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Abstract A key step in solving minimax distributionally robust optimization (DRO)
problems is to reformulate the innermaximizationw.r.t. probabilitymeasure as a semi-
infinite programming problem through Lagrange dual. Slater type conditions have
been widely used for strong duality (zero dual gap) when the ambiguity set is defined
through moments. In this paper, we investigate effective ways for verifying the Slater
type conditions and introduce other conditions which are based on lower semiconti-
nuity of the optimal value function of the inner maximization problem. Moreover, we
propose two discretization schemes for solving the DRO with one for the dualized
DRO and the other directly through the ambiguity set of the DRO. In the absence of
strong duality, the discretization scheme via Lagrange duality may provide an upper
bound for the optimal value of the DRO whereas the direct discretization approach
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provides a lower bound. Two cutting plane schemes are consequently proposed: one
for the discretized dualized DRO and the other for the minimax DRO with discretized
ambiguity set. Convergence analysis is presented for the approximation schemes
in terms of the optimal value, optimal solutions and stationary points. Comparative
numerical results are reported for the resulting algorithms.

Keywords Matrixmoment constraints ·Slater type conditions ·Lower semicontinuity
conditions · Strong duality · Random discretization · Cutting plane methods

Mathematics Subject Classification 90C15 · 90C46 · 90C47

1 Introduction

One of the most challenging issues in decision analysis is to find an optimal decision
under uncertainty. The solvability of a decision problem and the quality of an optimal
decision rely heavily on the information about the underlying uncertainties which are
often mathematically represented by a vector of random variables. If a decision maker
has complete information on the distribution of the random variables, then he can
either obtain a closed form of the integral of the random functions in the problem
and then convert it into a deterministic optimization problem, or alternatively use
various statistical and numerical integration approaches such as scenario method [20],
Monte carlo samplingmethod [39] and quadrature rules [11] to develop a deterministic
approximation scheme and solve this using a standard linear/nonlinear programming
code. The numerical efficiency of an approximation scheme and the quality of an
optimal solution obtained from it depend on the structure (both the objective and
constraints) and the scale (dimensionality) of the problem.

The situation may become far more complex if the decision maker does not have
complete information on the distribution of the random variables. For instance, if the
decision maker does not have any information other than the range of the values of the
random variables, then it might be a reasonable option to choose an optimal decision
on the basis of the extreme values of the random variables in order to mitigate the
risks. This kind of decision making framework is known as robust optimizationwhere
the decision maker is extremely risk averse or lacks information on the distribution
of the underlying random variables as described above. It is useful in some decision
making problems particularly in engineering design [3,8] where a design takes into
account the extreme and rare event. However, the model may incur significant eco-
nomic and/or computational costs in that excessive resources are used to prevent a rare
event, resulting in numerical intractability or inefficiency. Over the past two decades,
numerous efforts have been made to develop approximate schemes for solving robust
optimization models which balance numerical tractability and quality of an optimal
solution, see monograph by Ben-Tal et al. [4].

An alternative but possibly less conservative robust optimization model, which is
known as distributionally robust optimization (DRO), involves a decision maker who
is able to construct an ambiguity set of distributions with historical data, computer
simulation or subjective judgements which contains the true distribution with certain
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confidence. In such circumstances, it is possible to choose an optimal decision on the
basis of theworst distribution from the ambiguity set. For example, if we know roughly
the nature of the distribution of random variables and can observe some samples, then
we may use the classical maximum likelihood method to determine the parameters of
the distribution and in that way construct a set of distributions if there is an inadequacy
of the sample.

This kind of robust optimization framework may be traced back to the earlier work
by Scarf [37] which was motivated to address incomplete information on the under-
lying uncertainty in supply chain and inventory control problems. In such problems,
historical data may be insufficient to estimate the future distribution either because
the sample size of past demand is too small or because there is a reason to suspect
that future demand will come from a different distribution. A larger distributional set
which contains the true distribution may adequately address the risk from the ambigu-
ity of the uncertainty. DROmodel has foundmany applications in operations research,
finance and management sciences. It has been well investigated through a number of
further research works by Žáčková [52], Dupačová [14], Shapiro and Ahmed [40].
Over the past few years, it has gained substantial popularity through further contri-
butions by Bertsimas and Popescu [7], Betsimas et al. [6], Delage and Ye [13], Goh
and Sim [17], Hu and Hong [21], Goldfarb and Iyengar [18], Mehrotra and Papp [26],
Pflug et al. [29], Popescu [31], Wiesemann et al. [47,48] to name a few.

In this paper, we consider the following distributionally robust optimization prob-
lem:

min
x∈X sup

P∈P
EP [ f (x, ξ)], (1.1)

where X is a closed set of IRn , f : IRn × IRk → IR is a continuous function,
ξ : � → � ⊂ IRk is a vector of random variables defined onmeasurable space (�,F)

equipped with sigma algebra F , P is a set of probability distributions defined as

P :=
{
P ∈ P : EP [�i (ξ)] = 0, for i = 1, . . . , p

EP [�i (ξ)] � 0, for i = p + 1, . . . , q

}
. (1.2)

Here �i : � → IRni×ni , i = 1, . . . , q, is a symmetric matrix or a scalar with
measurable random components, and P denotes the set of all probability distribu-
tions/measures over space (�,F); the notation � means that when �i is a matrix,
its expected value must be negative semidefinite. In the case when ni = 1, for
i = 1, . . . , q, �i reduces to a scalar function and (1.2) collapses to classical moment
problems. Note that if we consider (�,B) as a measurable space equipped with Borel
sigma algebra B, then P may be viewed as a set of probability measures defined on
(�,B) induced by the random variate ξ . So we may also writeP(�) forP . Follow-
ing the terminology in the literature of robust optimization, we call P the ambiguity
set which indicates ambiguity of the true probability distribution of ξ at the point of
decisionmaking. As wewill see in later discussions,�i may take some specific forms.
Here we consider a general form in hope that our model covers a range of interesting
moment problems. To ease the notation, we will use ξ to denote either the random
vector ξ(ω) or an element of IRk depending on the context.
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An important issue concerning DRO is numerical tractability of the robust formu-
lation. For example, Delege and Ye [13] consider the DRO problem with ambiguity
in both the mean and the covariance and demonstrate how their model can be solved
in polynomial time when the support set is convex and compact. Goh and Sim [17]
provide a tractable approximation scheme when the DRO is applied to a class of
two stage stochastic programming problems. More recently, Wiesemann, Kuhn and
Sim [49] provide a unified framework for DRO problems where the ambiguity set
is constructed through some probabilistic and moment constraints. Under the Slater
type conditions and essential boundedness of the support set, they provide a tractable
reformulation of the problems.

In a slightly different direction, theDROapproach has been applied to tackle chance
constrained stochastic programming problems where there is a lack of complete infor-
mation on the true probability distribution. Zymler et al. [54] consider a class of robust
chance constrained optimization problems with the ambiguity set being constructed
through moment conditions and reformulate the robust constraint as semiinfinite con-
straints. In the case when the support set of the random variable covers the whole space
and the underlying functions in the chance constraint are linear w.r.t. both the decision
variables and the random variables, they reformulate the semiinfinite constraints as
a system of semidefinite constraints and demonstrate the resulting semidefinite pro-
gram (SDP for short) is numerically tractable. In a more recent development, Yang
and Xu [46] extend the research to the case where the underlying functions in the
chance constraint are nonlinear. A deficiency in these robust approaches is that they
may easily cause infeasibility of the robust chance constraint in that the ambiguity set
may comprise a sequence of probability measures whose probability masses near the
mean value and subsequently the robust probability of the inner random constraints
(in the chance constraint) is equal to 1 when the mean lies in the inner feasible set. Of
course, we are less concerned by the issue if the chance constraint is focused on the
tail distribution of a loss function.

Our aim in this paper is to develop numerical methods for solving problem (1.1).
Differing from the mainstream research in the literature of DRO, we concentrate
on practical applicability of the computational methods without paying particular
attention to numerical tractability in hope that the computational schemes and the
underlying theory developed in this paper can be applied to a wide range of problems.
Recall that a popular method for solving minimax distributionally robust optimization
problems is to reformulate the innermaximization problem as a semi-infinite program-
ming problem thoroughLagrange dual. A key theoretical question in our context is that
under what conditions, problem (1.1) and its Lagrange dual problem are equivalent,
i.e., the strong duality holds. The equivalence is well known when either the support
set � is compact in a finite dimensional space (see [41]) or the system of equalities
and/or inequalities satisfy the Slater type conditions [38]. In the latter case, since the
decision variables in the inner maximization problem are probability measures, one
might wish to seewhether a probabilitymeasure defined by an inequalitymoment con-
straint, i.e. 〈P, ψ(ξ)〉 ≤ 0 (hereafter 〈·, ·〉 is a bilinear representation of the expected
value of function ψ), lies in the “interior” of the feasible set (the ambiguity set P).
Unfortunately this kind of verification may turn out to be difficult at least technically
since it concerns topological structure of the ambiguity set which is a subset in the
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space of probability measures. Shapiro [38] proposes an alternative way to character-
ize the condition which requires in this context the range of 〈·, ψ(ξ)〉 over the cone of
positive measures generated by P having nonempty intersection with the interior of
IR+. While this effectively addresses the theoretical issue we have just raised, the con-
dition is often difficult to verify particularly when ψ is a vector of random functions
or matrices because in that case we would need “coordination” of the components
of ψ for the expected values. Likewise, in the equality case, the condition requires 0
to lie in the range of 〈·, ψ(ξ)〉 which is difficult to verify when ψ is vector-valued.
It would become even more challenging when P is composed of both equality and
inequality constraints. This motivates us to develop effective approaches for verifying
the conditions and look into other complementary conditions in this paper.

Another main challenge concerning (1.1) is to develop efficient numerical methods
for solving the problem. When the support set � is a finite set, the Lagrange dual
is an ordinary matrix optimization problem, so we may apply the available codes
on matrix optimization (see i.e., [45]) to solve the latter. It is also possible to solve
problem (1.1) directly as a finite dimensional minimax saddle point problem. Indeed,
Pflug andWozabal [30] propose an iterative scheme for solving distributionally robust
portfolio optimization problems where the inner maximization problem and the outer
minimization problem are solved in turn. Mehrotra and Papp [26] extend the approach
to a general class of DRO problems and design a process which generates a “cutting
surface” of the inner optimal value function at each iterate. In the case when � is well
structured such as polyhedral or semialgebraic and the underlying functions ( f and
�) are quadratic or linear, one may recast the semiinfinite inequality constraints as a
semidefinite constraint through the well known S-lemma [32]. We note that this kind
of formulation is the most popular approach in the literature of distributionally robust
optimization, see for instance [13,49] and the references therein. Here we concentrate
on the case where� is neither a finite set nor has aforementioned structure and develop
some computational methods which complement the existing numerical schemes for
the DRO. As far as we are concerned, the main contributions of the paper can be
summarized as follows.

• We present a detailed analysis of conditions for the strong Lagrange duality of
the inner maximization problem, namely the Slater type conditions and the lower
semicontinuity condition. The analysis concerning the Slater type conditions is
based on Shapiro’s [38, Proposition 3.4] which has been widely used in the lit-
erature of distributionally robust optimization with moment constraints but rarely
scrutinized in detail. In Sect. 2, we present detailed discussions on the Slater type
condition through a few practically interesting moment problems and demonstrate
how the condition may be effectively verified. We also look into the duality con-
ditions from lower semicontinuity of the optimal value function of the perturbed
innermaximization problem and derive sufficient conditions which are easy to ver-
ify (Proposition 2.3). While the conditions are restrictive in general, we find that
they are satisfied in a number of important cases such as when the support set � is
compact or�i is bounded, and this may effectively complement the popular Slater
type condition in circumstances when the latter is difficult to be verified. Indeed,
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we can easily find some examples where the lower semicontinuity conditions are
satisfied whereas the Slater type condition fails; see Example 2.7.

