relation z̃ = F�� + g for parameters F ∈ �4×12,
g ∈�4, where

F= �I I I� and g= 0�

and I represents the 4-by-4 identity matrix. Based on the
segregation, we can choose � as

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� ∈�12�

�i �−1 if i = 1�2�3�4�

−1� �i � 1 if i = 5�6�7�8�

�i � 1 if i = 9�10�11�12

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�

Finally, we notice that expressing z̃� = F�
��+ g� , where

F� =
[
0 1 0 0

0 0 1 0

]
F and g� = 0�

we can construct an uncertainty vector z̃� with indepen-
dent components. We can therefore specify the directional
deviations ��f , �b	 of z̃� .

5. Distributionally Ambiguous Bounds
for E���·�+�

When we specify partial distributional information of the
model uncertainties, we effectively characterize a family

of distributions �, which contains the true uncertainties
distribution � . In this section, we discuss how we may
evaluate the supremum of the expected positive part of an
SLDR (recall that according to the discussion in §4.7, the
SLDR can be interpreted as an LDR on the segregated
uncertainties), i.e.,

sup�∈� E���r���		+	�

r ∈	�m�NE��	�

where the family � is partially characterized by the distri-
butional properties as laid out in the Model of Uncertainty
in §3. This is in anticipation of our discussion of deflected
linear decision rules (DLDRs) in §6, where we will use
these bounds. We will show how each pair of distributional
properties
• Mean and (segregated) Support,
• Mean and Covariance,
• Mean and Directional Deviation

establishes a distinct bound, and we conclude this section
by showing how to combine these separate bounds when
we have access to a combination of distributional informa-
tion from these three categories.
We show that each bound can be constructed by solv-

ing a deterministic optimization problem, and we adopt the
standard convention in convex programming that an infea-
sible minimization (maximization) problem has an optimal
value of +� (−�). Also, we will only present results for
E���·	+	, since the results for the negative case can be
derived easily by applying the identity x− = �−x	+. For
generality, we will discuss the bound of E���r0 + r′ ��	+	,
applied to the segregated LDR as defined in §4, since
bounding the expectation of the positive part of a standard
LDR, i.e., E���y0 + y′z̃	+	, can be derived as a special case
when M�z	= z.

5.1. Mean and Support Information

Theorem 1. Let �1 be the family of all distributions � such
that the random variable �� has support in 
 and its mean
�� has support in �
 , i.e.,

�1 = �� � ��= E����	 ∈ �
 ����� ∈
 	= 1��

Then �1�r0� r	 is a tight upper bound for E���r0 + r′ ��	+	
over all distributions � ∈ �1, i.e.,

sup
�∈�1

E���r0 + r′ ��	+	=�1�r0� r	�

where

�1�r0�r	

� inf
s∈�NE

�sup
�̂∈
̂

�s′ ���+sup
�∈


�max�r0+r′�−s′��−s′��		� (21)

Proof. Please see the online Appendix B.1.
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Remark. First, we notice that for given �r0� r	,

r0+r′��0� ∀�∈

⇒ sup

�∈�1
E���r0+r′ ��	+	=r0+sup

�̂∈
̂
r′ ���

which is attained by �1�r0� r	 by choosing s= r. Also,

r0 + r′�� 0� ∀� ∈
 ⇒ sup
�∈�1

E���r0 + r′ ��	+	= 0�

which is attained by �1�r0� r	 by choosing s= 0. Second,
we note that the epigraph of �1�r0� r	 can be reformulated
as a set of robust constraints over the support sets 
 and
�
 . Since 
 and �
 are tractable conic representable sets
by assumption, the bound �1�r0� r	 is consequently com-
putationally tractable.

5.2. Mean and Covariance Information

Theorem 2. Let �2 be the family of all distributions � such
that the mean of the segregated uncertainties, �� , has sup-
port in �
 , and the primitive uncertainty vector has covari-
ance matrix �, i.e.,

�2 = �� � ��= E����	 ∈ �
 �E��F���− ��	���− ��	′F′	=���

Then �2�r0� r	 is a tight upper bound for E���r0 + r′ ��	+	

over all distributions � ∈ �2, i.e.,

sup
�∈�2

E���r0 + r′ ��	+	=�2�r0� r	�

where

�2�r0� r	� inf
y∈�y�F′y=r�

{
sup
�̂∈
̂

{
1
2

�r0 + r′ ��	

+ 1
2

√
�r0 + r′ ��	2 + y′�y

}}
� (22)

Proof. Please see the online Appendix B.2.

