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COSMIN SAFTA‡ , AND JEAN-PAUL WATSON§

Abstract. Distributionally robust optimization (DRO) is widely used because it offers a way to
overcome the conservativeness of robust optimization without requiring the specificity of stochastic
programming. On the computational side, many practical DRO instances can be equivalently (or
approximately) formulated as semidefinite programming (SDP) problems via conic duality of the
moment problem. However, despite being theoretically solvable in polynomial time, SDP problems
in practice are computationally challenging and quickly become intractable with increasing problem
sizes. We propose a new approximation method to solve DRO problems with moment-based ambigu-
ity sets. Our approximation method relies on principal component analysis (PCA) for optimal lower
dimensional representation of variability in random samples. We show that the PCA approximation
yields a relaxation of the original problem and derive theoretical bounds on the gap between the
original problem and its PCA approximation. Furthermore, an extensive numerical study shows the
strength of the proposed approximation method in terms of solution quality and runtime. As exam-
ples, for distributionally robust conditional value-at-risk and risk-averse production-transportation
problems the proposed PCA approximation using only 50% of the principal components yields near-
optimal solutions (within 1%) with a one to two order of magnitude reduction in computation time.

Key words. stochastic programming, distributionally robust optimization, principal component
analysis, semidefinite programming

AMS subject classifications. 90C15, 90C22, 90C59
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1. Introduction. The ability of stochastic programming (SP) to incorporate
uncertainty within an optimization framework is driving its increasing popularity
as it caters to the needs of modeling uncertain real-world problems. There are many
applications of SP in energy, transportation, and finance [5, 9, 34]. We refer the reader
to Prékopa [33] and Shapiro, Dentcheva, and Ruszczński [39] for details on the theory
and applications of SP. In SP, the fundamental assumption is that the probability
distributions of uncertain parameters are either known or can be estimated with some
degree of accuracy. However, in many real-world applications this assumption is not
necessarily realistic since the probability distribution is typically unknown as it may
only be indirectly observable or estimated through limited samples. And due to the
limited number of samples, estimation of the uncertainty space may be biased such
that the solution may be suboptimal and perform poorly out-of-sample.
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A practical alternative to SP is robust optimization (RO), where only the sup-
port of uncertain parameters is assumed to be available. RO ensures that solutions
are feasible for all realizations of the uncertain parameters, and are therefore robust
against the full variability of the uncertain parameters. RO has been applied in a
broad range of areas, such as control theory and energy systems [4, 25]. For a com-
prehensive overview of RO theory and applications, we refer the reader to [2, 3] and
references therein. However, aside from the support, RO models do not exploit addi-
tional distributional details, such as any moment information, which may be available
even when the probability distribution is not fully known. It is beneficial to employ
advanced RO methods that leverage available distributional information, aside from
the support, to reduce conservativeness and improve solution quality.

Distributionally robust optimization (DRO), which dates back to the 1950s [35],
was developed to fill this gap. In DRO, the probability distributions of uncertain
parameters are assumed to belong to an ambiguity set, a family of distributions
that share common properties. Since the introduction of DRO by Scarf [35], sev-
eral ambiguity sets have been proposed and analyzed. Among these, three types
have received significant attention: moment-based ambiguity sets, structural am-
biguity sets, and metric-based ambiguity sets. In moment-based ambiguity sets,
it is assumed that all distributions in the distribution family share the same mo-
ment information [8, 10, 29, 32, 43, 44]. In structural ambiguity sets, distributions
share the same structural properties, such as symmetry, unimodality, and monotonic-
ity [20, 31, 40, 41]. Metric-based ambiguity sets are created by requiring that all
distributions are close to a reference (or nominal) distribution within a prespeci-
fied probability distance. The reference distribution is usually estimated using sam-
pled data. Several types of probability distance functions have been proposed: the
Prohorov metric [12], the φ-divergence [1, 17, 24, 26], and the Wasserstein metric
[13, 14, 15]. We observe that DRO with the Wasserstein metric gained popularity
recently as Wasserstein ambiguity sets provide powerful out-of-sample performance
guarantees and enable decision makers to control the degree of conservativeness of the
underlying optimization problem [13]. We refer the reader to [7, 13, 14, 15, 16, 36, 37]
for more information on Wasserstein ambiguity sets as well as some established results
on the equivalence between regularization and the corresponding DRO problem.