• We propose a discretization scheme based on Monte Carlo sampling for approxi-
mating the semiinfinite constraints of the Lagrange dual of the inner maximization
problem. The approach is in line with the randomization scheme considered by
Campi and Calafiore [10] and Anderson, Xu and Zhang [1] for mathematical
programs with robust convex constraints. Under some moderate conditions, we
demonstrate convergence of the optimal values, the optimal solutions and the sta-
tionary points obtained from the approximate problems as sample size increases
(Theorems 3.1 and 3.2). Moreover, by observing the equivalence between the
Monte Carlo discretization scheme and discretization of the ambiguity setP under
strong duality, we propose a cutting plane method for solving the approximate
DRO (1.1) directly as a finite dimensional minimax optimization problem and
show convergence of the approximation scheme in terms of the optimal values
and optimization solutions as sample size increases (Theorem 4.2). In the absence
of strong duality, we observe that the discretization scheme via Lagrange duality
provides an upper bound for the optimal value of the DRO when the sample size
is sufficiently large whereas the direct discretization approach provides a lower
bound for any sample size.

• Based on the aforementioned approximation schemes, we propose two algo-
rithms for solving problem (1.1): a cutting plane algorithm for solving discretized
dual problem (Algorithm 3.1) and a cutting plane method for the minimax DRO
with discretized ambiguity set (Algorithm 4.1). We have carried out comparative
numerical tests on the two algorithms through a portfolio optimization problem
(Example 5.1) and a multiproduct newsvendor problem (Example 5.2) and con-
clude that the former is more sensitive to the change of the number of decision
variables whereas the latter is more sensitive to the change of sample size.

Throughout the paper, we use the following notation. By convention, we use Sn ,
Sn+ and Sn− to denote the space of symmetric matrices, cone of symmetric positive
semidefinite matrices and cone of symmetric negative semidefinite matrices in the
n × n matrix spaces IRn×n , and IRn+ to denote the cone of vectors with non-negative
components in IRn . For matrices A, B ∈ IRn×n , we write A◦B for the Frobenius inner
product, i.e., A ◦ B = trace(AB), and A � B and A ≺ B to indicate A − B being
negative semidefinite and negative definite respectively. We use (Z, d) to represent an
abstract metric spaceZ with metric d. For a set C ⊂ Z , we use by convention “int C”,
“cl C” and “conv C” to denote its interior, closure and convex hull respectively. We
write d(z,D) := inf z′∈D d(z, z′) for the distance from a point z to a setD. For two sets
C andD,D(C,D) := supz∈C d(z,D) stands for the deviation/excess of set C from/over
setD. For a sequence of subsets {Ck} in a metric space, we follow the standard notation
[36] by using lim supk→∞ Ck to denote its outer limit, that is,

lim sup
k→∞

Ck =
{
x : lim inf

k→∞ d(x, Ck) = 0

}
.
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For a set-valued mapping (also called multifunction in the literature)A : X → 2Y ,A
is said to be closed at x̄ if xk ∈ X , xk → x̄ , yk ∈ A(xk) and yk → ȳ implies ȳ ∈ A(x̄).
A is said to be outer semicontinuous at x̄ ∈ X if lim supx→x̄ A(x) ⊆ A(x̄). When
A(x) is compact for each x , A(x) is upper semicontinuous (in the sense of Berge
[5]) at x̄ if and only if for every ε > 0, there exists a constant δ > 0 such that
A(x̄ + δB) ⊂ A(x̄) + εB. When the set-valued mapping A(·) is bounded, the outer
semicontinuity coincides with upper semicontinuity, see [36, Theorem 5.19] for the
Euclidean space and [24, Theorem 4.27] for the general Hausdorff space.

2 Lagrange dual of the inner maximization problem in (1.1)

Let x ∈ X be fixed. We consider the inner maximization problem of (1.1)

sup
P∈M+

EP [ f (x, ξ)]
s.t. EP [�i (ξ)] = 0, for i = 1, . . . , p,

EP [�i (ξ)] � 0, for i = p + 1, . . . , q,

EP [1] = 1,

(2.1)

and its Lagrange dual

inf
λ0,�1,...,�q

λ0

s.t. f (x, ξ) − λ0 −∑q
i=1 �i ◦ �i (ξ) ≤ 0,∀ ξ ∈ �,

λ0 ∈ IR,

�i � 0, for i = p + 1, . . . , q,

(2.2)

where M+ denotes the positive linear space of all signed measures generated by
P(�).

As discussed in the introduction, a key step towards numerical solution of problem
(1.1) is to establish equivalence between problems (2.1) and (2.2). In the literature of
distributionally robust optimization, the equivalence has been well established under
the circumstances where the support set � is compact and �i (·) is continuous (see
[41, page 312]), or the moment problem satisfies Slater type condition (see [38,49]
and references therein). This is underpinned by Shapiro’s duality theorem ([38, Propo-
sition 3.4]) for a general class of moment problems.

Note that in the case when the optimal value of problem (2.1) is +∞, the dual
problem (2.2) is infeasible. In that case, the equivalence is trivial. So our focus in this
section is on the case when the optimal value of (2.1) is finite.

2.1 Slater type conditions

Let us start with the Slater type condition (STC for short). Following Shapiro’s duality
theory for moment problems, the condition in our context can be written as

(1, 0) ∈ int{(〈P, 1〉, 〈P, �(ξ)〉) + {0} × {0} × K : P ∈ M+}, (2.3)
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where �(ξ) := (�1(ξ), . . . , �p(ξ)), 〈P, �(ξ)〉 = ∫
�

�(ξ)P(dξ) with the integra-
tion taken componentwise, the second {0} at the right hand side is theCartesian product
of zero matrices in the respective matrix spaces of IRni×ni corresponding to �i for
i = 1, . . . , p, and Kq−p := Sn p+1

+ × · · · × Snq
+ ; see [38, condition (3.12)] for general

moment problems. Here we discuss how this condition may be satisfied and how it
could be appropriately verified through some typical examples.

Example 2.1 (Reformulation of the STC and sufficient conditions for it) Consider
the following moment problem:

P :=
{
P ∈ P(�) : EP [�i (ξ)] = μi , for i = 1, . . . , p

EP [�i (ξ)] � μi , for i = p + 1, . . . , q

}
,

where �i : � → Sni , i = 1, . . . , q, are continuous maps and μi ∈ Sni , i = 1, . . . , q
are constant matrices which could be either the true mean values of�i or their approx-
imations/estimates. For the simplicity of notation we write �E for (�1, . . . , �p), �I

for (�p+1, . . . , �q),μE for (μ1, . . . , μp) andμI for (μp+1, . . . , μq). The Slater type
condition in this case can be written as

(1, μE , μI ) ∈ int{(〈P, 1〉, 〈P, �E 〉, 〈P, �I 〉) + H1 : P ∈ M+}, (2.4)

where H1 := {0} × {0} × Kq−p.

Proposition 2.1 The following assertions hold.

(i) Condition (2.4) is equivalent to

(μE , μI ) ∈ int{(〈P, �E 〉, 〈P, �I 〉) + H2 : P ∈ P(�)}, (2.5)

where H2 := {0} × Kq−p.
(ii) Condition (2.5) is fulfilled if

μE ∈ int {〈P, �E (ξ)〉 : P ∈ P(�)} (2.6)

and there exists PE ∈ P(�) with 〈PE , �E (ξ)〉 = μE such that

0 ∈ int {〈PE , �I (ξ)〉 − μI + Kq−p}. (2.7)

In the case when p = q, i.e., there is no inequality constraint, condition (2.6)
coincides with condition (2.5). Likewise, when p = 0, i.e., there is no equality
constraint, (2.7) reduces to existence of P ∈ P(�) such that

0 ∈ int {〈P, �I (ξ)〉 − μI + Kq−p}

which coincides with (2.5).
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(iii) Condition (2.6) holds naturally in the case when

{〈P, �E (ξ)〉 : P ∈ P(�)} = Sn1 × · · · × Sn p , (2.8)

whereas condition (2.7) is fulfilled if there exists PE ∈ P(�)with 〈PE , �E (ξ)〉 =
μE such that

〈PE , �I (ξ)〉 − μI ≺ 0. (2.9)

Proof Part (i). Let (2.4) hold. Then there exists an open neighborhood of μ∗ :=
(1, μE , μI ), denoted by U , such that U ⊂ int{(〈P, 1〉, 〈P, �E 〉, 〈P, �I 〉)+H1 : P ∈
M+}. Let V := {P ∈ M+ : (〈P, 1〉, 〈P, �E 〉, 〈P, �I 〉) ∈ U} and P0 ∈ V such that
(〈P0, 1〉, 〈P0, �E 〉, 〈P0, �I 〉) = μ∗. Then

(μE , μI ) = (〈P0, �E 〉, 〈P0, �I 〉)
∈ {(〈P, �E 〉, 〈P, �I 〉) : P ∈ V with 〈P, 1〉 = 1}
⊂ int{(〈P, �E 〉, 〈P, �I 〉) + H2 : P ∈ P(�)}.

Conversely, let (2.5) hold. Then for a sufficiently small positive number δ

(1, μE , μI ) ∈ int{(〈P, 1〉, 〈P, �E 〉, 〈P, �I 〉) + H1 : P ∈
⋃

t∈(1−δ,1+δ)

tP(�)}

⊂ int{(〈P, 1〉, 〈P, �E 〉, 〈P, �I 〉) + H1 : P ∈ M+},

which yields (2.4).
Part (ii). Conditions (2.6) and (2.7) guarantee existence of PE ∈ P(�) such that

〈PE , �E 〉 = μE ∈ int {〈P, �E (ξ)〉 : P ∈ P(�)}

and

μI ∈ int {〈PE , �I (ξ)〉 + Kq−p}

which imply (2.5). The equivalence statements (in the equality only case and inequality
only case) are obvious.

Part (iii). Condition (2.8) implies that (2.6) holds trivially. Condition (2.9) means
〈PE , �I (ξ)〉 − μI ∈ −intKq−p, which is equivalent to (2.7). ��

The proposition shows how the complex STC (2.4) can be examined through (2.5)
and further through (2.7). Condition (2.9) is widely known as the Slater condition for
inequality systems. The discussions show that the STC is weaker than the well known
Slater condition.

We now turn to consider the case when P comprises a single matrix moment
constraint.

123



498 H. Xu et al.

Example 2.2 (STC for a single matrix moment constraint) Let

�(ξ) = (ξ − μ)(ξ − μ)T − �,

where ξ is a random vector with support set � in IRn , μ and � are either the true
mean value and covariance matrix respectively or their estimates. Consider two types
of moment conditions: one is inequality constrained and the other is equality con-
strained. The former is often used when a decision maker does not have complete
information on the true mean value and/or covariance whereas the latter corresponds
to the circumstance when the true covariance is known. We discuss them in sequel.

(a) With incomplete information of the mean and/or covariance, the moment problem
is often written as

EP [(ξ − μ)(ξ − μ)T ] � �,

where � is some positive definite matrix. Let �0 denote the true covariance
matrix (corresponding to the unknown true probability distribution of ξ ) and
assume that �0 ≺ �. Note that following the analysis as in Example 2.1 we can
recast condition (2.3) as

0 ∈ int{〈P, �(ξ)〉 + Sn+ : P ∈ P(�)}. (2.10)

It is easy to observe that condition (2.10) holds in that 〈P0, �(ξ)〉 ≺ 0 under the
assumption �0 ≺ � and any n × n positive definite matrix lies in the interior of
Sn+.

(b) In the equality constraint case, the moment condition becomes

EP [(ξ − μ)(ξ − μ)T ] = �0,

and the Slater type condition becomes 0 ∈ int{〈P, �(ξ)〉 : P ∈ P(�)}. The
condition is fulfilled if �0 ∈ int conv{(ξ − μ)(ξ − μ)T : ξ ∈ �}. The latter is
automatically satisfied when � = IRn , see Proposition 2.2 below.

The example shows how condition (2.4) is verified through a different argument
for equality and inequality matrix moment constraints.

Proposition 2.2 (Image of covariance mapping over P(�)) If � = IRn, then

Sn+ =
{
EP [(ξ − μ)(ξ − μ)T ] : P ∈ P(�)

}
. (2.11)

Proof Observe that the right hand side of (2.11) is the image of the covariancemapping
EP [(ξ − μ)(ξ − μ)T ] over the space of probability measures P(�). It suffices to
show

Sn+ ⊆
{
EP [(ξ − μ)(ξ − μ)T ] : P ∈ P(�)

}
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because the opposite inclusion always holds. Let M ∈ Sn+ be any positive semidefinite
matrix with eigenvalue λ j and normalized eigenvector q j for j = 1, . . . , n. Let ξ j :=
μ +√

nλ j q j and Pj , j = 1, . . . , n, denote the Dirac probability measure at ξ j and

P̂ := ∑n
j=1

1
n Pj . Then P̂ ∈ P(�) and

EP̂ [(ξ − μ)(ξ − μ)T ] =
n∑
j=1

1

n
× nλ j q j q

T
j =

n∑
j=1

λ j q j q
T
j = M.

