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Abstract: When solving the problem of the minimum cost consensus with asymmetric adjustment
costs, decision makers need to face various uncertain situations (such as individual opinions and unit
adjustment costs for opinion modifications in the up and down directions). However, in the existing
methods for dealing with this problem, robust optimization will lead to overly conservative results,
and stochastic programming needs to know the exact probability distribution. In order to overcome
these shortcomings, it is essential to develop a novelty consensus model. Thus, we propose three
new minimum-cost consensus models with a distributionally robust method. Uncertain parameters
(individual opinions, unit adjustment costs for opinion modifications in the up and down directions,
the degree of tolerance, and the range of thresholds) were investigated by modeling the three new
models, respectively. In the distributionally robust method, the construction of an ambiguous set
is very important. Based on the historical data information, we chose the Wasserstein ambiguous
set with the Wasserstein distance in this study. Then, three new models were transformed into a
second-order cone programming problem to simplify the calculations. Further, a case from the EU
Trade and Animal Welfare (TAW) program policy consultation was used to verify the practicability of
the proposed models. Through comparison and sensitivity analysis, the numerical results showed
that the three new models fit the complex decision environment better.

Keywords: distributionally robust optimization; group decision-making; minimum cost consensus;
asymmetric adjustment costs; Wasserstein distance

MSC: 91F99

1. Introduction

Group decision-making (GDM) is a current hot research direction in the field of
decision science [1–6], and it can be applied in practical scenarios, such as the environmental
management project in the Yangtze River Delta region or how institutions choose stocks
during the COVID-19 crisis [7]. GDM plays a crucial role in both preliminary planning and
project implementation.

In GDM research, consensus-reaching is a basic research content and is the most com-
plex aspect in this field [8]. Consensus-reaching can be seen as the result of the coordinated
consistency of group opinions or the convergence of opinions. GDM is essentially a multi-
round coordination problem involving multiple interactions [9]. Decision makers (DMs)
express their opinions based on their decision preferences. However, in most cases, it is
difficult for the DMs to obtain a satisfactory consensus opinion because different DMs are
in different groups and have the characteristics of different interest groups. Thus, it requires
DMs to continuously revise their initial decision opinions to reach a consensus [10]. When
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DMs have different opinions on the same problem, they want to maintain their original
opinion and a final consensus cannot be reached. In this case, GDM needs a moderator
with excellent communication skills and leadership who will convince them to change
their opinions, and the moderator will spend some cost, such as providing time or money
compensation during coordination. From a practical point of view, the moderator always
wants to solve the problem efficiently with the minimum cost and within the shortest time.
Therefore, it is necessary to study how to reach a consensus with the minimum cost [11].

Based on this practical background, in 2007, Ben-Arieh et al. [12] first pointed out
the importance of the costs and deviations of DMs’ opinions and proposed the concept of
the minimum cost consensus model (MCCM) to characterize the costs and DMs’ opinions.
Finally, a linear time algorithm for all cost consensus problems was proposed. Unfortu-
nately, the research results did not specifically propose a research model of consensus cost.
According to the previous research, Ben-Arieh et al. [13] further proposed a consensus-
reaching method based on quadratic cost and the model became the basis for future
research. Zhang et al. [11] studied the minimum cost consensus model and combined the
aggregation operator with the model to consider the consensus opinion. However, in this
model, the conditions for reaching a consensus were very strict. In order to make the
model more consistent with real life, Zhang et al. [14] put forward the concept of soft cost
consensus, and a new model under a certain consensus level was structured, which can be
called an MCCM with a weighted average operator, reconstructed a maximum objective
model through its dual model, and applied it to the field of online lending to verify the
validity of the model. Up to now, many scholars have adopted various methods to improve
the MCCM [15–18].

Previous studies assumed that the unit adjustment cost in different directions is
symmetrical, but in many real scenarios, the unit adjustment costs are not symmetrical. For
example, in the establishment of environmental standards, local governments will have
different expectations of standards due to differences in economic development status,
technical conditions, geographical factors, and residents’ awareness of environmental
protection; therefore, the costs of adjusting their opinions in different directions may not
be symmetrical. Therefore, the research on asymmetric adjustment costs has practical
significance. Based on this research idea, Cheng et al. [19] considered that the study of
asymmetric cost has a certain significance and further thought that the compromise of each
DM has a limit and the opinion adjustment has a threshold value; they then constructed
three cost consensus models.

One purpose of this study was to investigate the realistic impact of asymmetric costs
in detail. However, whether it is a model with asymmetric costs or a model with symmetric
costs, an implicit assumption of models is that the unit adjustment costs and DMs’ opinions
can be known exactly. As is known to all, uncertainty in the real world is normal and the
data of real life is uncertain due to many reasons, such as prediction errors, measurement
errors, or implementation errors. If we do not consider the uncertain influences in the
models, our proposed models will fail owing to the disturbance of data. Therefore, another
purpose of this study was to investigate the impact of uncertainty on the proposed models.

Nowadays, more and more scholars are studying uncertainty in MCCM [20–24].
Han et al. [25] pioneered the combination of a robust optimization method with the consen-
sus cost problem, which considers that perturbations in the input data during GDM may
degrade the quality of the optimal solution, and therefore, a robust optimization method is
used to overcome the uncertainty in the unit adjustment cost. The numerical experiments
in this study demonstrated that the traditional MCCM has overly optimistic results and
the improved consensus model is more robust. Based on the previous study, Qu et al. [26]
further investigated the consensus model based on an asymmetric adjustment cost and set
uncertain parameters in the unit adjustment cost. Finally, cost consensus models for three
MCCMs with directional restrictions were developed, the results of four uncertainty sets
were compared with previous models, and the final data showed that the robust model with
an interval-polyhedral set had the lowest consensus cost and guaranteed the robustness of
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the results. Jin et al. [27] considered multi-attribute decision problems: in order to achieve
their own interests, different interest groups or individuals will intentionally set attribute
weights, but in realistic decision environments, attribute weights are not easy to change
and interest groups or individuals usually require compensation. The strategy weight
assignment with robust optimization is studied and a new MIP 0-1 robust optimization
MCCM is constructed. At the same time, strategy weight vectors for the required ranking
of specific alternatives are set. Li et al. [28] used the two-stage stochastic method to study
MCCM based on uncertain asymmetric costs and an L-shaped algorithm was included in
the model’s calculations.