Leveraging conic duality for moment problems [23, 38] and developments in in-
terior point algorithms for solving semidefinite programming (SDP) problems, many
DRO problems with moment-based ambiguity sets can be reformulated equivalently
(or approximately) as SDP problems. Although SDP problems can be solved theo-
retically in polynomial time, significant computational hurdles remain in practice for
large-scale instances. Consequently, recent research has focused on reducing the size
of SDP reformulations by exploiting DRO problem structure [8, 28, 29]. Natarajan,
Sim, and Uichanco [29] proposed a computationally efficient second-order cone pro-
gramming (SOCP) exact reformulation for a class of robust expected utility models
under known mean and covariance matrix. Cheng, Delage, and Lisser [8] developed
an SOCP reformulation for distributionally robust chance constrained problems by
integrating independence information. Recently, Natarajan and Teo [28] developed
an exact SDP reformulation that is smaller in size than existing SDP formulations for
specially structured DRO problems with second-order moment information.

Another promising alternative, which we explore in this work, is the development
of approximation methods that provide efficient trade-offs between solution quality
and computational tractability, using smaller-size SDP formulations for solving DRO
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problems. The size of matrices in the SDP formulations of DRO problems increases
quadratically with the number of random variables involved. Thus, one potential ap-
proximation approach would employ dimensionality reduction approaches to reduce
the number of random variables under consideration. In this context, principal com-
ponent analysis (PCA) is an effective technique. PCA employs a linear combination
of orthogonal eigenmodes to provide an optimal representation of the variability in
the data. For more information on PCA, we refer the reader to [42].

In this paper, we study DRO problems with moment-based ambiguity sets, which
account for information about the support, mean, and covariance of random variables.
Although the Wasserstein ambiguity set offers powerful out-of-sample performance
guarantees for decision makers, the Wasserstein ambiguity set and the moment-based
ambiguity set are complementary to each other, each with distinct advantages. For
instance, [16] shows that DRO with moment-based ambiguity set performs better than
DRO with Wasserstein ambiguity set in high-correlation regimes, while DRO with
Wasserstein ambiguity set performs better in medium- and low-correlation regimes.
Thus, efficiently solving DRO problems with moment-based ambiguity sets remains an
important and challenging problem. We present a dimensionality reduction scheme
for DRO based on PCA, which allows for direct control of the trade-offs between
solution quality and computation time. However, the PCA approximation technique
proposed later can not be directly applied to DRO with Wasserstein ambiguity sets.

The contributions of this paper can be summarized as follows.
1. We propose a new approximation method based on PCA to reduce the dimen-

sionality of DRO problems with moment-based ambiguity sets. This proposed
approximation framework can also be extended to more general ambiguity
sets.

2. We show that the PCA approximation yields a relaxation of the original
problem and quantify the impact of the number of principal components on
solution quality by deriving theoretical bounds on the gap between the orig-
inal problem and its PCA approximation. Moreover, we prove that the PCA
approximation is exact when all the principal components are considered.

3. We demonstrate the efficacy of the proposed PCA approximation for solving
large-scale problems and verify the theoretical results through a comprehen-
sive numerical study on a distributionally robust conditional value-at-risk
(CVaR) problem and a risk-averse production-transportation problem. Nu-
merical results show that the proposed PCA approximations with only half
of the principal components yield near-optimal solutions (within 1%) with a
one to two order of magnitude reduction in computation time.

The remainder of this paper is organized as follows. In section 2, we present the
DRO problem, develop our PCA approximation framework, and derive theoretical
results. In section 3, we extend the approximation method to distributionally robust
chance constrained programs. In section 4, a comprehensive numerical study on a
CVaR problem and a risk-averse production-transportation problem is conducted to
demonstrate the strengths of the proposed approximation method. Finally, section 5
discusses future work and concludes the paper.

2. PCA approximation for DRO problems. In this section, we describe
the reformulation strategies of [10] to transform DRO problems with moment-based
ambiguity sets into equivalent SDP problems. We then describe low-rank approxima-
tions for matrices and apply one such method, principal component analysis (PCA),
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to effectively approximate the SDP reformulation of the DRO problem. Finally, we
present theoretical bounds on the quality of the proposed PCA approximation.