Remark. We observe that the function f �u	 =
1
2u+ 1

2

√
u2 + y′�y is everywhere nondecreasing in u,

which allows us to express �2�r0� r	 as the following
tractable conic optimization problem:

�2�r0� r	= inf
u�y

1
2

u+ 1
2

√
u2 + y′�y�

r0 + sup
�̂∈
̂

r′ ��� u�

F′y= r�

(23)

5.3. Mean and Directional Deviation Information

Theorem 3. Let �3 be the family of all distributions � such
that the mean of the segregated uncertainties, ��, has sup-
port in �
 and the projected uncertainty vector z̃� = F�

��+
g� has independent components with directional devia-
tions bounded above by �f and �b for known parameters
�F� �g�	, i.e.,

�3 = �� � ��= E����	 ∈ �
 ��f� �z̃�	��f ��b� �z̃�	��b��

Then �3�r0� r	 is an upper bound for E���r0 + r′ ��	+	 over
all distributions � ∈ �3, i.e.,

sup
�∈�3

E���r0 + r′ ��	+	��3�r0� r	�

where

�3�r0�r	� inf
s0�s�x0�x

x0+x′g�=r0

F′
� x=r

{
�r0−s0−s′g�	+sup

�̂∈
̂
�r′ −s′F�	 ��

+��s0−x0�s−x	+��s0�s	
}

� (24)

and

��x0�x	= inf
�>0

{
�

e
exp

(
1
�

sup
ẑ�∈ ���

�x0 + x′�z��+ �u�22
2�2

)}
�

and uj =max�xj�f � j �−xj�b� j�.

Proof. Please see the online Appendix B.3.

Remark. First, we notice that from the Model of Uncer-
tainty in §3 we specify the linear transform parameter H�

mapping the primitive uncertainty vector z̃ to z̃� instead
of specifying the affine transform parameters mapping the
segregated uncertainty vector �� to z̃� directly. Nevertheless,
�F� �g�	 is obtained as F� =H�F and g� =H�g. Second,
unlike �1�r0� r	 and �2�r0� r	, this bound, while valid, is
not tight. However, it remains useful because it uses any
componentwise independence of the uncertainties to form a
bound, and it has been shown computationally by See and
Sim (2009) to significantly improve the quality of the solu-
tion for a robust inventory problem. Finally, we note that
evaluating �3�r0� r	 involves exponential functions with
quadratic arguments. Chen and Sim (2009, Appendix B)
showed that a small number of second-order conic con-
straints can be used to approximate such functions with
good accuracy and can perform numerical studies showing
the usefulness of the bound.

5.4. Unified Bounds

Each of the above functions separately bound
E���r0 + r′ ��	+	 from above for � belonging to a given
family of distributions � ∈ ��1��2��3�. We now consider
whether we are able to construct a better bound if we
know that the actual distribution � lies in the intersection
of these families. This can be done via a well-known
technique in convex analysis known as infimal convolution
(see Chen and Sim 2009). Due to its importance in our
discussion, we reproduce it here in the following theorem.
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Theorem 4. Let S ⊆ �1�2�3� be an index set of the bounds
to be combined. Then the bound ��r0� r	, defined as

��r0� r	=min
∑
s∈S

�s�r0� s� rs	

s.t. r0 =∑
s∈S

r0� s�

r=∑
s∈S

rs�

(25)

is a better bound for sup�∈� E���r0 + r′ ��	+	 than �s�r0� r	,
∀ s ∈ S, where � =⋂

s∈S �s , such that

sup
�∈�

E���r0 + r′ ��	+	���r0� r	��s�r0� r	 ∀ s ∈ S� (26)

Proof. Please see the online Appendix B.4.2.

Remark. On the theoretical front, we notice that the
unified bound ��r0� r	 has the mathematically desirable
properties of convexity and positive homogeneity. From a
practical perspective, ��r0� r	 is able to selectively synthe-
size disparate pieces of information about the distribution
of primitive uncertainties and present a combined bound
which takes into account all pieces of information.

6. Deflected Linear Decision Rules
We earlier showed that SLDRs improve over LDRs, while
retaining a linear model of recourse. We aim to investi-
gate if we can do even better. The deflected linear deci-
sion rule (DLDR) proposed by Chen et al. (2008) exploited
the structure of the model constraints (by solving a series
of subproblems based on the model parameters) to obtain
an even more flexible decision rule. We adapt this idea
here, similarly solving a series of subproblems to exploit
structural information within the model to generate a better
decision rule, which we term the bideflected linear decision
rule (BDLDR).
Although the original DLDR has been shown to be more

flexible in comparison to LDRs, we will present an example
in §6.1.1 where the DLDR can be further improved upon by
an alternate piecewise-linear decision rule, which suggests
that there is room for further improvement. In addition, the
original DLDR of Chen et al. (2008) does not explicitly
handle expectation constraints or nonanticipativity require-
ments. We seek to address these limitations in the BDLDR
which we present here.
Since the basic LDR can be obtained from the SLDR by

choosing M�z	 = z, our results in this section also hold if
we choose to omit constructing the SLDR as an intermedi-
ate step. However, we choose to present the techniques in
this section as an additional layer of improvement over the
SLDR for greater generality.