The conclusion follows. ��
In many practical cases, covariance constraint is often coupled by mean value

constraints. Let us consider a few examples as such.

Example 2.3 (STC for matrix moments due to Delage and Ye [13] and So [43])
Consider ambiguity set

P :=
{
P ∈ P(�) : EP [ξ − μ0]T�−1

0 EP [ξ − μ0] ≤ γ1
0 � EP [(ξ − μ0)(ξ − μ0)

T ] � γ2�0

}
, (2.12)

where γ1 and γ2 are nonnegative constants. The ambiguity set has first been considered
by Delage and Ye [13] and further studied by So [43]. It is easy to observe that the
inequality

EP [ξ − μ0]T�−1
0 EP [ξ − μ0] ≤ γ1

can be equivalently written as

EP

[( −�0 μ0 − ξ

(μ0 − ξ)T −γ1

)]
� 0.

Thus P can be written as

P =
⎧⎨
⎩P ∈ P(�) : EP

[( −�0 μ0 − ξ

(μ0 − ξ)T −γ1

)]
� 0

0 � EP [(ξ − μ0)(ξ − μ0)
T ] � γ2�0

⎫⎬
⎭ .

When γi > 0 for i = 1, 2, the moment constraints (2.12) satisfy the Slater type
constraint qualification, see [44, Theorem 3]. However, when γ1 = 0, the constraint

qualification fails. To see this, let us note that matrixEP

[( −�0 μ0 − ξ

(μ0 − ξ)T −γ1

)]
can

never be negative definite in that by Schur complement for the matrix to be negative
definite, we would need 0− (μ0 −E[ξ ])T (−�0)

−1(μ0 −E[ξ ]) < 0 which will never
happen. Nevertheless, if we rewrite the ambiguity set as
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P(0, γ2) =
{
P ∈ P(�) : EP [ξ ] = μ0

0 � EP [(ξ − μ0)(ξ − μ0)
T ] � γ2�0

}
,

then the Slater type condition holds, see [44, Theorem 3] for details.

Example 2.4 (STC for a variation ofmoment system (2.12)) Consider the following
ambiguity set

P =
{
P ∈ P(�) : |EP [ξ − μ0]| ≤ γ1e

‖EP [(ξ − μ0)(ξ − μ0)
T ] − �0‖2 ≤ γ2

}
,

where γ1 and γ2 are small positive numbers, e is a vector with components of ones, |a|
denotes the absolute value of a vector a with the absolute value taken componentwise,
and ‖ · ‖2 denotes the spectral norm of a matrix. Using the property of the norm, we
can reformulate the ambiguity set as

P =

⎧⎪⎪⎨
⎪⎪⎩
P ∈ P(�) :

EP [ξ − μ0] ≤ γ1
EP [μ0 − ξ ] ≤ γ1
EP [(ξ − μ0)(ξ − μ0)

T − �0 − γ2 I ] � 0
EP [−(ξ − μ0)(ξ − μ0)

T + �0 − γ2 I ] � 0

⎫⎪⎪⎬
⎪⎪⎭

.

If γ1 > 0 and γ2 > 0, then there exists a probability measure P0 such that EP0 [ξ ] =
μ0, EP0 [(ξ − μ0)(ξ − μ0)

T = �0, and the strict inequalities of system of moment
conditions hold. Following the remark after Proposition 2.1, we conclude that the
Slater type condition holds.

Example 2.5 (STC for the moment system due to [25]) Consider the following
ambiguity set

P :=
{
P ∈ P(�) : |EP [ξ − μ0]| ≤ γ1e

‖EP [(ξ − μ0)(ξ − μ0)
T ] − �0‖max ≤ γ2

}
,

where ‖A‖max = max |ai j |. It is easy to verify that ‖ · ‖max is a norm for the matrix
but without the sub-multiplicative property. The ambiguity set is considered in [25].
Let k be the dimension of random vector ξ , q = k2+3k

2 , ψI (ξ) = ξ − μ0 and ψJ (ξ)

denote the elements of the upper triangular of matrix (ξ − μ0)(ξ − μ0)
T − �0. Then

we can reformulate P as

P =

⎧⎪⎪⎨
⎪⎪⎩
P ∈ P(�) :

�I (ξ) − γ1 ≤ 0
−�I (ξ) − γ1 ≤ 0
�J (ξ) − γ2 ≤ 0
−�J (ξ) − γ2 ≤ 0

⎫⎪⎪⎬
⎪⎪⎭

.

Analogous to Example 2.4, the Slater condition is satisfied when γ1 > 0 and γ2 > 0.
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2.2 Lower semicontinuity condition

We now study a different condition which is fundamentally based on Shapiro’s result
[38, Proposition 2.4]. To this end, we consider the following perturbation of problem
(2.1)

min
P∈P(�)

EP [− f (x, ξ)]
s.t. P ∈ P(Y ),

(2.13)

where Y = (Y1, . . . ,Yq) and Yi ∈ Sni , i = 1, . . . , q, is in a small neighborhood of 0.
To simplify the notation, here and later on we mean 0 is in appropriate space without
indicating its dimension. Let

P(Y ) :=
{
P ∈ P(�) : EP [�i (ξ)] + Yi = 0, for i = 1, . . . , p

EP [�i (ξ)] + Yi � 0, for i = p + 1, . . . , q

}
. (2.14)

Let v(Y ) denote the optimal value of problem (2.13). By [38, Proposition 2.3], problem
(2.13) satisfies the strong duality if and only if v(·) is lower semicontinuous at point 0.
A sufficient condition for the latter is thatP(Y ) is weakly compact for each fixed Y and
P(·) is upper semicontinuous at 0. In what follows, we develop sufficient conditions
for the required property of P(·).

Recall that for a sequence of probability measures {PN } ⊂ P(�), PN is said to
converge to P ∈ P(�) weakly if

lim
N→∞

∫
�

h(ξ)PN (dξ) =
∫

�

h(ξ)P(dξ)

for each bounded and continuous function h : � → IR. For a set of probability
measures A ⊂ P(�), A is said to be weakly compact w.r.t. topology of weak
convergence if every sequence {PN } ⊂ A contains a subsequence {PN ′ } and P ∈ A
such that PN ′ → P . A is said to be tight if for any ε > 0, there exists a compact
set �ε ⊂ � such that inf P∈A P(�ε) > 1 − ε. In the case when A is a singleton, it
reduces to the tightness of a single probability measure.A is said to be closed (under
the topology of weak convergence) if for any sequence {PN } ⊂ A with PN → P
weakly, we have P ∈ A.

By the well-known Prokhorov’s theorem (see [2,33]), a closed setA of probability
measures is weakly compact if and only if it is tight. In particular, since � is a set in
IRk , if� is a compact set, then the set of all probability measures on (�,B) is weakly
compact with respect to topology of weak convergence; see [27].

For two probability measures P1, P2 ∈ P(�), the Prokhorov metric [34] is

π(P1, P2) := inf{ε > 0 : P1(A) ≤ P2(A
ε) + ε and P2(A) ≤ P1(A

ε) + ε ∀A ∈ B},
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where Aε := ⋃
a∈A

εB(a) and B(a) denotes the unit ball centered at point a. Since �

is a set in IRm , the convergence of probability measures in the Prokhorov metric is
equivalent to weak convergence.

Assumption 2.1 (Sufficient conditions for tightness and closedness of P(Y )) (a)
There exists a tight subset of probability measures, denoted by P̂ ⊂ P(�), such
that P(Y ) ⊂ P̂ for all Y close to 0; (b) �i (·), i = 1, . . . , q, is continuous over � and
every element ψ i

j t (ξ) of �i (·) is uniformly integrable, that is,

lim
r→∞ sup

P∈P̂

∫
{ξ∈�,|ψ i

j t (ξ)|≥r}
|ψ i

j t (ξ)|P(dξ) = 0

for i = 1, . . . , q; j, t = 1, . . . , ni .

A sufficient condition for Assumption 2.1 (a) is that there are positive constants τ

and C such that

sup
P∈P̂

∫
�

‖ξ‖1+τ P(dξ) < C. (2.15)

Likewise, whenψ i
j t is a continuous function, a sufficient condition for Assumption 2.1

(b) is that there exists a positive constant τ such that

sup
P∈P̂

∫
�

|ψ i
j t (ξ)|1+τ P(dξ) < ∞, (2.16)

for i = 1, . . . , q; j, t = 1, . . . , ni . Condition (2.16) holds trivially when ψ i
j t (ξ) is

bounded.

Lemma 2.1 (Topological properties of P(Y )) Under Assumption 2.1, the following
assertions hold.

(i) For each fixed Y close to 0, P(Y ) is weakly compact;
(ii) P(·) is upper semicontinuous at 0 in the sense of Berge [5], that is, for any ε > 0,

there exists δ > 0 such thatP(Y ) ⊆ P(0) + εB for all Y with ‖Y‖ ≤ δ, where B
denotes the unit ball in the space of P under Prokhorov metric.

Proof Part (i). Let Y be fixed. Under Assumption 2.1 (a), P(Y ) is tight because any
subset of a tight set is tight. By Prokhorov’s theorem, it suffices to show that P(Y )

is closed. Let {Pk} ⊂ P(Y ) be a sequence of probability measures such that Pk
converges to P weakly. We show P ∈ P(Y ). Under Assumption 2.1 (b), it follows by
[46, Lemma 1] or [20, Lemma 2.1],

lim
k→∞

∫
ξ∈�

ψ i
j t (ξ)Pk(dξ) =

∫
ξ∈�

ψ i
j t (ξ)P(dξ).
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Therefore
∫

ξ∈�

�i (ξ)P(dξ) + Y = lim
k→∞

∫
ξ∈�

�i (ξ)Pk(dξ) + Y

{= 0 for i = 1, . . . , p,
� 0 for i = p + 1, . . . , q,

which means P ∈ P(Y ).
Part (ii). Let {Y k} be a sequence converging to 0. By the definition of outer semi-

continuity, we only need to consider the points with P(Y k) �= ∅. Let Pk ∈ P(Y k). By
[9, Theorem 5.1], the tightness of P̂ ensures that {Pk} has a subsequence {Pki } such
that Pki → P∗ weakly. Using a similar argument to that of Part (i), we have

lim
ki→∞

∫
ξ∈�

�i (ξ)Pki (dξ) + Yki =
∫
ξ∈�

�i (ξ)P∗(dξ) + 0

{= 0 for i = 1, . . . , p,
� 0 for i = p + 1, . . . , q,

(2.17)

which means P∗ ∈ P(0). This shows the set-valued mapping P(Y ) is outer semi-
continuous. On the other hand, since � is a compact set of IRk , then by Prokhorov
theorem,P(�) is metrizable (i.e. by Prokhorov metric) and hence it is a metric space.
The latter ensuresP(�) is a Hausdorff space. Subsequently, by [24, Theorem 4.27],
P(·) is upper semicontinuous at point Y = 0. ��
Remark 2.1 In the casewhen�i (ξ), i = 1, . . . , q, is a scalar function,Assumption 2.1
(b) may be replaced by the following in Lemma 2.1:

(b′
1) �i (·), i = 1, . . . , p is continuous and �i (·), i = p + 1, . . . , q is lower contin-

uous;
(b′

2) there exist an upper semicontinous function l(ξ) and a lower semicontinous
function u(ξ) such that

l(ξ) ≤ �i (ξ) ≤ u(ξ), ∀ξ ∈ �, i = 1, . . . , p,

l(ξ) ≤ �i (ξ), ∀ξ ∈ �, i = p + 1, . . . , q

and for any sequence {PN } ∈ P̂ and any accumulation point P∗ of the sequence,

lim inf
N→∞ EPN [l(ξ)]≥EP∗ [l(ξ)] > −∞, lim sup

N→∞
EPN [u(ξ)]≤EP∗ [u(ξ)] < +∞.