2.1. SDP reformulation for DRO problems. We consider a stochastic op-
timization problem with the following form:

minimize
x∈X

EF f(x, ξ),(2.1)

where x ∈ R
n, X ⊂ R

n is a convex set, ξ ∈ R
m is random vector with a distribution

F , and f(x, ξ) is a cost function that is convex in x for a given ξ. In stochastic
optimization, it is typically assumed that distribution F is known exactly. However,
this assumption is overly restrictive in many cases. In many practical settings it is
difficult to infer the exact distribution given limited data samples. In such cases, it
may be necessary to work with only partial information on the distribution F , (e.g.,
its support and some moments). In other words, distribution F belongs to some
ambiguity set D that encompasses the partial information. Under a robust optimiza-
tion framework, we can consider the worst-case result of the stochastic optimization
problem, namely the distributionally robust optimization problem, as follows:

minimize
x∈X

maximize
F∈D

EF f(x, ξ).(2.2)

Here (2.2) can be interpreted as a risk-averse (conservative) approximation of prob-
lem (2.1). In the remainder of the paper, we focus on the moment-based ambiguity
set, where information on the support, mean, and covariance of ξ is known explicitly.

Assumption 1. The distributional ambiguity set, D(S, µ,Σ), accounts for infor-
mation about the convex support S, mean µ in the strict interior of S, and an upper
bound Σ ≻ 0 (positive definite) on the covariance matrix of the random vector ξ, i.e.,

(2.3) D(S, µ,Σ) =



F

∣∣∣∣∣∣

P(ξ ∈ S) = 1,
EF [ξ] = µ,
EF [(ξ − µ)(ξ − µ)T ] � Σ



 .

Remark 1. An extension to a more general ambiguity set—for instance, the mean
of ξ lies in an ellipsoid with center µ (see [10] for details)—is straightforward and is
omitted to simplify the introduction of the proposed approximation method. If Σ
is not positive definite, that is rank(Σ) < m, then ξ can be represented by a linear
combination of a subset of ξ with size rank(Σ) [27]. Thus, we replace ξ by a lower
dimensional vector of the problem under consideration and the assumption is satisfied.

Using ambiguity set D(S, µ,Σ), Delage and Ye [10] showed that problem (2.2) can
be reformulated as a semidefinite programming problem because of the conic duality
for moment problems.

Theorem 2.1. Under Assumption 1, if f(x, ξ) is F -integrable for any F ∈ D,
then problem (2.2) has the same optimal value as the following problem:

minimize
x,s,q,Q

s+ µTq + (Σ + µµT ) •Q(2.4a)

subject to s+ ξTq + ξTQξ ≥ f(x, ξ) ∀ξ ∈ S,(2.4b)

Q � 0, x ∈ X,(2.4c)

where s ∈ R, q ∈ R
m, Q ∈ R

m×m, and “•” is the inner product defined by A • B =∑
i,j AijBij, where A and B are two conformal matrices.
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Proof. The result can be deduced from Lemma 1 in [10] .

Corollary 2.2. When the support of ξ is polyhedral with at least one interior
point, i.e., S = {ξ|Aξ ≤ b} 6= ∅ with A ∈ R

n1×m and b ∈ R
n1 , if f(x, ξ) is a piece-

wise linear convex function in ξ (precisely, f(x, ξ) = maxKk=1 y
0
k(x) + yk(x)

T ξ, where
yk(x) = [y1k(x), . . . , y

m
k (x)]T as well as y0k(x) are affine in x for k = 1, . . . ,K),

problem (2.4) is reduced to the following problem:

minimize
x,s,q,λ,Q

s+ µTq + (Σ + µµT ) •Q(2.5a)

subject to

[
s− y0k(x)− λT

k b
(q−yk(x)+ATλk)

T

2
q−yk(x)+ATλk

2 Q

]
� 0 ∀k ∈ {1, . . . ,K},(2.5b)

Q � 0, λk ≥ 0 ∀k ∈ {1, . . . ,K}, x ∈ X,(2.5c)

where λk ∈ R
n1 , k = 1, . . . ,K.