6.1. DLDR of Chen et al. (2008)

We review the two-stage optimization problem as in Chen
et al. (2008) under linear recourse with nonnegative con-
straints for a subset J ⊆ �m� of indices as follows:

min
x� r� · 	

c′x+ sup
�∈�

E��d′r���		

s.t. � ���	x+Ur���	= ����	�

rj���	� 0 ∀ j ∈ J �

r ∈	�m�NE��	�

(27)

We consider a series of subproblems for each i ∈ J :

min
p

d′p

s�t� Up= 0�

pi = 1�

pj � 0 ∀ j ∈ J �

(28)

Denoting by J � ⊆ J the set of indices where problem (28)
has a feasible solution, and by p̄i, the optimal solution to
subproblem (28) for each i ∈ J �, the DLDR is then defined
from the SLDR by the relation

�rD���	� r���	+∑
i∈J �

�ri���		−p̄i� (29)

where the SLDR satisfies
� ���	x+Ur���	= ����	�

rj���	� 0 ∀ j ∈ J\J ��

r ∈	�m�NE��	�

(30)

Problem (27) under the DLDR can be approximated by

min
x� r� · 	

c′x+ sup
�∈�

E��d′r���		+∑
i∈J �

R

sup
�∈�

E���ri���		−	d′p̄i

s.t. � ���	x+Ur���	= ����	�

rj���	� 0 ∀ j ∈ J\J ��

r ∈	�m�NE��	�

where we define the reduced index set as J �
R = �i ∈ J ��

d′p̄i > 0� to avoid nonconvexity in the objective. The objec-
tive is bounded from above by summing over only indices
in J �

R, since the respective summation terms for i 	 J �
R are

nonpositive. We notice that the objective involves sum-
ming over terms of the form sup�∈� E���·	−	, which we can
bound from above using the unified bound �� · 	 in §5. The
two-stage DLDR model can therefore be expressed explic-
itly as

ZDLDR = min
x� r0�R

c′x+ d′r0 + sup
�̂∈
̂

�d′R���

+∑
i∈J �

R

��−r0i �−R′ei	d′p̄i

s.t. � 0x+Ur0 = �0�

� jx+URej = �j ∀ j ∈ �NE��

r0j + ej ′R�� 0 ∀� ∈
 ∀ j ∈ J\J ��

(31)
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6.1.1. Example: Limitation of DLDR and LDR. We
will now consider an example of the two-stage Prob-
lem (27), which will illustrate the limitation of the DLDR
and motivate our subsequent exposition. For simplicity, we
will discuss applying the DLDR to the LDR instead of the
SLDR (i.e., using M�z	 = z). We consider the family � of
scalar �N = 1	 uncertainty distributions with infinite sup-
port �� = �	, zero mean � �� = �0�	, and unit variance
��2 = 1	. We consider the following uncertain optimization
problem with scalar recourse variables y�z̃	, u�z̃	, and v�z̃	:

min
y� · 	� u� · 	� v� · 	

sup
�∈�

E��u�z̃	+ v�z̃		

s.t. u�z̃	− v�z̃	= y�z̃	− z̃�

0� y�z̃	� 1�

u�z̃	� v�z̃	� 0�

y� u� v ∈��1�1� �1�	�

(32)

Using LDRs as our model of recourse, (i.e., using 	 to
approximate �), we note that Problem (32) is infeasible
(i.e., ZLDR = +�), since the inequalities over the infinite
support of z̃ cannot simultaneously fulfill the equality con-
straint. Now suppose we attempt to apply the DLDR to
improve the solution: We will need a slack variable to con-
vert the problem into the form of (27) which has model
parameters

U=
[
1 −1 −1 0

0 0 1 1

]
� d= [

1 1 0 0
]
�

J = �1�2�3�4��

Solving subproblem (28) leads to the piecewise-linear deci-
sion rules:

ûD�z	= �u0 + uz	+ + �v0 + vz	−�

v̂D�z	= �v0 + vz	+ + �u0 + uz	−�

y�z	= y0 + yz�

Applying these decision rules, we obtain the following
reformulation

min
y0� y� u0� u� v0� v

sup
�∈�

E��+	

s.t. u0 − v0 = y0�

u− v = y − 1�

0� y0 + yz� 1 ∀ z ∈��

After applying the bounds in §5 and noticing that the last
inequality over all of � implies y = 0, we get the final
deterministic formulation which determines ZDLDR:

ZDLDR = min
u0� u� v0� v

∥∥∥∥
(

u0

u

)∥∥∥∥
2

+
∥∥∥∥
(

v0

v

)∥∥∥∥
2

s�t� u− v =−1�

0� u0 − v0 � 1�

(33)

Solving, we get ZDLDR = 1, which is a significant improve-
ment over the LDR solution. We notice that even after
applying the DLDR, the decision rule y� · 	 remains as an
LDR, and we would like to investigate whether we can
further improve on this. Now, suppose we consider the fol-
lowing hypothetical piecewise-linear decision rule:

û�z	= �u0 + uz	+ + �v0 + vz	− + �y0 + yz	−�

v̂�z	= �v0 + vz	+ + �u0 + uz	− + �y0 − 1+ yz	+�

ŷ�z	= �y0 + yz	+ − �y0 − 1+ yz	+�

We notice that under these decision rules, Problem (32),
after applying the bounds, can be reduced to

Z0 = min
y0� y� u0� u� v0� v

∥∥∥∥
(

u0

u

)∥∥∥∥
2

+
∥∥∥∥
(

v0

v

)∥∥∥∥
2

+ 1
2

∥∥∥∥
(

y0

y

)∥∥∥∥
2

+ 1
2

∥∥∥∥
(

y0 − 1
y

)∥∥∥∥
2

− 1
2

s.t. u0 − v0 = y0�

u− v = y − 1�

(34)

Solving the problem above, the optimal value is given by
Z0 = 1/

√
2 < ZDLDR, a further improvement over the

DLDR. We therefore seek a decision rule that would
encompass our hypothetical piecewise-linear model of
recourse.

6.2. Two-Stage Bideflected Linear Decision Rule

In this subsection, we will first introduce the BDLDR
for a two-stage problem and later generalize it to a non-
anticipative BDLDR (including the multistage as a special
case) in the following subsection. We consider a two-stage
problem similar to (27), as follows:

min
x� r� · 	

c′x+ sup
�∈�

E��d′r���		

s.t. � ���	x+Ur���	= ����	�

y� r���	� y�

r ∈	�m�NE��	�

(35)

Notice that for a two-stage problem we should have � =
�NE�. Similar to the definition (3) of noninfinite bounds in
our general model, we denote the index sets of noninfinite
bounds in our two-stage model:

J = �i ∈ �m�� y
i
>−���

J̄ = �i ∈ �m�� yi <+���
(36)

Notice that if we were to choose

y
j
=

⎧⎨
⎩
0 ∀ j ∈ J �

−� ∀ j ∈ �m�\J �

yj = +� ∀ j ∈ �m��

(37)
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we obtain model (27) exactly. To construct the BDLDR,
we consider the following pairs of optimization problems.
First, for each i ∈ J ,

min
p

d′p

s.t. Up= 0�

pi = 1�

pj � 0 ∀ j ∈ J �

pj � 0 ∀ j ∈ J̄\�i��

(38)

Notice that for j ∈ �J ∩ J̄ 	\�i�, the constraints imply that
pj = 0. Similarly, for i ∈ J̄ ,

min
q

d′q

s.t. Uq= 0�

qi =−1�

qj � 0 ∀ j ∈ J̄ �

qj � 0 ∀ j ∈ J\�i��

(39)

By defining J � ⊆ J as the index set of i such that prob-
lem (38) is feasible, J̄ � ⊆ J̄ as the index set of i such that
problem (39) is feasible, and p̄i, q̄i as the respective optimal
solutions for each i in J � and J̄ � respectively, we consider
an SLDR satisfying

� ���	x+Ur���	= ����	�

rj���	� y
j

∀ j ∈ J\J ��

rj���	� yj ∀ j ∈ J̄\J̄ ��

(40)

The associated BDLDR is then defined from the SLDR by

�r���	�r���	+∑
i∈J �

�ri���	−y
i
	−p̄i+∑

i∈J̄ �
�ri���	−yi	

+q̄i� (41)

Some properties of the BDLDR are stated in Proposition 4,
which follows.

Proposition 4. The BDLDR, �r���	, satisfies the following
properties:
1. U�r���	=Ur� ��	,
2. y� �r���	� y.