To see this, let {PN } ∈ P(Y ). Under conditions (b′
1) and (b′

2), we have by [16, Theo-
rem 4.3] and the remark following [16, Theorem 1.1]

lim
N→∞

∫
ξ∈�

�i (ξ)PN (dξ) + Y =
∫

ξ∈�

�i (ξ)P∗(dξ) + Y

for i = 1, . . . , p and

∫
ξ∈�

�i (ξ)P∗(dξ) + Y ≤ lim inf
N→∞

∫
ξ∈�

�i (ξ)PN (dξ) + Y ≤ 0,

for i = p+1, . . . , q. The inequalities above ensure P∗ ∈ P(Y ) and hence closedness
of P(Y ) under topology of weak convergence. Likewise, we can derive (2.17) and
hence upper semicontinuity of P(Y ) at 0.
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With Lemma 2.1, we are able to address lower semicontinuity of v(·).

Proposition 2.3 (Strong duality of perturbed problem (2.13)) Let P(0) �= ∅. Under
Assumption 2.1, v(·) is lower semicontinuous at 0 and hence there is no dual gap
between problems (2.1) and (2.2).

Proof The claim is a direct application of [38, Proposition 2.4] to problem (2.13).
We give a proof for completeness. Observe first that since P(0) �= ∅ by assumption,
v(0) < +∞. If P(Y ) = ∅ for Y close to 0, then v(Y ) = +∞ and hence v(·) is lower
semicontinuous at Y = 0. In what follows, we consider the case when P(Y ) �= ∅.

Let S(Y )denote the set of optimal solutions of problem (2.13).ByLemma2.1,P(Y )

is weakly compact and hence v(Y ) < +∞. Moreover, since the objective function is
continuous in P , S(Y ) �= ∅ and S(Y ) is weakly compact. Let

P∗(Y ) := {P ∈ P(Y ) : 〈− f (x, ξ), P〉 ≤ v(0)}.

Note that if P∗(Y ) = ∅, then v(Y ) ≥ v(0). In what follows, we consider the case
when P∗(Y ) �= ∅. In that case v(Y ) ≤ v(0) and S(Y ) ⊂ P∗(Y ).

SinceP(·) is upper semicontinuous at point Y = 0, it is easy to verify thatP∗(Y ) is
also upper semicontinuous at point 0 in that f is continuous in ξ . Thus, for any ε > 0
there exists a neighborhood Us of P∗(0) such that

〈− f, P〉 ≥ v(0) − ε, ∀P ∈ Us . (2.18)

By the upper semicontinuity of P∗(Y ), there exists a neighborhood UY of Y = 0 such
that P∗(Y ) ⊆ Us . Thus S(Y ) ⊂ Us and through (2.18) we have

v(Y ) ≥ v(0) − ε,∀Y ∈ UY .

Since ε is arbitrarily chosen, we conclude that v(Y ) is lower semicontinuous at point
Y = 0. ��

In what follows, we revisit some examples in the preceding subsection with Propo-
sition 2.3. Consider Example 2.1. Assume that there exists i0 ∈ {p + 1, . . . , q} and a
positive number τ such that

‖ξ‖1+τ ≤ ψi0(ξ),∀ξ ∈ �. (2.19)

Then Assumption 2.1 (a) is satisfied with P̂ = {P ∈ P(�) : EP [ψi0(ξ)] < ∞}
because condition (2.19) implies condition (2.15). Moreover, if ψi (·), i = 1, . . . , q is
a continuous and bounded function on �, then Assumption 2.1 (b) holds.

Likewise, we can use Proposition 2.3 to certify the absence of a duality gap in
Examples 2.3–2.5. Indeed, Assumption 2.1 (a) can be easily verified because there
exists a positive constant C such that
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EP [‖ξ‖2] ≤ C,∀P ∈ P.

Moreover, if � is bounded, then Assumption 2.1 (b) is fulfilled.
Of course, the boundedness assumption is undesirable in DRO (1.1) and in fact

not needed for Slater type condition, we impose the restriction just to illustrate
how Proposition 2.3 could be applied in some special circumstances. However, in
the application of DRO to optimization problems with chance constraint, it might
be a necessity to impose boundedness of � in order for the robust chance con-
straints to be more applicable. We illustrate this argument through the following
example.

Example 2.6 (Infeasibility of robust chance constraint) Consider the following dis-
tributionally robust chance constraint

sup
P∈P

P(xξ ≤ α) ≤ p∗,

where x ∈ IR, p∗ ∈ (0, 1), ξ is a random variable with support set � = IR,

P = {P ∈ P(�) : EP [ξ ] = 0,EP [ξ2] = σ }

is an ambiguity set defined through true mean value 0 and variance σ . It is easy to
show that supP∈P P(ξ = 0) = 1. To see this, let Pk be a discrete probability measure
with

Pk

(
ξ =

√
σk

2

)
= Pk

(
ξ = −

√
σk

2

)
= 1

k
, and Pk(ξ = 0) = 1 − 2

k
,

where k > 2. It is easy to verify that Pk ∈ P and supk Pk(ξ = 0) = 1. Let H(x) :=
{ξ ∈ IR : xξ ≤ α}. Then 0 ∈ H(x) for any x ∈ IR whenever α ≥ 0. Consequently
the robust chance constraint does not have a feasible solution. The key issue here is
that the unboundedness of � allows the ambiguity set P to contain some probability
measures which mass their probability near the mean value of ξ .

In a more recent development of distributionally robust optimization (see [49]),
ambiguity set P comprises not only moment conditions but probabilistic constraints.
Here we illustrate how Proposition 2.3 may be applied to such a case.

Example 2.7 (STC and the new condition for the moment conditions in [49])
Consider the following ambiguity set

P :=
⎧⎨
⎩P ∈ P(�) :

EP [ψi (ξ)] = μi , for i = 1, . . . , p
EP [ψi (ξ)] ≤ μi , for i = p + 1, . . . , q
P{ξ ∈ � j } ≤ a j , for j = 1, . . . , k

⎫⎬
⎭ ,
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where � j , j = 1, . . . , k is subset of � and 0 ≤ a j ≤ 1. Using the indicator functions,
the probabilistic constraints can be rewritten as EP [1� j (ξ)] ≤ a j , where

1� j (ξ) :=
{
1, for ξ ∈ � j ,

0, otherwise.

Assumption 2.1 (a) holds if ξ satisfies (2.19). Moreover, Assumption 2.1 (b) holds
when ψi (·), i = 1, . . . , q is bounded and continuous, and 1� j (·), j = 1, . . . , k, is
lower semicontinuous on �, see Remark 2.1.

To see how these conditions could be possibly fulfilled, let us consider a more
concrete setting with

P := {P := P1 × P2 ∈ P(�) : EP [ξ1] = 0.8, P1(ξ1 ∈ (0.5, 1])
≤ 0.6, P2(ξ2 ∈ [0, 2)) ≤ 0.5} , (2.20)

where ξ = (ξ1, ξ2) is a random vector with support set [0, 1] × [0, 4].
Observe first that since � is compact,P(�) is tight and so is P as the latter is just

a subset of P(�). Second, for any sequence {Pk} ⊂ P converging weakly to P̂ , the
lower semicontinuity of the indicator functions 1(0.5,1](·) and 1[0,2)(·) [0, 1] × [0, 4]
ensures Pk

1 (ξ1 ∈ (0.5, 1]) → P̂1(ξ1 ∈ (0.5, 1]) ≤ 0.6, and Pk
2 (ξ2 ∈ [0, 2)) →

P̂2(ξ2 ∈ [0, 2)) ≤ 0.5. On the other hand, the boundedness of ξ1 over � ensures
EPk [ξ1] → EP̂ [ξ1] = 0.8. This shows P is closed and hence by the well known
Prokhorov theorem, P is weakly compact. Third, by Remark 2.1, the conclusions of
Lemma 2.1 hold with the above stated boundedness and lower semicontinuity, hence
by Proposition 2.3, we can assert that the inner maximization problem of (1.1) with
ambiguity set (2.20) satisfies the strong Lagrange duality.

On the other hand, the Slater type condition fails because P1 is a singleton (with
P1(ξ1 = 0.5) = 0.4 and P1(ξ1 = 1) = 0.6).

Note that it is possible to find an example where Assumption 2.1 fails to hold but
the Slater type condition is satisfied.

Example 2.8 Let ξ be a random variable defined on IR with σ -algebra F . Let P(�)

denote the set of all probability measures on (IR,F) and

P :=
{
P ∈ P(�) : EP [ξ ] = 0

EP [ξ2] = 1

}
.

It is shown in [44] that P is not closed. On the other hand, it is easy to verify that the
Slater type condition (2.6) holds. This shows Assumption 2.1 is not necessarily strictly
weaker than the Slater type condition and may be used as a condition complementary
to STC.

Before concluding this section, we give a simple example where strong duality fails
in the absence of STC and lower semicontinuity condition.
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Example 2.9 Let ξ be a random variable with support set � = {0, 1, 2, . . .}. Let

a(ξ j ) =
{
0 for j = 0,
2 j−1
2 j−1 for j = 1, 2, 3, . . .

and

b(ξ j ) =
{
0 for j = 0,
j+1
2 j−1 − 2 for j = 1, 2, 3, . . .

Consider the inner maximization problem

inf
p j≥0, j=0,1,2,3,...

∞∑
j=0

−p jb(ξ
j )x

s.t. 2 −
∞∑
j=0

p ja(ξ j ) ≤ 0,

∞∑
j=0

p j = 1,

(2.21)

where x ∈ [1, 2] is fixed. For simplicity of discussion, let x = 1. The Lagrange dual
of (2.21) is

− inf
λ0≥0,λ1∈IR

−2λ0 + λ1

s.t. a(ξ j )λ0 + b(ξ j ) − λ1 ≤ 0, for j = 0, 1, 2, . . .
(2.22)

It follows from [22, Example 2] that the optimal value of problem (2.22) is 2 whereas
the optimal value of problem (2.21) is +∞ because the feasible set of the latter is
empty. Let us now consider the perturbation of problem (2.21)

inf
p j≥0, j=0,1,2,3,...,

∑∞
j=0 p j=1

∞∑
j=0

−p jb(ξ
j )x

s.t. 2 −
∞∑
j=0

p ja(ξ j ) + y ≤ 0.

(2.23)

The optimal value v(y) of (2.23) is +∞ for y ≥ 0 because the feasible set is empty
in that case. When y < 0, we can write down its Lagrange dual

− inf
λ0≥0,λ1∈IR

−(2 + y)λ0 + λ1 − y

s.t. a(ξ j )λ0 + b(ξ j ) − λ1 ≤ 0, for j = 0, 1, 2, . . . .
(2.24)

Since the inequality constraint of problem (2.23) satisfies the STC, problem (2.24)
does not have a duality gap. Analogous to [22, Example 2], we can work out the
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optimal value of (2.24), which is v(y) = 2 + y(1 − ry) − 2ry , where ry is either[
ln(−y/ ln 2)

ln 2

]
− or

[
ln(−y/ ln 2)

ln 2

]
+ depending on which one provides a lower value for

v(y). Since v(y) → 2 as y → 0−, it shows that v is not lower semicontinuous at
y = 0.

2.3 Boundedness of the Lagrange multipliers

In the last part of this section, we study existence of bounded optimal solutions to the
Lagrange dual problem (2.2). This is motivated by necessity of boundedness of the
set of feasible solutions to dual problem in order to carry out convergence analysis
when a randomization method is applied to the Lagrange dual in Section 3. To ease
the notation, we writeW for the q+1-tuple of Lagrange multipliers (λ0,�1, . . . , �q)

which take values in IR × Sn1 × · · · × Sn p × Kq−p. We use W(x) to denote the set
of optimal solutions to Lagrange dual problem (2.2). We investigate conditions under
which there is a positive constant η independent of x such that

W(x) ∩ ηB �= ∅,∀x ∈ X, (2.25)

where B denotes the unit ball in the space of IR × Sn1 × · · · × Sn p × Kq−p. The
boundedness is required for the convergence in Sect. 3, see Assumption 3.2.

Proposition 2.4 (Existence of bounded Lagrange multipliers) Assume: (a) the opti-
mal value of problem (2.2) is bounded by a constant (independent of x), (b)
supx∈X,ξ∈� | f (x, ξ)| < ∞, (c) the homogeneous system of inequalities

−
q∑

i=1

�i ◦ �i (ξ) ≤ 0, ∀ξ ∈ �

has a unique solution 0. Then there exists a positive constant η such that (2.25) holds.