As already stated, the available studies on dealing with uncertain problems have some
restrictions. First of all, most studies in MCCM are based on a symmetric adjustment cost. If
we want to expand the application scope of this field, we need to study asymmetric models
in uncertain environments. Second, only a few uncertain parameters are discussed in the
models. However, in real decision-making scenarios, the DMs’ opinions, the adjustment
costs in different directions, the degree of tolerance, and the range of thresholds may be
uncertain. Thus, these uncertain parameters should be taken into account in our models.
Finally, in the existing methods for dealing with uncertain problems, robust optimization
will lead to overly conservative results, stochastic programming needs to know the exact
probability distribution of parameters, and distributionally robust optimization (DRO)
cannot be applied in MCCM to deal with uncertainty. Delage et al. [29,30] proposed a
DRO model based on data-driven methods with the help of historical sample data and
considering the independent identical distributions, confidence intervals of the mean, and
covariance matrices of random vectors. In terms of a practical application, in the field of
power grids, Yang et al. [31] proposed a real-time grid power dispatching problem based
on DRO in which the known first-order moment information and second-order moment
information were used to characterize the uncertainty of the generation output. DRO
makes use of the advantages of stochastic programming and robust optimization, ensuring
the best result under the worst probability distribution. DRO methods based on moment
information are being rapidly developed [32–35].

To sum up, a distributionally robust optimization model for the minimum cost consen-
sus with asymmetric adjustment costs should be constructed to enrich application scenarios
in this field. The main contributions of this study are summarized as follows:

1. The impact of uncertainties on the minimum cost consensus with asymmetric ad-
justment costs was fully considered. More uncertain parameters were included in
the three new models, such as the DMs’ opinions, the adjustment costs in different
directions, the degree of tolerance, and the range of thresholds.

2. In order to overcome the shortcomings of traditional methods for dealing with uncer-
tainty, the DRO method was therefore used to ensure that the robustness of the model
can hedge against uncertainties. At the same time, the Wasserstein ambiguous set
was constructed by using the Wasserstein distance as the basis of the metric through
historical empirical data in the three new models.

3. Considering the difficulty of solving the models, the three new models were trans-
formed into a second-order cone programming problem and JDK 11 was used to
solve the transformed models. In the meantime, numerical experiments based on
the EU Trade and Animal Welfare (TAW) program policy consultation were con-
ducted. The feasibility of the three new models was verified by the results of the
numerical experiments.

The rest of the paper is arranged as follows. Section 2 provides some basic preliminar-
ies of traditional consensus cost models and DRO. Section 3 presents the DRO models for
the minimum cost consensus with asymmetric adjustment costs based on the Wasserstein
metric. Section 4 provides the results of the numerical analysis based on the new models.
Section 5 gives the conclusion of this paper and presents potential future work.
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2. Preliminaries
2.1. Minimum Cost Consensus Model

Ben-Arieh et al. [13] first proposed the concept of consensus cost and established the
minimum cost consensus model. The MCCM considers the unit adjustment cost in CRP.
Assume that there are n DMs that form the expert set A = {a1, a2, . . . , an} that participates
in the whole consensus-reaching progress; oi represents the original opinion of the DMi;
and o is the original opinion set of all DMs, which is denoted as o = (o1, . . . , on)

T ∈ Rn
+. At

the same time, o = (o1, . . . , on)
T ∈ Rn

+ represents the adjusted opinion set of the DMs, and
oi is the adjusted opinion of DMi. For any DM, it is assumed that their adjusted opinion is
greater than or equal to zero, i.e., each DM is guaranteed to provide an opinion. Assume
that ci is the unit opinion adjustment cost of DMi, where ci ≥ 0, and |oi − oi| is the distance
between the original opinion oi and the adjusted opinion oi. The MCCM can be expressed
as follows:

f (oi) =
n

∑
i=1

ci|oi − oi|. (1)

In Equation (1), if the unit opinion adjustment cost ci becomes larger, it is more difficult
for DMi to be convinced. As a result, the cost of this decision problem is further increased
relative to that DM. Therefore, when oi ≥ oi, DMi is compensated by ci(oi − oi). Conversely,
when oi < oi, DMi is compensated by ci(oi − oi).

Based on Equation (1), the minimum cost consensus problem with aggregation opera-
tors can be described as follows:

min
n
∑

i=1
ci|oi − oi|

s.t. o = F(o1, . . . , on).
|oi − o| ≤ ε, ∀i ∈ N

(2)

Further, if we assume that xi = [|o− oi|+ (o− oi)]/2, yi = [|o− oi| − (o− oi)]/2, we
can obtain xi ≥ 0, yi ≥ 0, xiyi = 0, which, in turn, leads to

|o− oi| = xi + yi, o− oi = xi − yi. (3)

By using the above Equation (3), Gong et al. converted the model (2) into the
following form:

min
n
∑

i=1
ci|xi + yi|

s.t. o− oi = xi + yi, ∀i ∈ N.
o, xi, yi ≥ 0

(4)

It can be seen that the unit adjustment costs in model (2) and model (4) are sym-metric.
This means that although experts can adjust their opinions in different directions, the unit
adjustment cost will remain unchanged regardless of the direction. However, in real life,
such minimum-cost consensus problems often fail to address practical needs. For example,
in the product quality inspection standard, the unit adjustment costs are different in the
up and down directions. In general, ci in the up direction is higher and ci in the down
direction is lower. Therefore, the unit adjustment cost may vary significantly in different
directions, it can be understood that the unit adjustment cost is asymmetric. In addition,
the traditional minimum cost consensus model does not consider uncertain parameters,
such as oi and ci, and studies the situation in various deterministic contexts.

To overcome these two drawbacks, Cheng et al. [19] studied the actual characteristics
of the unit adjustment cost and brought the asymmetric adjustment costs into the three
minimum cost consensus models.