Proof. Please see the Appendix C.1.2.
This implies that as long as we have an SLDR that

satisfies (40), we can find a feasible BDLDR. Under the
BDLDR, problem (35) becomes

min
x� r� · 	

c′x+ sup
�∈�

E�

(
d′r���	+∑

i∈J �
�ri���	− y

i
	−d′p̄i

+∑
i∈J̄ �

�ri���	− yi	
+d′q̄i

)

s.t. � ���	x+Ur���	= ����	�

rj���	� y
j

∀ j ∈ J\J ��

rj���	� yj ∀ j ∈ J̄\J̄ ��

r ∈	�m�NE��	�

(42)

When d′p̄i or d′q̄i is negative, the objective becomes
nonconvex. Thus, we consider an approximation of
Problem (42) from above by defining the reduced index sets:

J �
R � �i ∈ J �� d′p̄i > 0��

J̄ �
R � �i ∈ J̄ �� d′q̄i > 0��

(43)

We then use the subadditivity of the supremum to obtain
the formulation of the BDLDR problem:

Z∗
BDLDR = min

x� r� · 	
c′x+ sup

�∈�
E��d′r���		

+ ∑
i∈J �

R

sup
�∈�

E���ri���	− y
i
	−	d′p̄i

+∑
i∈J̄ �

R

sup
�∈�

E���ri���	− yi	
+	d′q̄i

s.t. � ���	x+Ur���	= ����	�

rj���	� y
j

∀ j ∈ J\J ��

rj���	� yj ∀ j ∈ J̄\J̄ ��

r ∈	�m�NE��	�

Using the bounds developed in §5 to approximate
sup�∈� E��� · 	±	, we obtain the explicit final form of the
BDLDR model:

ZBDLDR = min
x� r0�R

c′x+ d′r0 + sup
�̂∈
̂

�d′R���

+ ∑
i∈J �

R

��−r0i + y
i
�−R′ei	d′p̄i

+∑
i∈J̄ �

R

��r0i − yi�R
′ei	d′q̄i

s.t. � 0x+Ur0 = �0�

� jx+URej = �j ∀ j ∈ �NE��

r0j + ej ′R�� y
j

∀� ∈
 ∀ j ∈ J\J ��

r0j + ej ′R�� yj ∀� ∈
 ∀ j ∈ J̄\J̄ ��

(44)

6.3. Comparison of BDLDR with DLDR and LDR

In this subsection we will proceed to show that the BDLDR
improves upon the DLDR and SLDR for Problem (35).
Without loss of generality, we can consider a simplified ver-
sion of the problem, such that the lower recourse constraint
has the structure,

y
j
= 0� ∀ j ∈ J �
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since we can simply apply a change of variables if the
above was not true. For reference, we begin by writing
Problem (35) under the SLDR explicitly as

ZSLDR = min
x� r0�R

c′x+ d′r0 + sup
�̂∈
̂

�d′R���

s.t. � 0x+Ur0 = �0�

� jx+URej = �j ∀ j ∈ �NE��

r0j + ej ′R�� y
j

∀� ∈
 ∀ j ∈ J �

r0j + ej ′R�� yj ∀� ∈
 ∀ j ∈ J̄ �

(45)

Next, we consider the DLDR. In order to apply the
DLDR, we need to introduce slack linear recourse variables
sj���	� ∀ j ∈ J̄ to convert (35) into the form of (27). The
constraint set becomes

� ���	x+Ur� ��	= �� ��	�

rj���	+ sj���	= yj ∀ j ∈ J̄ �

rj���	� 0 ∀ j ∈ J �

sj���	� 0 ∀ j ∈ J̄ �

r� s ∈	�m�NE��	�

Under the DLDR model of recourse, we need to solve the
subproblem (28) for each i ∈ J , which corresponds to the
inequalities ri���	� 0. After eliminating the slack variables,
the problem takes the form

min
p

d′p

s.t. Up= 0�

pi = 1�

pj � 0 ∀ j ∈ J �

pj � 0 ∀ j ∈ J̄ �

(46)

Similarly, the inequalities si���	 � 0 require us to solve the
following subproblem (again after eliminating the slacks)
for each i ∈ J̄ :

min
q

d′q

s.t. Uq= 0�

qi =−1�

qj � 0 ∀ j ∈ J �

qj � 0 ∀ j ∈ J̄ �

(47)

We denote by J �
D the set of indices i ∈ J such that (46)

has a feasible solution, with corresponding optimal solu-
tion p̄i

D
, and by J̄ �

D the set of indices i ∈ J̄ such that (47)
is feasible, with corresponding optimal solution q̄i

D
. From

the DLDR formulation (31), after rearrangement of terms,
Problem (35) under the DLDR reduces to:

ZDLDR = min
x� r0�R

c′x+ d′r0 + sup
�̂∈
̂

�d′R���

+ ∑
i∈J �

D�R

��−r0i + y
i
�−R′ei	d′p̄i

D

+ ∑
i∈J̄ �

D�R

��r0i − yi�R
′ei	d′q̄i

D

s.t. � 0x+Ur0 = �0�

� jx+URej = �j ∀ j ∈ �NE��

r0j + ej ′R�� y
j

∀� ∈
 ∀ j ∈ J\J �
D�

r0j + ej ′R�� yj ∀� ∈
 ∀ j ∈ J̄\J �
D�

(48)

where we define the reduced index sets J �
D�R � �i ∈ J �

D�
d′p̄i

D
> 0� and J̄ �

D�R � �i ∈ J̄ �
D� d′q̄i

D
> 0�. We now

summarize the result relating the optimal objectives to
Problem (35) under the SLDR, DLDR, and BDLDR in the
following proposition:

Proposition 5. The optimal objective to Problem (35)
under the BDLDR, DLDR, and the SLDR are related by
the inequality ZBDLDR �ZDLDR �ZSLDR.

Proof. Please see the online Appendix C.2.

Remark. The discussion above underscores an important
distinction between deterministic linear optimization and
robust linear optimization: In the deterministic case, it is
trivial to include slack variables to convert the feasible set
of a linear program into the standard form �x� Ax = b�
x� 0�. The decision to convert or not is typically a result
of the trade-off between storage space and solver perfor-
mance, and it would not affect the final optimal solution.
However, in the robust case, using the LP “standard form”
obscures the information of the set J̄ , which is in turn
required to use the BDLDR. As we have seen, this could
potentially deteriorate the optimal solution of the robust
linear program.

6.4. Nonanticipative Bideflected Linear
Decision Rule

In the previous section, we introduced the two-stage
BDLDR and showed that it generalizes and improves upon
the DLDR and SLDR. We notice that each component of
the two-stage BDLDR is a sum of its original underly-
ing SLDR and piecewise-linear functions of other SLDRs,
disregarding any information dependencies between the
original SLDRs. Using the two-stage BDLDR could there-
fore violate nonanticipativity constraints present in the
model and result in an optimal solution which nonetheless
improves upon the SLDR but would otherwise be practi-
cally meaningless. In this section, we will further adapt
the BDLDR for the case of nonanticipative recourse. This
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includes, but is not restricted to, multistage models. We will
introduce the following notation:

N+�k	= �j ∈ �K�� �k ⊆�j��

N−�k	= �j ∈ �K�� �j ⊆�k��
(49)

Notice that k ∈ N±�k	 ∀k ∈ �K�, guaranteeing that N±�k	
cannot be empty. Furthermore, the following property fol-
lows directly from the definitions above:

j ∈N+�k	⇔ k ∈N−�j	� (50)

Now, for each k ∈ �K�, i ∈ J k, we consider the polyhedron
P�i� k	 defined by the constraints∑

j∈N+�k	 U
jpi� k� j = 0�

p
i�k� j
l � 0 ∀ l ∈ J j ∀ j ∈N+�k	�

p
i�k� j
l � 0 ∀ l ∈ J̄j ∀ j ∈N+�k	\�k��

pi�k� k
l � 0 ∀ l ∈ J̄k\�i��

pi�k� k
i = 1�

(51)

Similarly, for each k ∈ �K�, i ∈ J̄k, we consider the polyhe-
dron Q�i� k	 defined by the constraints∑
j∈N+�k	

Ujqi� k� j = 0�

q
i� k� j
l � 0 ∀ l ∈ J̄j ∀ j ∈N+�k	�

q
i�k� j
l � 0 ∀ l ∈ J j ∀ j ∈N+�k	\�k�� (52)

qi�k� k
l � 0 ∀ l ∈ J k\�i��

qi� k� k
i =−1�

For convenience, we collect the indices i which yield fea-
sible instances of (51) and (52) in the following index sets
∀k ∈ �K�:

J �
k = �i ⊆ J k� P�i� k	  = ���

J̄ �
k = �i ⊆ J̄k� Q�i� k	  = ���

(53)

Now suppose that we have a set of SLDRs, rk ∈
	�mk�NE��k	, ∀k ∈ �K�, which satisfies

� ���	x+
K∑

k=1

Ukrk���	= ����	�

rk
j ���	� yk

j
∀k ∈ �K�� ∀ j ∈ J k\J �

k�

rk
j ���	� yk

j ∀k ∈ �K�� ∀ j ∈ J̄k\J̄ �
k �

rk ∈	�mk�NE��k	 ∀k ∈ �K��

(54)

Based on the SLDR, we define the nonanticipative
BDLDR, denoted by �rk���	� ∀k ∈ �K�, as

�rk���	� rk���	+ ∑
j∈N−�k	

(∑
i∈J �

j

�r
j
i ���	− yj

i
	−pi� j� k

+∑
i∈J̄ �

j

�r
j
i ���	− yj

i 	
+qi� j� k

)
� (55)

6.5. Properties of BDLDR

Proposition 6. The information index set of the kth
BDLDR, denoted by �̂k, is contained in the information
index set of its underlying SLDR, �k, i.e., �̂k ⊆ �k. Fur-
thermore, if problem (18) has a feasible solution, then
�̂k =�k.