Proof For each x ∈ X , let λ0(x) denote the optimal value of problem (2.2). Under
condition (a), there exists a constant C such that λ0(x) ≤ C for all x ∈ X . In what
follows, we show that the components � := (�1, . . . , �q) of the corresponding
optimal solution are also bounded.LetF(x)denote the set of� such that (λ0(x),�(x))
is an optimal solution to problem (2.2) for given x ∈ X . It suffices to show that F(x)
is bounded. Assume for the sake of a contradiction that there exists a sequence of
{xN } ⊂ X and �N ∈ F(xN ) such that ‖�N‖ → ∞ and

f (xN , ξ)/‖�N‖ − λ0(x
N )/‖�N‖ −

q∑
i=1

�N
i /‖�N‖ ◦ �i (ξ) ≤ 0,∀ξ ∈ �.

By driving N to infinity and taking a subsequence if necessary, wemay assumewithout
loss of generality that �N/‖�N‖ → �̂ with ‖�̂‖ = 1 and consequently deduce
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−
q∑

i=1

�̂i ◦ �i (ξ) ≤ 0,∀ξ ∈ �,

a contradiction to condition (c). ��
Note that condition (c) is implied by the Slater type condition (2.3), see [53,

Remark 2.1 (iii)]. It is unclear whether the condition can be fulfilled under the lower
semicontinuity condition.

3 A randomization method and convergence analysis

Having established equivalence between problem (2.2) and its primal (2.1), we are now
moving on to discuss numerical methods for solving problem (1.1). For the simplicity
of notation, we use � to denote (�1, . . . , �q). Let us write its dual problem as

inf
x,�1,...,�q

v(x,�) := supξ∈�

{
f (x, ξ) −∑q

i=1 �i ◦ �i (ξ)
}

s.t. x ∈ X,

�i � 0, for i = p + 1, . . . , q.

(3.1)

This is an optimization problem with decision variables x and matrix variables �i ,
i = 1, . . . , q. In the case when f (·, ξ) is convex for every fixed ξ , the objective
function is convex w.r.t. (x,�). Our idea here is to apply the well known cutting plane
method [23] to solve (3.1). A key step of the method is to calculate a subgradient of the
objective function at each iterate. This requires us to maximize the Lagrange function
w.r.t. ξ which could be numerically expensive particularly when it is not concave w.r.t.
ξ .

To circumvent the difficulty, we propose a randomization approach which dis-
cretizes the space of � through Monte Carlo sampling. Specifically, let ξ1, . . . , ξ N be
independent and identically distributed (iid) samples of ξ . We consider the following

inf
x,�1,...,�q

vN (x,�) := sup
j=1,...,N

{
f (x, ξ j ) −

q∑
i=1

�i ◦ �i (ξ
j )

}

s.t. x ∈ X,

�i � 0, for i = p + 1, . . . , q.

(3.2)

From practical point of view, this kind of approximation scheme is sensible in that
it relies only on the samples rather than the range of the support set �. This is a
notable departure from the existing numerical approaches for solving distributionally
robust optimization where the structure of the support is vital to develop an SDP
reformulation. Of course, it might be arguable that samples obtained in practice may
be contaminated, we will address this issue in a separate paper as it is not the main
focus here. Unless otherwise specified, we assume the samples do not contain noise.

At this point, it might be helpful to remind readers the notation ξ . In formulation
(3.1), ξ is a deterministic vector. In the randomization approach, ξ is a random vector

123



510 H. Xu et al.

whose distribution is unknown but it is possible to obtain its iid samples. This is similar
to the “uncertain parameter” in robust convex programs considered by Campi and
Calafiore [10]. Note that theoretically speaking, samples generated by any continuous
distribution with support set � can be used to construct a random approximation
scheme (3.2) although the resulting rate of convergence may be different.

For a fixed sample, we propose to apply the well known cutting plane method
for solving problem (3.2). Observe that we can easily compute a subgradient of the
objective function of problem (3.2). To see this, let J (x,�) denote the index set of
j ∈ {1, . . . , N } such that

vN (x,�) = f (x, ξ j ) −
q∑

i=1

�i ◦ �i (ξ
j ).

By the well known Danskin’s theorem,

∂vN (x,�) = conv
{
(∇x f (x, ξ

j ),�i (ξ
j )) : j ∈ J (x,�)

}
.

3.1 Optimal value and optimal solution

Before going to the details of the numerical methods for problem (3.2), we derive some
convergence results which theoretically justify the proposed approximation scheme.
Specifically, we demonstrate convergence of the optimal value and the optimization
solutions obtained from solving problem (3.2) to those of problem (3.1) as N → ∞.
To this end, let us first consider the following general optimization problem

min
x∈X sup

ξ∈�

g(x, ξ) (3.3)

where X is a compact set in IRn , g is continuous function of (x, ξ), ξ is a parameter
which takes values over � ⊂ IRk . By slightly abusing the notation, let us consider a
random variable ξ with support set �. Let ξ1, . . . , ξ N be independent and identically
distributed samples of ξ . We consider the following approximation problem:

min
x∈X max

j=1,...,N
g(x, ξ j ). (3.4)

For each realization of the random variables, we solve problem (3.4) and obtain an
optimal value and optimal solution.We then ask ourself convergence of these quantities
as N increases and investigate conditions under which the optimal value and optimal
solution converge to their counterparts of problem (3.3). In what follows, we present
a detailed analysis for (3.4).

Assumption 3.1 Denote by Mx (t) := E
{
et (g(x,ξ)−E[g(x,ξ)])} the moment generating

function of the random variable g(x, ξ) − E[g(x, ξ)]. The following hold.

(a) For each x ∈ X , supy∈� g(x, y) < ∞ and the moment generating function Mx (t)
is finite valued for all t in a neighborhood of zero.
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(b) There exist a nonnegative measurable function κ : � → R+ and constant γ > 0
such that

|g(x ′, ξ) − g(x ′′, ξ)| ≤ κ(ξ)‖x ′ − x ′′‖γ ,∀x ′, x ′′ ∈ X

for all ξ ∈ �.
(c) The moment generating function Mκ(t) of κ(ξ) is finite valued for all t in a

neighborhood of zero.

Assumption 3.1 (a) means that the probability distributions of the random variables
g(x, ξ) and κ(ξ) die exponentially fast in the tails. In particular, it holds if the random
variables have a bounded support set.

To ease the exposition, let

vN (x) := max
j=1,...,N

g(x, ξ j ) and v(x) := sup
ξ∈�

g(x, ξ).

Let ϑ and ϑN denote respectively the optimal values of problem (3.3) and problem
(3.4), and X∗ and XN denote the corresponding sets of optimal solutions.

Lemma 3.1 (Convergence of random discretization scheme (3.4)) Assume: (a)
g(x, ξ) satisfies Assumption 3.1; (b) the true probability distribution of ξ is con-
tinuous and there exists positive constants C1, ν1 (independent of x) with

g(x, y1) − g(x, y2) ≤ C1‖y1 − y2‖ν1 ,∀y1, y2 ∈ � (3.5)

for all x ∈ X; and (c) there are positive constants γ2 and δ0 with

P(‖ξ − ξ0‖ < δ) ≥ C2δ
ν2 (3.6)

for any fixed point ξ0 ∈ � and δ ∈ (0, δ0). Then the following assertions hold.

(i) For any positive number ε, there exist positive constants C(ε) and β(ε) such that

Prob(|ϑN − ϑ | ≥ ε) ≤ C(ε)e−β(ε)N

for N sufficiently large.
(ii) Let

R(ε) := min
x∈X,d(x,X∗)≥ε

{
sup
ξ∈�

g(x, ξ)

}
−ϑ.

If there exists an ε0 > 0 such that R(ε) > 0 for ε ∈ (0, ε0) and R(·) is monoton-
ically increasing over the interval, then R(ε) → 0 as ε ↓ 0, and

D(XN , X∗) ≤ R−1
(
3 sup
x∈X

|vN (x) − v(x)|
)

.
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Proof The thrust of the proof is to use CVaR and its sample average approximation
to approximate supξ∈� g(x, ξ) of problem (3.3) which is in line with the convergence
analysis carried out in [1]. However, there are a couple of important differences: (a) the
convergence here is for the randomization scheme (3.4) rather than the sample average
approximation of the CVaR approximation of supξ∈� g(x, ξ), (b) g is not necessarily
a convex function.

Part (i). For β ∈ (0, 1), let

CVaRβ(g(x, ξ)) := inf
η∈IR η + 1

1 − β

∫
ξ∈�

(g(x, ξ) − η)+ρ(ξ)dξ (3.7)

and

vN
β (x) := inf

η∈IR η + 1

(1 − β)N

N∑
j=1

(g(x, ξ j ) − η)+,

where ρ(·) denotes the density function of the random variable ξ , (c)+ = max(0, c)
for c ∈ IR. In the literature, CVaRβ (g(x, ξ)) is known as conditional value at risk
at a specified confidence level β and vN

β (x) is its sample average approximation, see
[1,35]. It is well known that the maximumw.r.t. η in the above formulation is achieved
at a finite η. In other words, we may restrict the maximum w.r.t. η to be taken within
a closed interval [−a, a] for some sufficiently large positive number a, see [35]. It is
easy to verify that

vN
β (x) ≤ vN (x) ≤ v(x). (3.8)

We proceed the rest of the proof for this part in two steps.

Step 1. By the definition of CVaR, for any β ∈ (0, 1)

CVaRβ (g(x, ξ)) ≤ v(x).

Moreover, under conditions (b) and (c), it follows by [1, Proposition 1], g(x, ξ) has
so-called consistent tail behaviour, that is,

1 − Gx (α) ≥ K
(
g∗(x) − α

)τ
, for all α ∈ (CVaRβ0(g(x, ξ), g∗(x)), (3.9)

where K = C2
C1
, τ = γ2

γ1
and β0 = 1 − C2

C1
(C1δ0)

γ2 . By [1, Theorem 1],

|CVaRβ (g(x, ξ)) − v(x)| ≤ 1

K 1/τ

τ

1 + τ
(1 − β)1/τ (3.10)

for all β ∈ (β0, 1). Therefore by driving β to 1, we have

sup
x∈X

|CVaRβ (g(x, ξ)) − v(x)| → 0.
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Step 2. Using the inequalities (3.8), we have

|vN (x) − v(x)| ≤ |vN
β (x) − v(x)|

≤ |vN
β (x) − CVaRβ (g(x, ξ)) | + |CVaRβ (g(x, ξ)) − v(x)|.

Let ε be a small positive number. By (3.10), we may set β sufficiently close to 1 such
that

sup
x∈X

|CVaRβ (g(x, ξ)) − v(x)| ≤ ε

2
. (3.11)

On the other hand, under Assumption 3.1, it follows by virtue of [42, Theorem 5.1],
there exist positive constants C(ε) and α(ε) such that

Prob
(
sup
x∈X

|vN
β (x) − CVaRβ (g(x, ξ)) | ≥ ε/2

)

≤ Prob
( 1

1 − β
sup
x∈X

sup
η∈[−a,a]

∣∣∣∣∣∣
1

N

N∑
j=1

(g(x, ξ j ) − η)+−EP [(η − g(x, ξ))+]
∣∣∣∣∣∣≥ε/2

)

≤ C(ε)e−α(ε)N (3.12)

for N sufficiently large. Here in the first inequality, we are using the fact that the
maximum w.r.t. η is achieved in [−a, a] for some appropriate positive constant a; see
similar discussions in [51]. Note that |ϑN −ϑ | ≤ supx∈X |vN (x)− v(x)|. Combining
(3.11) and (3.12), we arrive at

Prob
(
|ϑN − ϑ | ≥ ε

)
≤ Prob

(
sup |vN (x) − v(x)| ≥ ε

)

≤ Prob
(
sup |vN

β (x) − CVaRβ (g(x, ξ)) | ≥ ε/2
)

≤ C(ε)e−α(ε)N .