Let cU
i and cD

i be used to represent the unit cost faced by DMi when adjusting their
opinion up or down, respectively. Let δ+i = (oi − o)+ and δ−i = (o− oi)

+ represent the
opinion adjustment distance in different directions, where a+ = max{0, a}. Since there
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is only one direction of opinion adjustment for each DM, we can get δ+i · δ
−
i = 0. Then,

MCCM-DC (directional constraint) is represented as follows:

min
o,δ+i ,δ−i

n
∑

i=1
cD

i δ+i + cU
i δ−i

s.t. o + δ+i − δ−i = oi, ∀i ∈ N.
omin ≤ o ≤ omax
δ+i , δ−i ≥ 0, ∀i ∈ N

(5)

In the following model, each DM can adjust their opinions within a certain range εi.
This εi reflects the maximum range of adjustments allowed by DMi away from their initial
opinion. The friendliness of the DM determines the value of the parameter εi. ε-MCCM-DC
can be expressed as follows:

min
o,δ+i ,δ−i

n
∑

i=1
cD

i δ+i + cU
i δ−i

s.t. o + δ+i − δ−i = oi, ∀i ∈ N.
omin ≤ o ≤ omax,
0 ≤ δ+i , δ−i ≤ εi, ∀i ∈ N

(6)

Based on decision experience, it is assumed that within the θi range of opinion adjust-
ments, DMs spend no cost on modifying their opinions. When the adjustment deviation
of DMs to modify their initial opinions exceeds the threshold θi, additional compensation
needs to be paid to DMs at this point.

When oi ∈ [o− θi, o + θi], no compensation is paid for opinion adjustment; when
oi ∈ [0, o− θi], DMi is compensated cU

i (o− θi − oi) accordingly; and when oi ∈ [o + θi,+∞),
DMi is compensated cD

i (oi − θi − o) accordingly. Based on the above description, TB-
MCCM-DC with a cost-free threshold can be expressed as follows:

min
o

∑
oi<o−θi

cU
i (o− θi − oi) + ∑

oi>o+θi

cD
i (oi − θi − o).

s.t. o ∈ O
(7)

Suppose that u−i = (o− θi − oi)
+, u+

i = (oi − o + θi)
+, v−i = (o + θi − oi)

+, and v+i =

(oi − o− θi)
+, where u−i ∈ [0, o− θi], u+

i ∈ [o− θi, o], v−i ∈ [o, o + θi], v+i ∈ [o + θi,+∞),
u+

i · u
−
i = 0, and v+i · v

−
i = 0. Thus, model (7) can also be expressed as

min
o,u+

i ,u−i ,v+i ,v−i

n
∑

i=1
cU

i u−i + cD
i v+i

s.t. u+
i − u−i = oi − o + θi, ∀i ∈ N

v+i − v−i = oi − o− θi, ∀i ∈ N.
u+

i , u−i , v+i , v−i , o ≥ 0, ∀i ∈ N

(8)

Model (8) assumes that each DM has a range of tolerance for changes in their opinions.
The above models do not consider uncertainty and the existing studies seldom propose

MCCM research regarding asymmetric adjustment costs in uncertain envi-ronments. Based
on the models (5), (6), and (8), three two-stage stochastic consensus models with asymmetric
adjustment costs that consider uncertainties are given as fol-lows.

Let oi(η) denotes the initial opinion with the uncertainty of DMi. There are two
uncertain unit adjustment costs for opinion modifications in the up and down directions,
namely, cU

i (η) and cD
i (η), respectively. Assuming that ξT(η) =

{
cD

i (η)
T , cU

i (η)
T , oi(η)

T},
according to mode (5), the following two-stage stochastic minimum cost consensus model
with different opinion adjustment directions (TSMCCM-DC) is given by Li et al. [28]:

min Eξ{Q1[o, ξ(η)]},
s.t. omin ≤ o ≤ omax

(9)



Mathematics 2022, 10, 4312 6 of 21

where Q1(o, ξ) is the optimal value for the second-stage problem, o is the final consensus
opinion, and the second-stage problem is as follows:

min
δ

c(η)Tδ

s.t. Wδ = o(η)− o,
δ ≥ 0

(10)

where c(η) =
[
cD

1 (η), cU
1 (η), . . . , cD

n (η), cU
n (η)

]T , o(η) = [o1(η), . . . , on(η)]
T ,

δ =
[
δ+1 , δ−1 , . . . , δ+n , δ−n

]T , o = [o′, . . . , o′]T , and

W =


1
0
...
0
0

−1
0
...
0
0

0
1
...
0
0

0
−1

...
0
0

· · ·
· · ·
· · ·
· · ·
· · ·

0
0
...
1
0

0
0
...
−1

0

0
0
...
0
1

0
0
...
0
−1


n×2n

. (11)

In model (6), the decision makers’ opinion has a range, the edges of which can be called
tolerance limits. However, the model does not consider the uncertainty of the parameters.
To remedy this deficiency, the model (6) is extended to a two-stage sto-chastic programming
form (-TSMCCM-DC) as follows.

Given that ξT(η) =
{

cD
i (η), cU

i (η), εi(η)
}

, ε-TSMCCM-DC can be expressed as follows:

min Eξ{Q2[o, ξ(η)]}
s.t. omin ≤ o ≤ omax,

(12)

where Q2(o, ξ) is the optimal value for the second-stage problem, o is the final consensus
opinion, and the second-stage problem is as follows:

min
δ

c(η)Tδ

s.t. Wδ = o− o,
0 ≤ δ ≤ ε(η),

(13)

where c(η) =
[
cD

1 (η), cU
1 (η), . . . , cD

n (η), cU
n (η)

]T, ε(η) = [ε1(η), . . . , εn(η)]
T, o = [o1, . . . , on]

T,

δ =
[
δ+1 , δ−1 , . . . , δ+n , δ−n

]T , o = [o′, . . . , o′]T , and

W =


1
0
...
0
0

−1
0
...
0
0

0
1
...
0
0

0
−1

...
0
0

· · ·
· · ·
· · ·
· · ·
· · ·

0
0
...
1
0

0
0
...
−1

0

0
0
...
0
1

0
0
...
0
−1


n×2n

. (14)

Model (8) assumes that each decision maker can tolerate changes in their opin-ions.
However, this does not consider certain uncertainties. Assume uncertainty in the case of
ξT(η) =

{
cD

i (η), cU
i (η), θi(η)

}
.