Proof. The basic idea of the proof is to apply the strong duality theorem to
constraint (2.4b). Let

Zk =

[
s− y0k(x)− λT

k b
1
2 (q − yk(x) +ATλk)

T

1
2 (q − yk(x) +ATλk) Q

]
.

As f(x, ξ) is a piecewise linear convex function, constraint (2.4b) is reformulated as

(2.6) s+ ξTq + ξTQξ ≥ y0k(x) + yk(x)
T ξ ∀ξ ∈ S, ∀k ∈ {1, 2, . . . ,K}.

Let gk(ξ) := s+ ξTq + ξTQξ − y0k(x)− yk(x)
T ξ. Then constraint (2.6) is equivalent

to minimizeAξ≤b,ξ∈Rm gk(ξ) ≥ 0. Further, we consider the Lagrange dual problem
of minimizeAξ≤b gk(ξ), i.e., maximizeλk≥0 infξ gk(ξ) + λT

k (Aξ − b), where λk ∈ R
n1 .

Since function gk(ξ) is convex in ξ, and together with the assumption that there exists
an interior point for the primal problem, we have that constraint (2.6) is equivalent
to the following one:

(2.7) maximize
λk≥0

inf
ξ∈Rm

gk(ξ) + λT
k (Aξ − b) ≥ 0 ∀k ∈ {1, 2, . . . ,K}.

Further, constraint (2.7) is equivalent to the following:

∃λk ≥ 0, s+ ξTq + ξTQξ − y0k(x)− yk(x)
T ξ + λT

k (Aξ − b) ≥ 0 ∀ξ ∈ R
m, ∀k

⇔ ∃λk ≥ 0,
[
1 ξT

]
Zk

[
1
ξ

]
≥ 0 ∀ξ ∈ R

m, ∀k(2.8)

⇔ ∃λk ≥ 0, Zk � 0 ∀k,(2.9)

where the first equivalence is direct from the definition of Zk and we next prove the
latter equivalence. First, ⇐ follows directly from the definition of positive semidefi-
niteness of a matrix. Then we prove ⇒. For any [η0; η] ∈ R

m+1, where η0 ∈ R and
η ∈ R

m, there are two cases: η0 = 0 and η0 6= 0. When η0 = 0, we have

[
η0 ηT

]
Zk

[
η0
η

]
= ηTQη ≥ 0,
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where the inequality results from the positive semidefiniteness of Q. When η0 6= 0,
we have

[
η0 ηT

]
Zk

[
η0
η

]
= η20

[
1 ηT

η0

]
Zk

[
1
ηT

η0

]
≥ 0,

where the inequality is due to (2.8). Therefore, the conclusion of equivalence follows.

To distinguish (2.5) from subsequent approximation schemes, hereafter we will
refer to it as the original reformulation. Problem (2.5) is an SDP problem, and is
thus theoretically solvable in polynomial time. In practice, however, computational
challenges remain when the problem size is large. In order to reduce the size of the
moment inequality constraint, we employ principal component analysis (PCA) and
retain only the most important principal components (PCs). In what follows, we first
present the PCA approach from an optimization perspective.

2.2. Low-rank approximation for matrices. At the heart of our proposed
methods is exploiting the lower dimensional structure inherent in matrices in practical
applications. From a practical perspective, our goal is to approximate a large matrix
by a lower dimensional matrix to reduce problem sizes. The literature on approxi-
mating a matrix by a lower dimensional matrix dates back to the seminal paper by
Eckart and Young [11]. Eckart and Young showed that given an m×n matrix A, the
problem

min
Â

‖A− Â‖F subject to rank(Â) ≤ r ≤ n

can be solved using singular value decomposition of the matrix A. Let A = UΛV T be
the singular value decomposition of A such that Λ is a diagonal matrix with entries
λi and λ1 ≥ λ2,≥ · · · ≥ λm. Let ui and vi correspond to the columns of U and V ,
respectively. Define Ar =

∑r
i=1 uiλiv

T
i . Ar will be an optimal approximation for A

for the Frobenius and spectral norms. That is, Ar minimizes ‖A− Â‖F and ‖A− Â‖2.
In the remainder of this paper, we will use singular value decompositions (or,

specifically for our case, eigendecompositions) to approximate matrices in lower di-
mensions. As stated earlier, low-rank approximations are an active area of research
and many other approximations have been proposed based on alternative objective
functions and constraints. Our proposed approach is generalizable to these alterna-
tive low-rank approximation techniques. Our goal in this paper is to demonstrate
how low-rank approximations can be adopted in distributionally robust optimization,
and thus in this paper we will restrict our discussions to the most commonly used
technique for low-rank matrix approximations.