Part (ii). Let R(ε) be defined as in the statement of the lemma. Let ε be a fixed small
positive number and δ := R(ε)/3. Let N be such that supx∈X |vN (x) − v(x)| ≤ δ.
Then for any x ∈ X with d(x, X∗) ≥ ε, we have

vN (x) − vN (x∗) ≥ v(x) − ϑ − 2δ ≥ R(ε)/3 > 0

which means x cannot be an optimal solution to problem (3.4), in other words,
if xN is an optimal solution to problem (3.4), then d(xN , X∗) < ε when
supx∈X |vN (x) − v(x)| ≤ R(ε)/3. The conclusion follows if we choose ε =
R−1

(
3 supx∈X |vN (x) − v(x)|). The proof is complete. ��

We make a few comments in sequel about the conditions and conclusion of the
lemma as the result might be of broader interest.
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First, condition (a) explicitly ensures g(x, y) the essential supremum of g(x, ξ)

being bounded for each fixed x ∈ X . Condition (b) is considered by Anderson, Xu
and Zhang [1]. Inequality (3.5) is guaranteed when g(x, ·) is Hölder continuous over
�. Condition (c) is fulfilled when the density function of ξ is bounded away from zero
around ξ0. A combination of (b) and (c) provide a sufficient condition for the so-call
consistent tail behaviour for g(x, ξ), see [1] for a detailed discussion.

Second, this kind of convergence analysis is slightly different from standard con-
vergence analysis in stochastic programming in that here we use the largest sampled
value of g(x, ξ) rather than its sample average. It should also be distinguished from the
convergence analysis by Campi and Calafiore [10] for a similar discretization scheme
whose focus is on the feasibility of an optimal solution obtained from solving (3.4)
and the number of samples needed to guarantee the feasibility with a specified confi-
dence. Instead it is more closely related to a recent work by Esfahani et al. [15] which
presents a probabilistic argument for the convergence of the optimal value of (3.4)
with a similar discretization scheme. Based on Lemma 3.1, it is possible to estimate
the sample size for a specified discrepancy of the optimal values ε through large devi-
ation theorem; see [50] and references therein. We leave the details for the interested
readers to explore as they are beyond the main focus of this paper.

With Lemma 3.1, we are ready to state convergence of problem (3.2) to problem
(3.1) in terms of the optimal value and the optimal solutions. For the simplicity of
notation, let

h(x,�, ξ) := f (x, ξ) −
q∑

i=1

�i (ξ) ◦ �i .

Let Wx be defined as in (2.25). We make the following assumption.

Assumption 3.2 h(x,�, ξ) satisfies the following conditions.

(a) For fixed (x,�) ∈ X × W(x),

sup
ξ∈�

h(x,�, ξ) < ∞.

(b) The true probability distribution of ξ is continuous and there exist positive con-
stants C1 and ν1 (independent of x) such that

|h(x,�, ξ ′) − h(x,�, ξ ′′) < C1‖ξ ′ − ξ ′′‖ν1 ,∀ξ ′, ξ ′′ ∈ � (3.13)

for all (x,�) ∈ X × W(x); and condition (c) of Lemma 3.1 holds.
(c) The moment function of h(x,�, ξ), denoted by

Mx,�(t) := E

[
et (h(x,�,ξ)−E[h(x,�,ξ)])] ,

is finite valued for all t in a neighborhood of zero.
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(d) Let σ(ξ) := κ(ξ) + ∑q
i=1 ‖�i (ξ)‖, where κ(ξ) is the Lipschitz modulus of

f (·, ξ). The moment generating function of σ(ξ) denoted by E
[
et (σ (ξ)−E[σ(ξ)])]

is finite valued for all t in a neighbourhood of zero.

Theorem 3.1 (Convergence of random discretization scheme (3.2)) Let ϑ̂N and ϑ̂

denote the optimal values of problems (3.2) and (3.1) respectively. Under Assump-
tion 3.2, for any positive number ε, there exist positive constants Ĉ(ε) and β̂(ε) such
that

Prob
(
|ϑ̂N − ϑ̂ | ≥ ε

)
≤ Ĉ(ε)e−β̂(ε)N ,

when N is sufficiently large.

Proof The conclusion follows directly from Lemma 3.1 in that conditions (a) and (b)
of Lemma3.1 are implied by conditions (c)–(d) and (b) ofAssumption 3.2 respectively.
We omit the details. ��

3.2 Stationary points

In the case when f (x, ξ) is not convex in x , problem (3.2) is not a convex optimization
problem. In such a case, we may not be able to obtain an optimal solution by solving
the problem. This motivates us to study convergence of stationary points. Let xN be
just a stationary point of problem (3.2). We look into whether any cluster point of
sequence {xN } is a stationary point of (3.1).

To ease the exposition of analysis and maximize the potential application of the
convergence results, we consider the general problems (3.3) and (3.4). Throughout this
subsection, we assume g is continuously differentiable in x for every ξ . Therefore,
both v(x) and vN (x) are Lipschitz continuous. Let

�N (x) := arg max
j=1,...,N

gN (x, ξ j ) and �∗(x) := argmax
ξ∈�

g(x, ξ).

Recall that the Clarke subdifferential of a locally Lipschitz continuous function
φ(x) at x , denoted by ∂φ(x), is defined as follows:

∂φ(x) := conv

⎧⎪⎪⎨
⎪⎪⎩

lim
x ′∈D
x ′→x

∇φ(x ′)

⎫⎪⎪⎬
⎪⎪⎭

,

where D denotes the set of points near x at which φ is Fréchet differentiable, ∇φ(x)
denotes the gradient of φ at x . In the case when φ is convex, the Clarke subdifferential
coincides with the convex subdifferential, see [12] for details.

By [12, Theorem 2.8.2], the Clarke subdifferential of v(x) can be written as

∂v(x) = {
EP [∇x g(x, ξ)] : P ∈ P[�∗(x)]} ,
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whereP[S] signifies the collection of probability measures supported on S. Likewise,
by [12, Proposition 2.3.12],

∂vN (x) = conv{∇x g(x, ξ
j ) : ξ j ∈ �N (x)}. (3.14)

Proposition 3.1 (Subdifferential consistency) Let � be a compact set and {xN } con-
verge to x∗. Suppose that conditions (b) and (c) of Lemma 3.1 hold. Then

lim
N→∞D(∂vN (xN ), ∂v(x∗)) = 0.

Proof Let ηN ∈ ∂vN (xN ) be any element of the subdifferential. By the definition of
D, it suffices to show that every accumulation point of sequence {ηN } lies in ∂v(x∗).
By taking a subsequence if necessary, we may assume without loss of generality that
ηN → η∗. Let |�N (xN )| denote the cardinality of set �N (xN ).

By relabeling the samples, we may assume

�N (xN ) = {ξ1, . . . , ξ |�N (xN )|}.

Using the property of the Clarke subdifferential, we deduce from (3.14) that there exist

positive numbers a j ∈ [0, 1], j = 1, . . . , |�N (xN )| such that
∑|�N (xN )|

j=1 a j = 1 and

ηN =
|�N (xN )|∑

j=1

a j∇x g(x
N , ξ j ).

Let

PN (ξ) :=
{
a j , for ξ = ξ j , j = 1, . . . , |�N (xN )|,
0, otherwise.

Then we may view PN as a probability distribution of ξ over the support set �N (xN )

and consequently write ηN as

ηN = EPN [∇x g(x
N , ξ)].

LetP(�) denote the set of all probability measures over � induced by ξ . Since � is
a compact set, thenP(�) is weakly compact, which means {PN } must have a weakly
convergent subsequence. Assume for simplicity of notation that PN → P∗ weakly.
Then P∗ ∈ P(�). Since g(x, ξ) is continuous and bounded on X × �, the weak
convergence and conditions (b) of Lemma 3.1 ensure

lim
N→∞ vN (xN ) = lim

N→∞EPN [g(xN , ξ)] = EP∗ [g(x∗, ξ)].
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Moreover, since � is compact, all conditions of Lemma 3.1 are fulfilled. Thus vN (x)
converges to v(x) uniformly over X as N → ∞. Likewise

lim
N→∞ ηN = lim

N→∞EPN [∇x g(x
N , ξ)] = EP∗ [∇x g(x

∗, ξ)] = η∗.

To complete the proof, we need to show that P∗ ∈ P[�∗(x∗)]. But this follows from
the definition of P[�∗(x∗)] in that the uniform convergence of vN (x) to v(x) ensures
EP∗ [g(x∗, ξ)] = v(x∗). ��

With Proposition 3.1, we are ready to study the convergence of stationary points.
We call (x,�) a stationary point of problem (3.1) if it satisfies

0 ∈ ∂v(x,�) + NX (x) × N{0}×K(�),

where {0} ×K is defined as in (2.3), andNZ (z) denotes the Clarke normal cone to Z
at z, that is, for z ∈ Z ,

NZ (z) =
{
ζ ∈ V : ζ T t ≤ 0,∀t ∈ TZ (z)

}
,

TZ (z) = lim inf
t→0, Z�z′→z

1

t
(Z − z′)

andNZ (z) = ∅ when z /∈ Z . Likewise, we say (x,�) is a stationary point of problem
(3.2) if it satisfies

0 ∈ ∂vN (x,�) + NX (x) × N{0}×K(�).

Theorem 3.2 (Convergence of the stationary point of (3.2)) Let {(xN ,�N )} be a
sequence of stationary points of problem (3.2) and (x∗,�∗) be its accumulation point.
Under the conditions of Proposition 3.1, (x∗,�∗) is a stationary point of problem (3.1).

Proof Theorem 3.2 follows from the outer semicontinuity of normal conesNX (·) and
N{0}×K(·) and the consistency of the subdifferential of Proposition 3.1. ��

3.3 Cutting plane method

We now turn to discuss numerical methods for solving problem (3.2) with a fixed
sample. This is a deterministic convex program when f (x, ξ) is convex in x for every
ξ . We propose to apply the well known cutting plane method for solving the problem.

Algorithm 3.1 (Cutting plane method for problem (3.1)) Let M be a large positive
number. Set t := 0, and

F0 := X × [−M, M] × Sn1 × · · · × Sn p × Sn p+1
+ × · · · × Snq

+ .
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Step 1. Solve the linear semidefinite programming problem:

inf
x,λ0,�1,...,�q

λ0

s.t. (x, λ0,�1, . . . , �q) ∈ Ft .
(3.15)

Let (xt , λt0,�
t
1, . . . , �

t
q) denote the optimal solution.

Step 2. Find j∗t such that

j∗t ∈ argmax

{
f (xt , ξ j ) − λt0 −

q∑
i=1

�t
i ◦ �i (ξ

j ) : j = 1, . . . , N

}
.

Step 3. If f (xt , ξ j∗t )−λt0−
∑q

i=1 �t
i ◦�i (ξ

j∗t ) ≤ 0, stop, return (xt , λt0,�
t
1, . . . , �

t
q)

as the optimal solution. Otherwise, construct a feasibility cut

ϒt (x, λ0,�1, . . . , �q) = ∇x f (x
t , ξ j∗t )T (x − xt ) + f (xt , ξ j∗t ) − λ0

−
q∑

i=1

�i ◦ �i (ξ
j∗t )

and set

Ft+1 := Ft ∩ {(x, λ0,�1, . . . , �q) : ϒt (x, λ0,�1, . . . , �q) ≤ 0
}
.

Go to Step 1 with t := t + 1.

The algorithmic procedures follow the classical cutting plane method by Kelley
[23].Theonlyminor difference is that our problem (3.2) involves somematrix variables
and problem (3.15) has to be solved by an SDP solver. Convergence of the algorithm
can be easily established similar to Kelley [23], we omit the details.

4 Discretization of the ambiguity set

The randomization scheme (3.2) may be investigated from a different perspective.
Let �N := {ξ1, . . . , ξ N }. If we restrict the ambiguity set P in (1.2) to the discrete
probability measures with support set �N , then we have

PN =
⎧⎨
⎩(p1, . . . , pN ) :

N∑
j=1

p j�(ξ j ) � 0,
N∑
j=1

p j = 1, p j ≥ 0, j = 1, . . . , N

⎫⎬
⎭ .

Here instead ofwritingP , we usePN to indicate that the set depends on�N . Obviously
PN ⊂ P in the sense that for every (p1, . . . , pN ) ∈ PN , PN := ∑N

j=1 p jδξ j (ξ) ∈ P,

where δξ j (ξ) denotes the Dirac probability measure over � with probability mass at
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ξ j . Consequently the distributionally robust optimization problem (1.1) can bewritten
as

min
x∈X max

(p1,...,pN )∈IRN+

∑N
j=1 p j f (x, ξ j )

s.t.
∑N

j=1 p
j�(ξ j ) � 0,∑N

j=1 p j = 1.