Assume that the uncertainty of tolerance for the DMi is θi(η). Assume
u−i = [o− θi(η)− oi]

+, u+
i = [oi − o + θi(η)]

+, v−i = [o + θi(η)− oi]
+, and

v+i = [oi − o− θi(η)]
+, where u−i ∈ [0, o− θi(η)], u+

i ∈ [o− θi(η), o], v−i ∈ [o, o + θi(η)],
v+i ∈ [o + θi(η),+∞), u+

i · u
−
i = 0, and v+i · v

−
i = 0. The two-stage stochastic TB-MCCM-

DC (TB-TSMCCM-DC) is represented in the following form:

min Eξ{Q3[o, ξ(η)]}
s.t. omin ≤ o ≤ omax,

(15)
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whereQ3(o, ξ(η)) is the optimal value for the second-stage problem, o is the final consensus
opinion, and the second-stage problem is as follows:

min
δ

c(η)Tδ

s.t. Wδ = o + θ(η)− o,
δ ≥ 0

(16)

where:
c(η) =

[
0, cD

1 (η), cU
1 (η), 0, . . . , 0, cD

i (η), cU
i (η), 0, . . . , 0, cD

n (η), cU
n (η), 0

]T ,
θ(η) = [θ1(η), θ1(η), . . . , θi(η), θi(η), . . . , θn(η), θn(η)]

T ,
o = [o1, o1, . . . , oi, oi, . . . , on, on]

T ,
o = [o′, o′, . . . , o′, o′, . . . , o′, o′]T ∈ R2n,
δ =

[
u+

1 , u−1 , v+1 , v−1 , . . . , u+
i , u−i , v+i , v−i , . . . , u+

n , u−n , v+n , v−n ]
T , and

W =


1
0
...
0
0

−1
0
...
0
0

0
1
...
0
0

0
−1

...
0
0

· · ·
· · ·
· · ·
· · ·
· · ·

0
0
...
1
0

0
0
...
−1

0

0
0
...
0
1

0
0
...
0
−1


2n×4n

. (17)

Although three two-stage stochastic consensus models with asymmetric adjustment
costs can handle uncertain problems under several conditions, the true distribution of un-
certain parameters cannot be obtained. Therefore, the distributionally robust optimization
method can be adopted under the ambiguous set of all probability distributions.

2.2. Distributionally Robust Optimization Theory

The main features of the distribution robust optimization method are as follows: (1) the
probability distribution function of uncertain parameters is unknown, but an ambiguous
set is constructed to represent all probability distributions of uncertain parameters, where
the set covers the information of uncertain parameters; (2) the objective function of the
distributionally robust optimization model is to obtain the maximum expectation under
the worst-case probability distribution, which is the worst-case probability distribution that
satisfies one of the constructed ambiguous sets; and (3) in general, the distribution robust
optimization model can be transformed into a deterministic equivalent or approximate
model using a specific solution algorithm. Therefore, the general expression is as follows:

min
x∈X

sup
P∈P

EP[h(x, ξ)] (18)

where EP[·] is the expectation operator; ξ is the column vector of random variables; x is
the decision variable; X is the decision space; h(x, ξ) is the objective function; and P is the
ambiguous set, which contains the set of all possible probability distributions.

3. Model Reconstruction

Stochastic programming methods rely heavily on the decision maker’s portrayal of
information about the true probability distribution. Thus, the asymmetric cost consensus
problem based on distributionally robust optimization was reconstructed.

The two-stage distributionally robust optimization on the ambiguous setPN is defined as

min
o

sup
P∈PN

EP[Q(o, ξ(η))] (19)

where PN is the set of probability distributions and o is the consensus opinion of the DMs.
In Section 3.2, the method of constructing ambiguous sets is described in detail and it is
considered that the cost function c(ξ) in Q(o, ξ) depends directly on ξ, i.e.,
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c(ξ) = c0 +
m

∑
i=1

ξici, (20)

where the vector (c1, . . . , cm) ∈ Rm is a given cost constant. It is important to note that
Q(o, ξ) in model (19), is not necessarily feasible and the following conditions are needed to
guarantee its feasibility.

Assumption 1. For an arbitrary o ∈ O and ξ, there is always a feasible solution in the second
stage (19).

In order to assess an optimal solution, the following also derives the worst expectation
distribution of the worst-case expectation P∗, i.e.,

sup
P∈PN

EP[Q(x, ξ)] = EP∗ [Q(x, ξ)] (21)

The ambiguous set PN is a key component in distributionally robust optimization.
An approach based on historical information is used to construct PN. The empirical
distribution on the sample set

{
ξ̂ i}N

i=1, i.e.,

PN(ξ) =
1
N

N

∑
i=1

1{ξ̂ i≤ξ},

where 1A is a schematic function of the event A and PN is constructed as the set of all
distributions that have a fixed distance from PN . Since the true distribution P is usually
continuous and the empirical distribution PN is discrete, the 1-Wasserstein metric [36] is
used to measure their distances, resulting in a Wasserstein sphere PN.

3.1. Construction of the Wasserstein Ambiguous Set

The Wasserstein metric, as a distance function that portrays the degree of variation
between probability distributions, has the excellent property of maintaining the geometric
properties of the distribution, providing a strong out-of-sample performance guarantee
and facilitating the stability of the decision maker’s control model. The definition of the
r−Wasserstein metric is given below.

Definition 1. Suppose that d
(
ξ1, ξ2) = ‖ξ1 − ξ2‖p denotes the lp-paradigm of ξ1, ξ2 over Rn

and (Ξ, d) is a Polish space. M(Ξ) is a set containing all probability distributions supported on Ξ.
Then, for a given pair of distributions P1 ∈ M(Ξ) and P2 ∈ M(Ξ), the r−Wasserstein metric
dr

W :M(Ξ)×M(Ξ)→ R+ can be defined as

dr
W(P1,P2) = inf


(∫

Ξ2 d
(
ξ1, ξ2)rK

(
dξ1, dξ2)) 1

r :∫
Ξ K
(
ξ1, dξ2) = P1

(
ξ1), ∫Ξ K

(
ξ2, dξ1) = P2

(
ξ2)

, (22)

where r ≥ 1 and K(·, ·) denotes the joint probability distribution of ξ1 and ξ2 with the marginal
distributions P1 and P2.

In order to avoid the case of infinity in Equation (22) and to ensure that it is exactly a
real number, the following requirements need to be imposed on the setM(Ξ).