2.3. Low-rank approximation for DRO. The eigendecomposition of the pos-
itive definite matrix Σ can be expressed as follows:

Σ = UΛUT = UΛ1/2(UΛ1/2)T ,

where U ∈ R
m×m, Λ ∈ R

m×m is a diagonal matrix, and Λ1/2 replaces diagonal entries
of Λ with their square roots. Without loss of generality, it is assumed that the diagonal
elements of Λ are arranged in decreasing order. We introduce another random vector
ξI ∈ R

m whose ambiguity set is

DI(SI , µI ,ΣI) =




FI

∣∣∣∣∣∣∣

P(ξI ∈ SI) = 1,

EFI
[ξI ] = 0m,

EFI
[(ξI)(ξI)

T ] � Im





,
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where SI := {ξI ∈ R
m : UΛ1/2ξI + µ ∈ S}, 0m ∈ R

m is a vector of zeros, and Im is
the identity matrix of size m.

Lemma 2.3. If f(x, UΛ1/2ξI + µ) is FI-integrable for any FI ∈ DI , then the
original problem (2.2) has the same optimal value as

(2.10) minimize
x∈X

maximize
FI∈DI

EFI
f(x, UΛ1/2ξI + µ).

Proof. Letting ξ̄ := UΛ1/2ξI + µ, we denote the distribution of ξ̄ by F̄ . First, we
prove that F̄ ∈ D for any ξI ∼ FI ∈ DI . Because FI ∈ DI , we have EFI

[ξ̄] = µ and
EFI

[(ξ̄−µ)(ξ̄−µ)T ] � UΛUT = Σ. Moreover, as SI = {ξI ∈ R
m : UΛ1/2ξI +µ ∈ S},

ξI ∈ SI implies that ξ̄ ∈ S and thus P(ξ̄ ∈ S) ≥ P(ξI ∈ SI) = 1. As a consequence,
we have P(ξ̄ ∈ S) = 1. Therefore F̄ ∈ D.

Second, for any ξ ∼ F ∈ D, we prove that there exists a random vector ξI ∼
FI ∈ DI such that ξ = UΛ1/2ξI + µ. For any ξ ∼ F ∈ D, we first construct a vector
ξI = (UΛ1/2)−1(ξ − µ). It is straightforward to have EFI

[ξI ] = 0m and

EFI
[(ξI)(ξI)

T ] = EF [(UΛ1/2)−1(ξ − µ)(ξ − µ)T ((UΛ1/2)−1)T ]

� (UΛ1/2)−1Σ((UΛ1/2)−1)T

� Im.

Moreover, ξI = (UΛ1/2)−1(ξ − µ) implies that ξ = UΛ1/2ξI + µ. As ξ ∼ F ∈ D,
P(UΛ1/2ξI +µ ∈ S) = P(ξ ∈ S) = 1. Following the definition of SI , UΛ1/2ξI +µ ∈ S
implies that ξI ∈ SI and thus P(ξI ∈ SI) ≥ P(UΛ1/2ξI+µ ∈ S) = 1. Accordingly, we
have P(ξI ∈ SI) = 1. Therefore, we conclude that ξI ∼ FI ∈ DI and ξ = UΛ1/2ξI+µ.

Altogether, the proof is complete.