Proof. Please see the online Appendix C.3.

Remark. This proposition implies that the nonanticipative
BDLDR only uses information that is available to the the
SLDR in forming the recourse decision. For example, if
we are modeling a problem with a temporal revelation of
information, the nonanticipative BDLDR uses information
that has already been revealed.

Proposition 7. Each nonanticipative BDLDR, �rk���	 satis-
fies the following properties:
1.

∑K
k=1U

k�rk���	=∑K
k=1U

krk���	,
2. yk � �rk���	� yk� ∀k ∈ �K�.

Proof. Please see the online Appendix C.4.

6.6. Comparison of Nonanticipative BDLDR with
SLDR

We define the reduced index sets ∀ l ∈ �0� ∪ �M��∀k ∈
�K�� ∀ j ∈N−�k	 as

J �
l� j� k � �i ∈ J �

j � d
l� k ′pi� j� k > 0��

J̄ �
l� j� k � �i ∈ J̄ �

j � dl� k ′qi� j� k > 0��

Using Proposition 7 Problem (2) under the BDLDR is then
approximated as

ZBDLDR

= min
x��r0�k�Rk�K

k=1

c0
′
x+

K∑
k=1

d0�k ′r0�k+sup
�̂∈
̂

{ K∑
k=1

d0�k ′Rk��
}

+
K∑

k=1

∑
j∈N−�k	

∑
i∈J �

0�j�k

��−r
0�j
i +yj

i
�−Rj ′ei	d0�k ′pi�j�k

+
K∑

k=1

∑
j∈N−�k	

∑
i∈J̄ �

0�j�k

��r
0�j
i −yj

i �R
j ′ei	d0�k ′qi�j�k

s.t. cl ′x+
K∑

k=1

dl�k ′r0�k+sup
�̂∈
̂

{ K∑
k=1

dl�k ′Rk ��
}

+
K∑

k=1

∑
j∈N−�k	

∑
i∈J �

l�j�k

��−r
0�j
i +yj

i
�−Rj ′ei	dl�k ′pi�j�k

+
K∑

k=1

∑
j∈N−�k	

∑
i∈J̄ �

l�j�k

��r
0�j
i −yj

i �R
j ′ei	dl�k ′qi�j�k �bl

∀l∈ �M��

� 0x+
K∑

k=1

Ukr0�k=�0�
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� jx+
K∑

k=1

UkRkej =�j ∀k∈ �K�� ∀j ∈ �NE��

r0�k
j +ej ′Rk��yk

j

∀�∈
 ∀k∈ �K�� j ∈J k\J �
k�

r0�k
j +ej ′Rk�� yk

j

∀�∈
 ∀k∈ �K�� j ∈ J̄k\J̄ �
k �

x�0�

(56)

Proposition 8. Problem (56) has an optimal objective not
worse than Problem (18), i.e., ZBDLDR �ZSLDR.

Proof. Please see the online Appendix C.5.

Remark. Although we have shown that the non-
anticipative BDLDR improves upon the SLDR solution,
we notice that the BDLDR requires a choice of feasible
points �pi� k� j �j∈N+�k	 and �qi� k� j �j∈N+�k	 which satisfy the
polyhedral constraint sets (51) and (52), respectively. We
leave it as an open question how to optimally choose points
within these feasible polyhedra in the general case. If the
model (2) can be reformulated such that there are no expec-
tation constraints, we have a similar situation to the simpler
two-stage BDLDR, and the optimal choices �p̄i� k� j �j∈N+�k	

and �q̄i� k� j �j∈N+�k	 can be found from the solutions of the
following pairs of optimization problems:

min
∑

j∈N+�k	

d0� jpi� k� j

s.t. �pi� k� j �j∈N+�k	 ∈ P�i� k	�

min
∑

j∈N+�k	

d0� jqi� k� j

s.t. �qi� k� j �j∈N+�k	 ∈Q�i� k	�

(57)

In the general case, due to the coupling between the
expectation constraints and the objective, solving the pair
of subproblems (57) will no longer guarantee optimal
�p̄i� k� j �j∈N+�k	 and �q̄i� k� j �j∈N+�k	 for use in the BDLDR.
However, since (57) explicitly decreases the objective of the
original problem, we feel that it remains as a viable heuris-
tic for choosing feasible points for use in the BDLDR,
which will nonetheless be an improvement over the original
SLDR.