Assumption 2. For any distribution P ∈ M(Ξ), there is

EP[‖ξ‖r
p] =

∫
Ξ
‖ξ‖r

pP(dξ) < ∞.
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In Equation (22), the 1-Wasserstein metric and the l1-paradigm where r = 1 and p = 1
are used to construct the ambiguous set PN:

PN(PN , ζN) =
{
P ∈ M(Ξ) : d1

W(P,PN) ≤ ζN

}
,

where ζN > 0 is the radius of the ball and PN(PN , ζN) is the set of distributions that are
distant from PN . Here, ζN represents the confidence level for PN , for example, the larger
ζN is, the lower the confidence level.

3.2. Model Reconstruction with Different Opinion Adjustment Directions

Let oi(η) denote the uncertain initial opinion of DMi. cD
i (η) and cU

i (η) represent two
uncertain unit adjustment costs for opinion modifications in different directions. Assuming
that ξT(η) =

{
cD

i (η)
T , cU

i (η)
T , oi(η)

T}, according to model (9), the considered distribution
robust asymmetric cost consensus model (TSWDRO-DC) can be expressed as follows:

min
o

max
P1∈P

EP1{Q1[o, ξ(η)]}

s.t. omin ≤ o ≤ omax,
(23)

where Q1(o, ξ(η)) is the optimal value of the second-stage problem under this problem, P
is the ambiguous set space, o is the final consensus opinion, and the second-stage problem
is as follows:

min
δ

c(η)Tδ

s.t. Wδ = o(η)− o,
δ ≥ 0,

(24)

where c(η) =
[
cD

1 (η), cU
1 (η), . . . , cD

n (η), cU
n (η)

]T , o(η) = [o1(η), . . . , on(η)]
T ,

δ =
[
δ+1 , δ−1 , . . . , δ+n , δ−n

]T , o = [o′, . . . , o′]T ∈ Rn, and

W =


1
0
...
0
0

−1
0
...
0
0

0
1
...
0
0

0
−1

...
0
0

· · ·
· · ·
· · ·
· · ·
· · ·

0
0
...
1
0

0
0
...
−1

0

0
0
...
0
1

0
0
...
0
−1


n×2n

. (25)

Theorem 1. According to Assumption 1 and Assumption 2, the worst-case expected cost of
the TSWDRO-DC problem on the 1-Wasserstein sphere PN is equivalent to the minimum of a
second-order cone programming (SOCP) problem:

sup
P∈PN(PN ,ζN)

EP[Q(o, ξ(η))] = inf
(

λζN + 1
N

N
∑

i=1
si

)
s.t. λ ≥ ‖Cδ‖∗,

si ≥
(
cD

0 + cU
0
)T

δ +
(
CDδ + CUδ

)T
ξ̂ i +

(
e− Hξ̂ i)T

γi, ∀i ∈ N
γi ≥ 0, ∀i ∈ N

(26)

where CT = [c1, . . . , cm],‖ · ‖∗denotes the pairwise parametrization, andl∞ parametrization is used.
Thus, the TSWDRO-DC model (23) is transformed into a second-order cone programming model
as follows:
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min
x∈X

{
λζN + 1

N

N
∑

i=1
si

}
s.t.

(
cD

0 + cU
0
)T

δ +
(
CDδ + CUδ

)T
ξ̂ i +

(
e− Hξ̂ i)T

γi ≤ si, ∀i ∈ N
‖Cδ‖∗ ≤ λ,
γi ≥ 0, ∀i ∈ N
Wδ = o(η)− o,
omin ≤ o ≤ omax,
δ ≥ 0,

(27)

where o(η) = [o1(η), . . . , on(η)]
T ,δ =

[
δ+1 , δ−1 , . . . , δ+n , δ−n

]T ,o = [o′, . . . , o′]T ∈ Rn, and

W =


1
0
...
0
0

−1
0
...
0
0

0
1
...
0
0

0
−1

...
0
0

· · ·
· · ·
· · ·
· · ·
· · ·

0
0
...
1
0

0
0
...
−1

0

0
0
...
0
1

0
0
...
0
−1


n×2n

. (28)

Proof. For any feasible first-stage decision vector x, the expected cost on the 1-Wasserstein
sphere can be obtained by solving the following linear cone programming problem:

sup
P∈PN

EP[Q(o, ξ)] = sup
N
∑

i=1

∫
ΞQ(o, ξ)K

(
dξ, ξ̂ i)

s.t.
∫

Ξ K
(
dξ, ξ̂ i) = 1

N , ∀i ∈ N∫
Ξ

N
∑

i−1
d
(
ξ, ξ̂ i)K(dξ, ξ̂ i) ≤ ζN ,

(29)

The Lagrangian dual function of (29) is expressed as

g(λ, s)

= sup
ξ∈Ξ

{∫
Ξ

N
∑

i=1

(
Q(o, ξ)− si − λd

(
ξ, ξ̂ i))K(dξ, ξ̂ i)}+ 1

N

N
∑

i=1
si + λζN , (30)

Therefore, in Equation (29), the pairwise problem is expressed as follows:

sup
P∈PN

EP[Q(o, ξ)] = inf
(

λζN + 1
N

N
∑

i=1
si

)
s.t. Q(o, ξ)− λd

(
ξ, ξ̂ i) ≤ si, ∀i ∈ N, ξ ∈ Ξ

λ ≥ 0,

(31)

It is important to note that K = PN × PN Equation (29) is a strictly feasible solution
to the original problem due to ζN > 0, which satisfies the original problem (31) and its
dual problem problem (31) of the strong duality condition. The constraint in Ξ can be
reformulated for any uncertainty realization within the support set as follows:

max
ξ∈Ξ

[
c(ξ)Tδ− λd

(
ξ, ξ̂ i

)]
≤ si, ∀i ∈ N (32)

Therefore, in the problem (31), the left-hand side of the constraint can be ex-pressed as

max
ξ∈Ξ

[
c(ξ)Tδ− max

‖zn‖∗≤λ
zT

n d
(
ξ, ξ̂ i)]

= max
ξ∈Ξ

min
‖zn‖∗≤λ

[
c(ξ)Tδ− zT

n d
(
ξ, ξ̂ i)]

= min
‖zn‖∗≤λ

max
ξ∈Ξ

[
c(ξ)Tδ− zT

n d
(
ξ, ξ̂ i)],

(33)
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where ‖ · ‖∗ denotes the pairwise parametrization and zn is the introduced decision variable.
Since the l1-paradigm is used in this section, the corresponding pairwise criterion is the
l∞-paradigm.