By Lemma 2.3, problem (2.10) is also equivalent to the original problem (2.2).
We now introduce an approximation of problem (2.10). Relying on the ideas be-
hind PCA, we use the leading m1 (m1 ≤ m) random variables of ξI , capturing
the dominant variability of UΛ1/2ξI in ξI , to approximate ξ. Specifically, ξ ≈

UΛ1/2[ξr;0m−m1
]+µ = Um×m1

Λ
1/2
m1

ξr+µ, where ξr ∈ R
m1 is them1-dimensional sub-

vector of ξI , 0m−m1
∈ R

m−m1 is a vector whose elements are zero, Um×m1
∈ R

m×m1

is the m×m1 upper-left submatrix of U , and Λ
1/2
m1

is the m1×m1 upper-left submatrix
of Λ1/2. Then we have the following approximation to (2.10):

minimize
x∈X

maximize
Fr∈Dr

EFr
f(x, Um×m1

Λ1/2
m1

ξr + µ),(2.11)

where

(2.12) Dr(Sr, µr,Σr) =



Fr

∣∣∣∣∣∣

P(ξr ∈ Sr) = 1,
EFr

[ξr] = 0m1
,

EFr [(ξr)(ξr)
T ] � Im1





and

(2.13) Sr := {ξr ∈ R
m1 : Um×m1

Λ1/2
m1

ξr + µ ∈ S}.
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Theorem 2.4. If f(x, Um×m1
Λ
1/2
m1

ξr + µ) is Fr-integrable for any Fr ∈ Dr, then
problem (2.11) has the same optimal value as the following problem:

Z∗(m1) := minimize
x,s,qr,Qr

s+ Im1
•Qr

(2.14)

subject to s+ ξTr q + ξTr Qrξr ≥ f(x, Um×m1
Λ1/2
m1

ξr + µ) ∀ξr ∈ Sr,

Qr � 0, x ∈ X,

where s ∈ R, qr ∈ R
m1 , and Qr ∈ R

m1×m1 . We also have the following.
1. The optimal value of problem (2.14) is a lower bound for that of problem (2.4).

In other words, problem (2.11) (the PCA approximation) is a relaxation of
problem (2.2).

2. The optimal value Z∗(m1) is a nondecreasing function of m1, i.e., Z
∗(m1) ≤

Z∗(m2) if m2 ≥ m1;
3. If m1 = m, the two problems have the same optimal values. In other words,

the PCA approximation provides an exact reformulation of problem (2.2).

Proof. We start with the deterministic reformulation, whose proof is the same as

that of Theorem 2.1. Let ζ = Um×m1
Λ
1/2
m1

ξr +µ and let Sζ and Dζ denote its support

and ambiguity set, respectively. As Sr = {ξr ∈ R
m1 : Um×m1

Λ
1/2
m1

ξr + µ ∈ S} and

Sζ = {ζ ∈ R
m : ζ = Um×m1

Λ
1/2
m1

ξr+µ, ξr ∈ Sr}, we can deduce Sζ ⊂ S. We also have
E[ζ] = µ and

E[(ζ − µ)(ζ − µ)T ] � Um×m1
Λm1

UT
m×m1

= U

[
Λm1

0m1,m−m1

0m−m1,m1
0m−m1,m−m1

]
UT � UΛUT = Σ,

where 0n,m is a zero matrix (all of whose elements are zero) of size n×m. Thus the
ambiguity set of ζ lies in D (the ambiguity set of ξ). Thus, we have Dζ ⊂ D and,
further,

maximize
Fζ∈Dζ

EFζ
f(x, ζ) ≤ maximize

F∈D
EF f(x, ξ).

Therefore the optimal value of problem (2.11) is a lower bound for that of prob-
lem (2.2).

Secondly, let ζ1 = Um×m1
Λ
1/2
m1

ξr1 + µ and ζ2 = Um×m2
Λ
1/2
m2

ξr2 + µ, where ξr1 ∈
R

m1 , ξr2 ∈ R
m2 for m2 > m1. We denote the ambiguity set and support of ξri , i =

1, 2, by Dri (defined as in (2.12)) and Sri (defined as in (2.13)), respectively, while
accordingly we denote the ambiguity set of ζi, i = 1, 2, by Dζi , i.e.,

Dζi = {Fζi |ζi ∼ Fζi , ζi = Um×mi
Λ1/2
mi

ξri + µ, ξri ∼ Fri ∈ Dri}.

For any ζ1 ∼ Fζ1 ∈ Dζ1 , there exists a ξr1 ∼ Fr1 ∈ Dr1 such that ζ1 =

Um×m1
Λ
1/2
m1

ξr1 + µ = Um×m2
Λ
1/2
m2

[ξr1 ;0m2−m1
] + µ. Let ξ̄r2 = [ξr1 ;0m2−m1

] ∈ R
m2 .