(4.1)

It is easy to verify that the Lagrange dual of the inner maximization problem can be
written as

inf
x,λ0,�1,...,�p

λ0

s.t. x ∈ X, λ0 ∈ IR,

�i � 0, for i = 1, . . . , q,

f (x, ξ j ) − λ0 −∑p
i=1 �i ◦ �i (ξ

j ) ≤ 0, j = 1, . . . , N ,

(4.2)

which is equivalent to (3.2). This means the randomization scheme in Sect. 4 is equiv-
alent to the discretization scheme (4.1). From numerical point of view, the difference
between (4.1) and (4.2) lies in the fact that the latter is a single minimization prob-
lem whereas the former a finite dimensional min–max optimization problem. When
f (x, ξ) is convex in x for every ξ , (4.1) becomes a saddle point problem. In the previ-
ous section, we have developed a numerical method for solving (4.2). Here our focus
is on a numerical scheme which solves (4.1) directly for fixed �N .

Our idea is based on the classical cutting plane method to be applied to the con-
vex function vN (x) := supP∈PN

EP [ f (x, ξ)] over the compact set X , which can be
described as follows: we start by selecting a probability p0 ∈ PN and x0 ∈ X . Let
l0(x) := Ep0 [ f (x0, ξ)] + Ep0 [∇x f (x0, ξ)]T (x − x0) and find a minimizer of l0(x)
over X . Note that l0(x) ≤ vN (x) for all x ∈ X but it is not necessarily a cutting plane
of vN (x) at x0 unless vN (x0) = Ep0 [ f (x0, ξ)]. Let x1 denote the optimal solution
of l0(x). Next, evaluate vN (x) at x1. We do so by solving the inner maximization
problem, that is, maximization of EP [ f (x1, ξ)] w.r.t. P over PN . Let p1 denote the
optimal solution. Then vN (x1) is the corresponding optimal value. If vN (x1) ≤ σ 1,
stop. Otherwise, let l1(x) := Ep1 [ f (x1, ξ)] + Ep1[∇x f (x0, ξ)]T (x − x1) and find
minimizer of max(l0(x), l1(x)). In this way, we generate a sequence of cutting planes
of vN (x) and a sequence of approximate optimal solutions {xt }.
Algorithm 4.1 (Direct cutting plane method for problem (4.1)) Let pt :=
(pt1, . . . , p

t
N ) and p0 ∈ PN . Let P0 := {p0} and x0 ∈ X . Set t := 0.

Step 1. Solve outer minimization problem

min
x,σ

σ

s.t. x ∈ X,∑N
j=1 p

t
j [ f (xt , ξ j ) + ∇x f (xt , ξ j )T (x − xt )] ≤ σ, for pt ∈ P t .

(4.3)

Let xt and σ t denote the optimal solution and optimal value respectively.
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Step 2. Solve the inner maximization problem

max
(p1,...,pN )∈IRN+

∑N
j=1 p j f (xt , ξ j )

s.t.
∑N

j=1 p j�(ξ j ) � 0,∑N
j=1 p j = 1.

(4.4)

Let pt and vt denote the optimal solution and optimal value. If vt ≤ σ t , then
stop.

Step 3. Let P t+1 := P t ⋃{pt } and t := t + 1, go to Step 1.

Algorithm4.1 is inspired by a similar algorithmproposed byPflug andWozabal [30]
for solving a distributionally robust portfolio problem and cutting surface method by
Mehrotra and Papp [26] for a general class of moment robust optimization. Compared
to the cutting surface method, our algorithm is not particularly aimed at finding a finite
number of “points” in � such that the inner maximum w.r.t. P is achieved at these
points, i.e., it is ordinary cutting surface method based on the fundamental idea of
cutting plane method.

In comparison with Algorithm 3.1, a notable difference is that Algorithm 4.1 builds
up cutting planes in the space of decision variables whereas Algorithm 3.1 construct
cutting planes in the space of decision variables and Lagrange multipliers. The differ-
ence affects applicability of the algorithms in different circumstances. We will come
back to this in Sect. 5 after conducting some comparative numerical tests of the two
algorithms.

Following convergence of classical cutting plane method (see [23]), we can assert
the convergence of Algorithm 4.1.

Theorem 4.1 (Convergence of Algorithm 4.1) Let {xt } be a sequence generated by
Algorithm 4.1. Then xt converges to an optimal solution of problem (4.1).

Note that Algorithm 4.1 is proposed for solving the discretized minimax problem
(4.1) for fixed sample size N . It might be interesting to ask whether the optimum
obtained from the sampling scheme converges to the optimum of the original DRO
(1.1) as N increases. The following theorem addresses this.

Theorem 4.2 (Convergence of discretization scheme (4.1)) Let xN be the optimal
solution of problem (4.1). Assume: (a) for each P ∈ P , there exists a sequence
{PN } ⊂ PN such that PN converges to P weakly; (b) � is a compact set. Then w.p.1
an accumulation point of {xN } is an optimal solution of problem (1.1).

Proof Since xN is an optimal solution of problem (4.1), there exists PN ∈ PN such
that (xN , PN ) is a saddle point of minx∈X maxP∈PN 〈P, f (x, ξ)〉, i.e.,

max
P∈PN

〈P, f (xN , ξ)〉 = 〈PN , f (xN , ξ)〉 = min
x∈X 〈PN , f (x, ξ)〉. (4.5)

On the other hand, since � is a compact set in Euclidean space, by [33, Theo-
rem 1.12] P(�) is weakly compact under the topology of weak convergence. The
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latter guarantees every sequence in P contains a convergent subsequence, see Rachev
[33,34]. By taking a subsequence if necessary, we may assume that xN → x∗ and
PN → P∗ weakly. By the second equality of (4.5), we obtain 〈P∗, f (x∗, ξ)〉 ≤
minx∈X 〈P∗, f (x, ξ)〉. In what follows, we show

max
P∈P

〈P, f (x∗, ξ)〉 ≤ 〈P∗, f (x∗, ξ)〉,

which will then enable us to claim

max
P∈P

〈P, f (x∗, ξ)〉 ≤ 〈P∗, f (x∗, ξ)〉 ≤ min
x∈X 〈P∗, f (x, ξ)〉,

and hence (x∗, P∗) is a saddle point of minx∈X maxP∈P 〈P, f (x, ξ)〉. Assume for the
sake of a contradiction that there exists P̂ ∈ P such that

〈P̂, f (x∗, ξ)〉 > 〈P∗, f (x∗, ξ)〉. (4.6)

Since f (x, ξ) is continuous in (x, ξ), by (4.6), for N sufficiently large 〈P̂, f (xN , ξ)〉 >

〈PN , f (xN , ξ)〉. Moreover, under condition (a), there exists a sequence {P̂N } ⊂ PN

converging to P̂ weakly such that

〈P̂N , f (xN , ξ)〉 > 〈PN , f (xN , ξ)〉,

which contradicts the first equality of (4.5). ��
Corollary 4.1 Consider problem (1.1). Assume: (a) the moment system in the defini-
tion of the ambiguity set P (see (1.2)) does not have equality constraints, i.e., p = 0;
(b) there exists probability measure P0 such that

〈P0, �i (ξ)〉 ≺ 0, for i = 1, . . . , q;

(c) for any ε > 0 and ξ ∈ �, there exists ξ ′ ∈ �N such that ‖ξ − ξ ′‖ ≤ ε almost
surely as N sufficiently large; (d) � is a compact set. Then w.p.1 every accumulation
point of {xN } is an optimal solution of problem (1.1).

Proof Let P̂ be defined as in the proof of Theorem 4.2. Let λ ∈ (0, 1) be a constant
and P0 be defined as in condition (b), let Pλ := λP̂ + (1− λ)P0. Since P is a convex
set, Pλ ∈ P and

〈Pλ,�(ξ)〉 = λ〈P̂, �(ξ)〉 + (1 − λ)〈P0, �(ξ)〉 ≺ 0. (4.7)

For fixed λ, there exists P̂λ
N ∈ PN such that P̂λ

N converges weakly to Pλ. To see this,
let {�1, . . . , �N } be a Voronoi partition, that is,�i , i = 1, . . . , N are pairwise disjoint
sets with

�i ⊆
{
y : ‖y − ξ i‖ = min

k
‖y − ξ k‖

}
.
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Let P̂λ
N = ∑N

i=1 pi1ξ i , where pi = Pλ(�i ) and 1ξi denotes the Dirac probability
measure at ξi . Under condition (b), the largest diameter of the Voronoi cells goes to
zero as N increases. Consequently, we deduce by [28, Lemma 4.9] that P̂λ

N converges
to Pλ under the Wasserstein/Kantorovish metric as N → ∞. The latter guarantees
weak convergence of P̂λ

N to Pλ becauseWasserstein/Kantorovishmetricmetrizesweak
convergence; see [27, Section 2.1]. Let λ → 1. The discussion above shows that there
exists a sequence {P̂λ

N } ⊂ PN converging to P̂ weakly as N → ∞. The rest of the
proof are similar to that of Theorem 4.2. ��

It might be helpful to make a few comments about the conditions of Theorem 4.2
and Corollary 4.1.

First, from the proof of the corollary, we can see that conditions (b) in the theorem
can be replaced by conditions (b) and (c) in the corollary when the moment system in
the definition of P does not involve an equality constraint. It is an open question as to
whether this is correct when the moment system involves an equality constraint, we
leave this for our future research. We prefer conditions (b) and (c) in the corollary to
condition (b) of the theorem in that the former are more verifiable. Moreover, since
condition (b) in the corollary is a Slater condition, it ensures strong duality for the inner
maximization problem of (1.1) whereas condition (b) of the theorem does not have
such a guarantee. Further, under conditions (b) and (c) of the corollary, convergence
of the optimal value of problem (4.1) can be drawn directly from Theorem 3.1, and in
that case Theorem 4.2 may be understood as complementing Theorem 3.1 by ensuring
convergence of the optimal solution. In contrast, under condition (b) of the theorem, it
is unclear whether Theorem 3.1 would also give us a guarantee of convergence of the
optimal value of (3.2) to that of problem (1.1) without the Slater condition (although
we may verify the lower semicontinuity condition derived in Sect. 2). Overall, we
conclude that the discretization scheme (4.1) is a bit safer than scheme (3.2) in the
absence of strong duality for the inner maximization problem (1.1).

Second, condition (c) of the corollary means that�N may be iid samples generated
by any continuous distribution with support set � or constructed in a deterministic
manner.

Third, in the absence of strong duality, the optimal value of the discretized minimax
optimization problem (4.1) provides a lower bound for the optimal value of the original
distributionally robust optimization problem (1.1) because the discretized ambiguity
set PN is smaller than P . In contrast, the optimal value of problem (3.1) may provide
an upper bound for problem (1.1) as it is formulated through the Lagrange dual of the
inner maximization problem. The follow-up discretization scheme (3.2) gives a lower
bound for the optimal value of problem (3.1). Overall, in the absence of strong duality,
we can conclude via Theorem 3.1 that the optimal value of problem (3.2) provides an
upper bound for problem (1.1) when N is sufficiently large.

5 Numerical tests

In this section, we investigate the numerical performance of Algorithms 3.1 and 4.1
by carrying out some comparative analysis. We do so by applying them to a portfolio
optimization problem and a multiproduct newsvendor problem. In the implementation
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Fig. 1 CPU time versus sample size, Example 5.1
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Fig. 2 CPU time versus the number of portfolios, Example 5.1

of the algorithms, we use the ambiguity set defined as in (2.12) with γ1 = 0.1 and
γ2 = 1.1. The mean and covariance matrix μ0 and �0 are calculated through samples
which are either obtained from historical data (in the first example) or generated by
computer (in the second example).

The tests are carried out in MATLAB 8.0 installed on a Thinkpad T430 notebook
computer with Windows 7 operating system and Intel Core i5 processor. The SDP
subproblems inAlgorithms 4.1 and 3.1 are solved byMatlab solver “SDPT3-4.0” [45].