Based on Equations (32) and (33), Equation (32) is reformulated as follows:

max
ξ∈Ξ

[
c(ξ)Tδ− zT

n d
(

ξ, ξ̂ i
)]
≤ si, ∀i ∈ N (34)

‖zn‖∗ ≤ λ, ∀i ∈ N (35)

To facilitate the derivation, the following form is used to express the support set Ξ:

Ξ = {ξ|Hξ ≤ e}, (36)

where H =

[
h
−h

]
and e =

[
ξmax

−ξmin

]
.

Therefore, it can be further deduced that the left-hand-side constraint in Equation (34)
is as follows:

max
ξ∈{ξ|Hξ≤e}

[
min

δ∈{δ|Wδ=o(η)−o}

[
c(ξ)Tδ− zT

n d
(
ξ, ξ̂ i)]]

= min
δ∈{δ|Wδ=o(η)−o}

max
ξ∈{ξ|Hξ≤e}

[
c(ξ)Tδ− zT

n
(
ξ − ξ̂ i)]

= min
δ∈{δ|Wδ=o(η)−o}

min
γn∈{γn |CTγn=−zn}

[
eTγn + c(ξ)Tδ + zT

n ξ̂ i],
(37)

where γn is denoted as the pairwise variable corresponding to constrain (36), and

c(ξ)Tδ =

(
cD

0 +
m
∑

i=1
ξicD

i

)T
δ +

(
cU

0 +
m
∑

i=1
ξicU

i

)T
δ

=
(
cD

0 + cU
0
)T

δ + ξTCDδ + ξTCUδ,
(38)

In summary, the following can be introduced:

sup
ξ

{
c(ξ)Tδ− zT

n‖ξ − ξ̂ i‖2
}

=

{(
cD

0 + cU
0
)T

δ +
(
CDδ + CUδ

)T
ξ + (e− Hξ)Tγi, i f ‖Cδ‖∗ ≤ λ

+∞, i f ‖Cδ‖∗ > λ

(39)

Therefore, in Equation (31),the constraint has an equivalent form:
(
cD

0 + cU
0
)T

δ +
(
CDδ + CUδ

)T
ξ̂ i +

(
e− Hξ̂ i)T

γi ≤ si, ∀i ∈ N
‖CTδ‖∗ ≤ λ
γi ≥ 0, ∀i ∈ N.

(40)

Substituting the above inequality into Equatio (31), the equivalence of the ex-pected
cost in Equations (26) and (23) can be obtained. Thus, Equation (23) can be equivalently
restated as the SOCP problem (27). �

3.3. Model Construction with Compromise Limits

Assuming that ξT(η) =
{

cD
i (η), cU

i (η), εi(η)
}

, the distributionally robust asymmetric
adjustment cost consensus model with opinion tolerance limits (ε-TSWDRO-DC) can be
expressed as follows:

min
o

max
P1∈P

EP1{Q2[o, ξ(η)]}

s.t. omin ≤ o ≤ omax,
(41)
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where Q2(o, ξ(η)) is the optimal value of the second-stage problem in the context of this
problem, P is the ambiguous set space, o is the consensus opinion, and the second-stage
problem is as follows:

min
δ

c(η)Tδ

s.t. Wδ = o− o,
0 ≤ δ ≤ ε(η),

(42)

where c(η) =
[
cD

1 (η), cU
1 (η), . . . , cD

n (η), cU
n (η)

]T , ε(η) = [ε1(η), . . . , εn(η)]
T ,

o = [o1, . . . , on]
T , δ =

[
δ+1 , δ−1 , . . . , δ+n , δ−n

]T , o = [o′, . . . , o′]T ∈ Rn, and

W =


1
0
...
0
0

−1
0
...
0
0

0
1
...
0
0

0
−1

...
0
0

· · ·
· · ·
· · ·
· · ·
· · ·

0
0
...
1
0

0
0
...
−1

0

0
0
...
0
1

0
0
...
0
−1


n×2n

. (43)

Theorem 2. The ε-TSWDRO-DC problem (41) is transformed into a second-order cone program-
ming model:

min
o

λζN + 1
N

N
∑

i=1
si

s.t.
(
cD

0 + cU
0
)T

δ +
(
CDδ + CUδ

)T
ξ̂ i +

(
e− Hξ̂ i)T

γi ≤ si, ∀i ∈ N
‖Cδ‖∗ ≤ λ,
γi ≥ 0, ∀i ∈ N
Wδ = o− o,
omin ≤ o ≤ omax,
0 ≤ δ ≤ ε(η),

(44)

where ε(η) = [ε1(η), . . . , εn(η)]
T ,o = [o1, . . . , on]

T ,δ =
[
δ+1 , δ−1 , . . . , δ+n , δ−n

]T ,
o = [o′, . . . , o′]T ∈ Rn, and

W =


1
0
...
0
0

−1
0
...
0
0

0
1
...
0
0

0
−1

...
0
0

· · ·
· · ·
· · ·
· · ·
· · ·

0
0
...
1
0

0
0
...
−1

0

0
0
...
0
1

0
0
...
0
−1


n×2n

. (45)

3.4. Model Construction with Cost-Free Thresholds

Based on model (15), assuming that ξT(η) =
{

cD
i (η), cU

i (η), θi(η)
}

, the distributionally
robust asymmetric adjustment cost consensus model with compromise limits (TB-TSWDRO-
DC) can be expressed as follows:

min
o

max
P1∈P

EP1{Q3[o, ξ(η)]}

s.t. omin ≤ o ≤ omax,
(46)
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where Q3(o, ξ) is the optimal value of the second-stage problem in the context of this
problem, P is the ambiguous set space, o is the consensus opinion, and the second-stage
problem is as follows:

min
δ

c(η)Tδ

s.t. Wδ = o + θ(η)− o,
0 ≤ δ,

(47)

where c(η) =
[
0, cD

1 (η), cU
1 (η), 0, . . . , 0, cD

i (η), cU
i (η), 0, . . . , 0, cD

n (η), cU
n (η), 0

]T ,
θ(η) = [θ1(η), θ1(η), . . . , θi(η), θi(η), . . . , θn(η), θn(η)]

T , o = [o1, o1, . . . , oi, oi, . . . , on, on]
T ,

o = [o′, o′, . . . , o′, o′, . . . , o′, o′]T ∈ R2n, δ =
[
u+

1 , u−1 , v+1 , v−1 , . . . , u+
i , u−i , v+i , v−i , . . .