Following the definition of Sr1 , we have

P{ξr1 ∈ Sr1} = P{Um×m1
Λ1/2
m1

ξr1 + µ ∈ S } = 1.

Due to Um×m1
Λ
1/2
m1

ξr1 = Um×m2
Λ
1/2
m2

ξ̄r2 , we have P{Um×m2
Λ
1/2
m2

ξ̄r2 + µ ∈ S } = 1,
which implies that P{ξ̄r2 ∈ Sr2} = 1 by the definition of Sr2 . Moreover, we note that

D
o

w
n
lo

ad
ed

 0
9
/2

4
/1

8
 t

o
 1

5
0
.1

3
5
.1

1
9
.9

2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH PCA 1825

E[ξ̄r2 ] = E[ξr1 ;0m2−m1
] = 0m2

and

E[ξ̄r2(ξ̄r2)
T ] = E[ξr1 ;0m2−m1

]([ξr1 ;0m2−m1
])T =

[
E[ξr1(ξr1)

T ] 0m1,m2−m1

0m2−m1,m1
0m2−m1,m2−m1

]

� Im2
.

Consequently, the distribution of ξ̄r2 belongs to the ambiguity set Dr2 and thus Fζ1 ∈
Dζ2 . Therefore, we have Dζ1 ⊂ Dζ2 and

maximize
Fζ1

∈Dζ1

EFζ1
f(x, ζ1) ≤ maximize

Fζ2
∈Dζ2

EFζ2
f(x, ζ2).

Finally, when m1 = m, problem (2.11) is exactly the same as problem (2.10).
Then by Lemma 2.3, the PCA approximation yields an exact reformulation of prob-
lem (2.2).

Like Corollary 2.2, for some cases of f(x, ξ) and the support, we have a simpler
deterministic version.

Corollary 2.5. When the support of ξ is polyhedral with at least one interior
point, i.e., S = {ξ|Aξ ≤ b} with A ∈ R

n1×m and b ∈ R
n1 , if f(x, ξ) is a piecewise

linear convex function (precisely, f(x, ξ) = maxKk=1 y
0
k(x) + yk(x)

T ξ, where yk(x) =
[y1k(x), . . . , y

m
k (x)] as well as y0k(x) are affine in x for k = 1, . . . ,K), problem (2.14)

is reduced to the following problem:

Z∗(m1) = minimize
x,s,qr,λ,Qr

s+ Im1
•Qr(2.15a)

subject to

s− y0k(x)− λT

k b− yk(x)
Tµ+ λT

kAµ
(qr+(Um×m1

Λ1/2
m1

)T (ATλk−yk(x)))
T

2

qr+(Um×m1
Λ1/2

m1
)T (ATλk−yk(x))

2 Qr


 � 0

∀k ∈ {1, 2, . . . ,K},

(2.15b)

Qr � 0, λk ≥ 0, ∀k ∈ {1, . . . ,K}, x ∈ X,(2.15c)

where λk ∈ R
n1 , k = 1, . . . ,K.

Proof. The idea of the proof is the same as that of Corollary 2.2.

Remark 2. Corollary 2.5 can be extended to more general supports, such as those
defined through semidefinite representable inequalities (e.g., an ellipsoid support [8]).

2.4. Quality of PCA solutions. By Theorem 2.4, the PCA approximation
yields a relaxation to the original problem. In other words, the optimal value of the
PCA approximation is less than or equal to that of the original problem. However,
Theorem 2.4 does not quantify the gap between the optimal solution value and its
PCA approximation. The following proposition presents bounds on this gap. The
importance of our result is that the bound only depends on the input parameters,
and thus it can guide the number of principal vectors for a specified error bound.

Proposition 2.6. When the support of ξ is polyhedral with at least one interior
point, i.e., S = {ξ|Aξ ≤ b} with A ∈ R

n1×m and b ∈ R
n1 , if f(x, ξ) is a piecewise

linear convex function (precisely, f(x, ξ) = maxKk=1 y
0
k(x) + yk(x)

T ξ, where yk(x) =
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[y1k(x), . . . , y
m
k (x)] as well as y0k(x) are affine in x for k = 1, . . . ,K), then

0 ≤ Z∗(m)− Z∗(m1) ≤
K∑

k=1

√√√√
m∑

i=m1+1

Λi,i[(ATλ∗
k − yk(x∗))TUi]2,

where x∗ and λ∗
k, k = 1, . . . ,K are optimal solutions of the PCA approximation (2.15)

and Z∗(·) is defined as in (2.14).