7. Conclusions
We have presented a framework for the robust optimiza-
tion of linear programs under uncertainty, by using linear-
based decision rules to model the recourse variables. We
have introduced SLDRs and BDLDRs, which are more
flexible models of recourse decisions than LDRs, and have
shown how they can be used in a nonanticipative model-
ing context. In a parallel work (Goh and Sim 2009), we

are developing a modeling language to model and solve the
class of problems described in this paper. There we present
modeling examples and comprehensive numerical studies
for a service-constrained inventory management problem
and a portfolio optimization problem. In particular, we
demonstrate numerically that the nonanticipative BDLDR
improves significantly over the LDR, verifying some of the
theoretical results developed in this paper.

8. Electronic Companion
Appendices A, B, and C are available in the electronic com-
panion to this paper, which is available as part of the online
version at http://or.journal.informs.org/.

Endnotes
1. While the results in this paper will still hold even if
the definition encompasses semidefinite cones, we focus on
second-order conic programs (SOCP) because the study of
semidefinite programming (SDP) is still an active area of
research, while SOCPs can already be solved with high effi-
ciency and SOCP solvers are even commercially available.
2. Although our analysis can be extended to the case of
unknown covariance (using, e.g., techniques developed by
Delage and Ye 2010), we do not consider this general-
ization for two reasons. First, this generally increases the
computational complexity of the problem from an SOCP
to an SDP, which we prefer to avoid (see Endnote 1). Sec-
ond, there are important applications which motivate this
assumption. For example, in the study of portfolio man-
agement, Chopra and Ziemba (1993) showed empirically
that the impact of estimation errors in mean asset returns
is about an order of magnitude more severe than the corre-
sponding impact of estimation error in asset variances and
covariances.
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Dupačová, J. 1987. The minimax approach to stochastic programming and
an illustrative application. Stochastics 20(1) 73–88.

Dyer, M., L. Stougie. 2006. Computational complexity of stochastic pro-
gramming problems. Math. Programming Ser. A 106 423–432.

El Ghaoui, L., H. Lebret. 1997. Robust solutions to least-squares
problems with uncertain data. SIAM J. Matrix Anal. Appl. 18(4)
1035–1064.

El Ghaoui, L., M. Oks, F. Oustry. 2003. Worst-case value-at-risk and
robust portfolio optimization: A conic programming approach. Oper.
Res. 51(4) 543–556.

El Ghaoui, L., F. Oustry, H. Lebret. 1998. Robust solutions to uncertain
semidefinite programs. SIAM J. Optim. 9 33–52.

Föllmer, H., A. Schied. 2002. Convex measures of risk and trading con-
straints. Finance and Stochastics 6(4) 429–447.

Gallego, G., I. Moon. 1993. The distribution free newsboy problem:
Review and extensions. J. Oper. Res. Soc. 44(8) 825–834.

Goh, J., M. Sim. 2009. Robust optimization made easy with ROME.
Working paper, National University of Singapore.

Natarajan, K., D. Pachamanova, M. Sim. 2008. Incorporating asymmetric
distributional information in robust value-at-risk optimization. Man-
agement Sci. 54(3) 573–585.

Rockafellar, R. T., S. Uryasev. 2000. Optimization of conditional value-
at-risk. J. Risk 2 493–517.

Ruszczynski, A., A. Shapiro, eds. 2003. Stochastic Programming. Hand-
books in Operations Research and Management Science, Vol. 10.
Elsevier Science, Amsterdam.

Scarf, H. 1958. A min-max solution of an inventory problem. K. Arrow,
ed. Studies in the Mathematical Theory of Inventory and Production.
Stanford University Press, Stanford, CA, 201–209.

See, C.-T., M. Sim. 2009. Robust approximation to multiperiod inven-
tory management. Oper. Res., ePub ahead of print December 29,
http://or.journal/informs.org/cgi/content/abstract/opre/1090.0746v1.

Shapiro, A., A. Kleywegt. 2002. Minimax analysis of stochastic programs.
Optim. Methods and Software 17(3) 523–542.

Shapiro, A., A. Nemirovski. 2005. On complexity of stochastic program-
ming problems. V. Jeyakumar, A. Rubinov, eds. Continuous Opti-
mization. Springer, New York, 111–146.

Soyster, A. L. 1973. Convex programming with set-inclusive constraints
and applications to inexact linear programming. Oper. Res. 21(5)
1154–1157.

Wang, C., C.-J. Ong, M. Sim. 2008. Model predictive control using seg-
regated disturbance feedback. Proc. Amer. Control Conf., Seattle.
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