, u+
n , u−n , v+n , v−n ]

T , and

W =


1
0
...
0
0

−1
0
...
0
0

0
1
...
0
0

0
−1

...
0
0

· · ·
· · ·
· · ·
· · ·
· · ·

0
0
...
1
0

0
0
...
−1

0

0
0
...
0
1

0
0
...
0
−1


2n×4n

. (48)

Theorem 3. The ε-TSWDRO-DC problem (46) is transformed into a second-order cone program-
ming model:

min
o

λζN + 1
N

N
∑

i=1
si

s.t.
(
cD

0 + cU
0
)T

δ +
(
CDδ + CUδ

)T
ξ̂ i +

(
e− Hξ̂ i)T

γi ≤ si, ∀i ∈ N
‖Cδ‖∗ ≤ λ,
γi ≥ 0, ∀i ∈ N
Wδ = o + θ(η)− o,
omin ≤ o ≤ omax,
0 ≤ δ,

(49)

where:
θ(η) = [θ1(η), θ1(η), . . . , θi(η), θi(η), . . . , θn(η), θn(η)]

T ,
o = [o1, o1, . . . , oi, oi, . . . , on, on]

T ,
o = [o′, o′, . . . , o′, o′, . . . , o′, o′]T ∈ R2n,
δ =

[
u+

1 , u−1 , v+1 , v−1 , . . . , u+
i , u−i , v+i , v−i , , . . . , u+

n , u−n , v+n , v−n ]
Tand

W =


1
0
...
0
0

−1
0
...
0
0

0
1
...
0
0

0
−1

...
0
0

· · ·
· · ·
· · ·
· · ·
· · ·

0
0
...
1
0

0
0
...
−1

0

0
0
...
0
1

0
0
...
0
−1


n×2n

. (50)

4. Application

In this section, the hardware environment for all the simulated numerical experiments
was a laptop computer with an Intel i7-1165G CPU and 16 GB RAM, and the solution was
found using the software environment of JDK 11.

4.1. Case Background

The numerical experiments in this section were from the EU Trade and Animal Welfare
(TAW) program policy consultation. In this consultation, many DMs, including senior
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officials and academics, participated in the meeting as representatives. In this section,
the actual number of participants in the consultation was set to 10. As DMs, their past
policy-making preferences were easily accessible. Based on the historical decision data,
the reference distribution of uncertain demands was first estimated, and then the required
ambiguous set was constructed using the Wasserstein metric based on this distribution,
while sample data with sizes of 10, 20, . . . , 300 were randomly generated using the empiri-
cal distribution. During the consensus-building process of the consultation, the DMs were
influenced by various factors, such as the actual decision expectations of the country or
interest group they represented.

4.2. Results and Analysis

These ten DMs gave their respective initial decision opinions based on the actual
situation of their industry. All parameters in the numerical cases of this section are given
in appropriate units. The initial settings of the asymmetric adjustment cost coefficients cD

0
and cU

0 , the threshold εi, and the adjustment range θi obtained from historical data were
established in conjunction with the previous opinion preferences of each DM, and the
specific values are shown in Table 1.

Table 1. Information data related to the DMs in the model.

i Initial Decision-Making Comments
oi

Experience Cost Factor
cD

0

Experience Cost Factor
cU

0

Threshold
εi

Adjustment Range
θi

1 5.7 11 13 24 3
2 6.3 16 14 22 6
3 4.9 12 15 18 5
4 5.3 13 14 21 2
5 2.8 9 15 15 4
6 3.2 10 11 16 7
7 4.5 14 11 25 3
8 6.8 15 13 18 8
9 7.1 18 14 20 6
10 3.6 10 15 22 4

According to Table 1, data related to the DMs in the model was put into the proposed
models. The proposed models were solved using JDK 11 for three runs and the results were
the average values of multiple operations.

The final minimum consensus costs obtained are shown in Table 2. By comparing the
results of extensive numerical experiments on the models with different parameters, it can
be seen from Table 2 that a small change in the radius of the Wasserstein uncertainty sphere
set ζN could have a large impact on the solution results of the models. Growing from
0.01 to 0.1, the consensus cost fluctuated but had an overall increasing trend. It showed
that the optimal target cost value increased with the increase in ζN ; in other words, the
larger the radius of the Wasserstein uncertainty sphere set, the more conservative the model
was. It can also be seen from the table that the results of the model were increasingly
conservative with the increase in ζN . The consequent effect was that it cost more for the
decision community to counteract the possible effects of consensus uncertainty. This was
because the proposed models effectively hedged the uncertainty of the distribution.

More importantly, Table 3 shows that when compared with the deterministic approach,
the models in this study usually cost more to reach a consensus decision. Although the
latter was less costly from the end point of view, the latter was a more conservative model
because it did not consider the uncertainty effect. From the perspective of the actual
decision-making environment, the models proposed in this study were more consistent
with the complex decision-making environment. Qu et al. [26] extended the existing
deterministic model to a robust optimization framework based on a data-driven approach.
As can be seen from Table 4, the interval polyhedral uncertainty set under the robust
optimization approach produced more excellent results and was the best performer among
the four uncertainty sets, but was far inferior when compared with the Wasserstein-metric-
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based distribution robust optimization approach synthesized in this study. Therefore, the
method overcame the overly conservative results under the robust optimization approach.

Table 2. Numerical simulation results.

ζN Models Consensus Cost ζN Models Consensus Cost

0.01 TSWDRO-DC 48.7 0.02 TSWDRO-DC 50.9
ε-TSWDRO-DC 51.3 ε-TSWDRO-DC 52.1

TB-TSWDRO-DC 49.6 TB-TSWDRO-DC 52.4
0.04 TSWDRO-DC 51.7 0.06 TSWDRO-DC 53.4

ε-TSWDRO-DC 53.2 ε-TSWDRO-DC 53.8
TB-TSWDRO-DC 52.8 TB-TSWDRO-DC 53.7

0.08 TSWDRO-DC 54.7 0.1 TSWDRO-DC 55.1
ε-TSWDRO-DC 54.3 ε-TSWDRO-DC 54.8

TB-TSWDRO-DC 54.6 TB-TSWDRO-DC 55.2

Table 3. Comparison of optimal results of different cost consensus models.