Example 5.1 We consider a portfolio optimization problem where the investor makes
an optimal decision using historical return rate of 80 stocks between May 2009 and
April 2015 fromNationalAssociation of SecuritiesDealAutomatedQuotations (NAS-
DAQ) index. The sample size is 2000. To simplify the discussions, we ignore the
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transaction fee, therefore the total value of portfolio is

f (x, ξ) = ξ1x1 + ξ2x2 + · · · + ξnxn,

where ξ j denotes the random return rate of asset j .
The investor wants to choose several stocks from NASDAQ index with highest

average return rates and make an optimal decision based on them, where the average
return rates in the selection rule are calculated by taking average from all historical
rates. In order to compare the two algorithms, we have carried out two sets of experi-
ments. One is for the fixed number of portfolios as 5, we examine the performance of
the algorithms in terms of CPU time with different sample sizes. This is to investigate
sensitivity of the algorithms w.r.t. the change of sample size. The other is for fixed
sample size 500, we test the performance of the algorithms as problem size increases
from 5 to 80.

The results are depicted in Figs. 1 and 2 which show the relationships between CPU
time and sample size and CPU time and portfolio size. In Fig. 1, we can see that the
CPU time of Algorithm 4.1 increases rapidly at a linear rate as sample size increases
whereas Algorithm 3.1 is not sensitive to the change of sample size. The underlying
reason is that increase of sample size does not impact on the problem size of (3.2) but
it does affect the size of inner maximization problem of (4.4).

Figure 2 displays an opposite performance of the two algorithmswherewefix up the
sample size to 500 but increase the portfolio size. The phenomena can be interpreted
by the fact that Algorithm 3.1 is sensitive to the increase of portfolio size (number
of variables of x) because the cutting planes are constructed in higher dimensional
vector and matrix spaces. With the matrix variables in place, any increase of the
number of variables of x will significantly affect the overall problem size and hence
the effectiveness of the cutting plane method. In contrast, the change of portfolio
size does not have any impact on the size of problem (4.4) which is a key step of
Algorithm 4.1, and its impact on outer minimization problem (4.3) is limited because
the latter is an LP without any matrix variables.

In Example 5.1, the objective function is linear in x , so we don’t need linearization
at Step 1 of Algorithm 4.1. In what follows, we consider the case when the objective
function is nonlinear.

Example 5.2 (Multiproduct newsvendor problem varied from Wiesemann et al.
[49]) Assume that a newsvendor trades in i = 1, . . . , n products. Before observing
the uncertain demands ξi , the newsvendor orders xi units of product i at the wholesale
price ci . Once ξi is observed, she can sell the quantity min(xi , ξi ) at the retail price
vi . Any unsold stock (xi − ξi )+ is cleared at the salvage price gi , and any unsatisfied
demand (ξi − xi )+ is lost.

We can describe the newsvendor’s total loss as a function of the order decision
x := (x1, . . . , xn)T :

L(x, ξ) = cT x − vT min(x, ξ) − gT (x − ξ)+ = (c − v)T x + (v − g)T (x − ξ)+,

where the minimum and nonnegativity operator are applied componentwise.
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Fig. 3 CPU time versus sample size, Example 5.2

We study the risk-averse variant of the multiproduct newsvendor problem:

min
x

sup
P∈P

EP [U (L(x, ξ))], (5.1)

where U (y) := ey/10 is an exponential disutility function. In order to compare per-
formance of the two algorithms, we have carried out three sets of experiments. The
first one is for the fixed number of products as 7, we examine the performance of the
algorithms in terms of CPU times with different sample sizes from 400 to 900, the
results are depicted in Fig. 3. The second one is for fixed sample size 100, we test the
performance of the algorithms as problem size (number of products) increases from 9
to 27, the results are displayed in Fig. 4. The third one is for fixed number of products
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Fig. 6 Convergence of optimal values from Algorithm 4.1, Example 5.2

as 2, we investigate the performance of the optimal values from the two algorithms
when the sample size increases from 100 to 900. We generate 20 groups of samples
for each sample size, calculate the optimal value by the two algorithms for each group
and show the convergence in Figs. 5 and 6.

The data are generated as follows: for i th product, the wholesale, retail and savage
prices are set with ci = 0.1(5+ i −1), vi = 0.15(5+ i −1) and gi = 0.05(5+ i −1);
the vector of the product demands ξ is characterized by a multivariate log-normal
distribution with the mean μ = (μ1, . . . , μn), μi = 2, i = 1, . . . , n, and covariance
� = (σi j ), σi i = 0.35 + 0.01 ∗ (i − 1) and σi j = 0.01 for i �= j , i, j = 1, . . . , n.

Figures 3 and 4 display similar patterns to what we observed in Example 5.1 about
change of CPU times against variation of the sample size and the number of products
(the problem size). Figures 5 and 6 display the same trend of convergence of the
optimal values obtained from the two algorithms as the sample size increases through
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boxplot.We can see roughly that the optimal values (or the range of the optimal values)
converge relatively quickly when the sample size less than 500 and the convergence
slows down when the sample size reaches 700. The observation is consistent with our
established exponential convergence results. Note that no gap is observed as the strong
duality holds in this case.

6 Conclusion

The paper explores conditions for strong duality in distributionally robust optimiza-
tion with moment constraints and discrete approximation schemes for solving such
problems. For the moment problems with only inequality constraints, Slater condi-
tion is often satisfied and in this paper we show how it can be verified for some
specific moment problems. For the moment problems with equality and/or inequality
constraints, the strong duality often requires the Slater type conditions which are rel-
atively difficult to fulfil and verify. In the absence of the Slater type conditions, it is
discovered that a new condition based on lower semicontinuity of the perturbed inner
maximization may be used.

We propose two discrete approximation schemes for solving (1.1): one through
the well known Lagrange dual formulation and the other through discretization of
the ambiguity set which is effectively a kind of direct discretization of the minimax
optimization problem. In terms of the optimal value, the dual based discretization
scheme tends to give an upper bound whereas the direct discretization gives rise to
a lower bound in the absence of strong duality. We then apply the well known cut-
ting plane method to solve the respective discretized problems. In view of numerical
efficiency, the preliminary tests show that the dual based discretization scheme is
more sensitive to the increase of decision variables whereas the direct discretiza-
tion scheme is more sensitive to the increase of the sample size. Neither of the
schemes requires any specific structure of the underlying functions in the moment
problems, in the objective or specific structure of the support set of the random vari-
able, hence they provide an alternative to the mainstream SDP based approaches in the
literature.

There is a prospect of applying the discretization schems to distributionally robust
optimization problemswith objective ofminimizing risks. For example, in formulation
(1.1), if we replace the expected loss EP [ f (x, ξ)] with CVaR of f (x, ξ) as defined in
(3.7), then the objective becomes minimization of the worst CVaR. By exchanging the
operation ofminimizationw.r.t. η andmaximization w.r.t. probabilitymeasure, we end
up with the standard formulation (1.1) with an auxiliary “decision variable” η. Similar
reformulation can be applied to the case when the objective is a convex composition
of EP [ f (x, ξ)] through Fenchel duality. Thus both the theoretical results in Section 2
and the numerical schemes in Sects. 3–4 apply to a large class of distributionally robust
optimization problems with moment constraints.
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123



528 H. Xu et al.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Anderson, E., Xu, H., Zhang, D.: Varying confidence levels for CVaR risk measures and minimax
limits manuscript (2014)

2. Athreya, K.B., Lahiri, S.N.: Measure Theory and Probability Theory, Springer texts in statistics.
Springer, New York (2006)

3. Ben-Tal, A., Nemirovski, A.: Robust truss topology design via semidefinite programming. SIAM J.
Optim. 7, 991–1016 (1997)

4. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Prince-
ton, NJ (2009)

5. Berge, C.: Espaces topologiques et fonctions multivoques. Dunod, Paris (1959)
6. Bertsimas, D., Doan,X.V., Natarajan, K., Teo, C.-P.:Models forminimax stochastic linear optimization

problems with risk aversion. Math. Oper. Res. 35, 580–602 (2010)
7. Bertsimas, D., Popescu, I.: Optimal inequalities in probability theory: a convex optimization approach.

SIAM J. Optim. 15, 780–804 (2005)
8. Beyer, H.-G., Sendhoff, B.: Robust optimization—a comprehensive survey. Comput. Appl.Mech. Eng.

196, 3190–3218 (2007)
9. Billingsley, P.: Convergence of Probability Measures. Wiley, Hoboken (1999)

10. Calafiore, G., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels.
Math. Prog. 102, 25–46 (2005)

11. Chen, M., Mehrotra, S.: Epi-convergent scenario generation method for stochastic problems via sparse
grid, Stochastic Programming E-Print (2008)

12. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
13. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to

data-driven problems. Oper. Res. 58, 592–612 (2010)
14. Dupac̆ová, J.: Uncertanities in minimax stochastic programs. Optimization 60, 1235–1250 (2011)
15. Esfahani, P.M., Sutter, T., Lygeros, J.: Performance bounds for the scenario approach and an extension

to a class of non-convex programs. IEEE T Autom. Control 60(1), 46–58 (2015)
16. Feinberg, E.A., Kasyanov, P.O., Zadoianchuk, N.V.: Fatou’s lemma for weakly converging probabili-

ties. Theory Probab. Appl. 58, 683–689 (2014)
17. Goh, J., Sim, M.: Distributionally robust optimization and its tractable approximations. Oper. Res. 58,

902–917 (2010)
18. Goldfarb, D., Iyengar, G.: Robust portfolio selection problems. Math. Oper. Res. 28, 1–38 (2003)
19. Guo, S., Xu, H., Zhang, L.: Stability analysis for mathematical programs with distributionally robust

chance constraint. SIAM J. Optim (to appear)
20. Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim.

Appl. 24, 187–206 (2003)
21. Hu, Z., Hong, J.: Kullback–Leibler divergence constrained distributionally robust optimization,

manuscript (2012)
22. Karney, D.F.: Duality gaps in semi-infinite liner programming—an approximation problem. Math.

Program. 20, 129–143 (1981)
23. Kelley, J.E.: The cutting-plane method for solving convex programs. SIAM J. Appl. Math. 8, 703–712

(1960)
24. Kupka, I., Toma, V.:Mannuscript of some known results aboutmultifunctions, Faculty ofMathematics,

Physics and Informatics, Comenius University, Bratislava, http://hore.dnom.fmph.uniba.sk/~svana/
veb/preklady/TK/ch4.pdf

25. Liu, Y., Meskarian, R., Xu, H.: Distributionally robust reward-risk ratio optimization with matrix
moments constraints. SIAM J. Optim (to appear)

26. Mehrotra, S., Papp, D.: A cutting surface algorithm for semiinfinite convex programming with an
application to moment robust optimization. SIAM J. Optim. 24, 1670–1697 (2014)

123

http://creativecommons.org/licenses/by/4.0/
http://hore.dnom.fmph.uniba.sk/~svana/veb/preklady/TK/ch4.pdf
http://hore.dnom.fmph.uniba.sk/~svana/veb/preklady/TK/ch4.pdf


Distributionally robust optimization with matrix moment… 529

27. Pflug, G.C., Pichler, A.: Approximations for probability distributions and stochastic optimization prob-
lems. In: Stochastic Optimization Methods in Finance and Energy, vol. 163, pp. 343–387. Springer,
New York (2011)

28. Pflug, G.C., Pichler, A.: Multistage Stochastic Optimization. Springer Series in Operations Research
and Financial Engineering. Springer, Berlin (2014)

29. Pflug, G.C., Pichler, A., Wozabal, D.: The 1/N investment strategy is optimal under high model ambi-
guity. J. Bank. Financ. 36, 410–417 (2012)

30. Pflug, G.C., Wozabal, D.: Ambiguity in portfolio selection. Quant. Financ. 7, 435–442 (2007)
31. Popescu, I.: Robust mean-covariance solutions for stochastic optimization. Oper. Res. 55, 98–112

(2007)
32. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49, 371–418 (2007)
33. Prokhorov, Y.V.: Convergence of random processes and limit theorems in probability theory. Theory

Probab. Appl. 1, 157–214 (1956)
34. Rachev, S.T.: Probability metrics and the stability of stochastic models. Wiley, Hoboken (1991)
35. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)
36. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)
37. Scarf, H.: A min-max solution of an inventory problem. In: Arrow, K.S., Karlin, S., Scarf, H.E. (eds.)

Studies in the Mathematical Theory of Inventory and Production, pp. 201–209. Stanford University
Press, Palo Alto (1958)

38. Shapiro, A.: On duality theory of conic linear problems. In: Miguel et al. (eds.) SemiInfinite Program-
ming: Recent Advances, pp. 135-165 (2001)

39. Shapiro, A.: Monte Carlo sampling methods. In: Rusczyński, A., Shapiro, A. (eds.) Stochastic Pro-
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