Categorization Models Consensus Opinion
¯
o Optimal Consensus Cost

Deterministic approach
TSMCCM-DC 5.8 43.3

ε-TSMCCM-DC 5.6 44.2
TB-TSMCCM-DC 5.9 43.8

Methodology of this article
TSWDRO-DC 5.7 48.7

ε-TSWDRO-DC 5.8 51.3
TB-TSWDRO-DC 5.8 49.6

Table 4. Comparison of optimal results of different cost consensus models.

Categorization Models Ambiguous Set/Uncertain
Set Optimal Consensus Cost

Robust optimization methods

TSMCCM-DC

Box set 53.2
Ellipsoid set 53.1

Polyhedral set 52.8
Interval-polyhedral set 51.6

ε-TSMCCM-DC

Box set 55.7
Ellipsoid set 56.9

Polyhedral set 53.4
Interval-polyhedral set 53.9

TSMCCM-DC

Box set 54.8
Ellipsoid set 52.6

Polyhedral set 53.1
Interval-polyhedral set 52.5

Methodology of this article
TSWDRO-DC

Wasserstein ambiguous sets
48.7

ε-TSWDRO-DC 51.3
TB-TSWDRO-DC 49.6

From Figures 1–3, the fuzzy ensemble construction of TSWDRO-DC was influenced
by the historical sample data and the results showed some volatility, reaching the optimal
objective solution of 48.7 at a sample size of 280, while the result of TSMCCM-DC was
constant at 43.3. Similarly, from Figure 2, at sample sizes of 260 and 280, the optimal result
of 51.3 was reached by ε-TSMCCM-DC, where the result of 44.2 was reached using the
deterministic approach. At a sample size of 300, the result of the TB-TSWDRO-DC model
reached the optimal value of 49.6. Meanwhile, the result of the TB-TSMCCM-DC under
the corresponding deterministic approach produced a value of 43.8. Although the cost
value derived from the deterministic approach was smaller, the latter model was more
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conservative because it does not take the effect of risk uncertainty into account. From the
perspective of the actual decision-making environment, the model proposed in this section
was more consistent with the complex decision-making context, and the decision maker
could flexibly choose different risk coefficients according to the current risk preference and
obtain the corresponding decision results.
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To further investigate how the in-sample performance, out-of-sample performance, and
model solution time of the model varied with the radius of the Wasserstein ambiguous set
in this section, a sensitivity analysis was performed. In Figures 4–6, the results for different
radius conditions are shown. The value of the radius specifies the size of the Wasserstein
ambiguous set, and thus, the DMs can use it to adjust the conservativeness of the model. As
mentioned above, as the radius increased, the ambiguous set encompassed more probability
distributions, which meant that more distributions were hedged in the model. Since the model
optimization in this section was about the worst-case expected cost of the ambiguous set,
increasing the value of the ambiguous set radius led to a higher in-sample target cost, but the
out-of-sample target cost decreased significantly initially and then stabilized. As can be seen
from the orange line in the figure, increasing the radius of the Wasserstein ambiguous set did
not significantly increase the computational burden, and the computational time to solve the
corresponding problem fluctuated within a certain range.
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5. Conclusions and Future Work

In this study, we proposed three new minimum-cost consensus models with asymmet-
ric adjustment costs with the distributionally robust method. Then, a data-driven approach
that utilized historical data was used to construct the Wasserstein ambiguous set with
the Wasserstein distance as the basis of the metric. To simplify the calculation, three new
models were transformed into a second-order cone programming problem. Then, taking
the EU Trade and Animal Welfare (TAW) program policy consultation as an example, we
carried out numerical simulations and compared the data with some existing models and
the data were explained. Finally, some meaningful conclusions were obtained through
numerical analysis:
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1. The change in the radius of the Wasserstein uncertainty sphere set had a significant
impact on the consensus. As the radius increased, the target optimal cost became larger.
The increase in radius meant that the ambiguous set covered more uncertainties. To
overcome the effect of uncertainty, more cost was needed for the decision community
to counteract the possible effects of consensus uncertainty. At the same time, this led
to a more conservative model.

2. Under the same initial settings, the optimal consensus cost in the three new models
was higher than the deterministic models because the deterministic models did not
consider the uncertainty effect and more cost was required to deal with the uncertainty.
At the same time, the Wasserstein-metric-based distribution robust optimization
approach was better than the robust optimization approach in the interval polyhedral
uncertainty set for the TAW program policy consultation. The DRO method overcame
the overly conservative results under the robust optimization approach and reflected
the need for the study presented in this paper.

3. The radius of the Wasserstein ambiguous set could be used to adjust the conser-
vativeness of the models. As the radius increased, more probability distributions
were contained in the ambiguous set, and thus, more distributions were hedged in
the model.

4. The models in this study considered the worst-case expected cost of the ambiguous
set, where increasing the value of the ambiguous set radius led to a higher in-sample
target cost, but the out-of-sample target cost decreased significantly initially and then
stabilized.

To sum up, the proposed models better fit the complex decision context and yielded
more realistic decision results. Although the proposed models expanded the MCCM to a
certain extent, there were still some limitations in the real GDM. In the proposed models,
besides the DMs’ opinions, the adjustment costs in different directions, the degree of
tolerance, and the range of thresholds, other parameters can also impact the models, such
as the DMs’ adjusted opinions. At the same time, the aggregation operators were not taken
into account. In addition, only the Wasserstein ambiguous set was chosen in this study;
this may lead to the models’ failure in other application scenarios.

Therefore, in the future, it is necessary to study the MCCM under different aggregation
operators and more uncertain parameters should be considered with the DRO. Furthermore,
it will be a very interesting research direction to extend the models proposed in this study
to large-scale group decision-making. Finally, when the DRO method is used for research, a
variety of different ambiguous sets can be selected, for example, the Wasserstein ambiguous
set and φ-divergence, which will be meaningful in different applications.
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