Proof. Theorem 2.4 implies that Z∗(m)−Z∗(m1) ≥ 0. According to Corollary 2.5,
we have

Z∗(m1) = minimize
x,s,qr,λ,Qr

s+ Im1
•Qr

subject to

s− y0k(x)− λT

k b− yk(x)
Tµ+ λT

kAµ
(qr+(Um×m1

Λ1/2
m1

)T (ATλk−yk(x)))
T

2

qr+(Um×m1
Λ1/2

m1
)T (ATλk−yk(x))

2 Qr


 � 0

∀k ∈ {1, 2, . . . ,K},

(2.16)

Qr � 0, λk ≥ 0, k = 1, . . . ,K, x ∈ X,

while

Z∗(m) = minimize
x,s,q,λ,Q

s+ Im •Q

subject to

s− y0k(x)− λT

k b− yk(x)
Tµ+ λT

kAµ (q+(UΛ1/2)T (ATλk−yk(x)))
T

2

q+(UΛ1/2)T (ATλk−yk(x))
2 Q


 � 0

∀k ∈ {1, 2, . . . ,K},(2.17)

Q � 0, λk ≥ 0, k = 1, . . . ,K, x ∈ X,

Let (x∗, s∗, q∗
r ,λ

∗, Q∗
r) be the optimal solution of problem (2.16). For clarity, we

define
qk
m−m1

:= [Um×m−m1
(Λ̄m−m1)1/2]T (ATλ∗

k − yk(x
∗)),

where Λ̄m−m1 is the m−m1 ×m−m1 lower-right submatrix of Λ. Then we set

q = [q∗
r ;0m−m1,1],

s = s∗ +
K∑

k=1

√
(qk

m−m1
)Tqk

m−m1

2

= s∗ +

K∑

k=1

√∑m
i=m1+1 Λi,i[(ATλ∗

k − yk(x∗))TUi]2

2
,

Q =




Q∗
r 0m1,m−m1

0m−m1,m1

∑K
k=1

qk
m−m1

(qk
m−m1

)T

2
√

(qk
m−m1

)T qk
m−m1


 .D
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Since 


√
(qk

m−m1
)T qk

m−m1

2 01,m1

(qk
m−m1

)T

2

0m1,1 0m1,m1
0m1,m−m1

qk
m−m1

2 0m−m1,m1

qk
m−m1

(qk
m−m1

)T

2
√

(qk
m−m1

)T qk
m−m1



� 0,

(x∗, s, q,λ∗,Q) is a feasible solution of problem (2.17). Thus

Z∗(m) ≤ s+ Im •Q

= Z∗(m1) +

K∑

k=1

√
(qk

m−m1
)Tqk

m−m1

2
+ trace

(
K∑

k=1

qk
m−m1

(qk
m−m1

)T

2
√

(qk
m−m1

)Tqk
m−m1

)

= Z∗(m1) +
K∑

k=1

√√√√
m∑

i=m1+1

Λi,i[(ATλ∗
k − yk(x∗))TUi]2.

Therefore, we have

Z∗(m)− Z∗(m1) ≤
K∑

k=1

√√√√
m∑

i=m1+1

Λi,i[(ATλ∗
k − yk(x∗))TUi]2.

In Proposition 2.6, the tightness of the bound is restricted (e.g., some elements
of q are treated as 0). However, a tighter bound can be obtained as follows:

0 ≤ Z∗(m)− Z∗(m1) ≤ Z1
gap(m1) ≤ Z2

gap(m1)

≤
K∑

k=1

√√√√
m∑

i=m1+1

Λi,i[(ATλ∗
k − yk(x∗))TUi]2,

where Z1
gap(m1) is the optimal value of the optimization problem

Z1
gap(m1) = minimize

s,q,Q̄
s+ Im−m1

• Q̄

subject to


 s

(qk
m−m1

−q)T

2
qk
m−m1

−q

2 Q̄


 � 0 ∀k ∈ {1, 2, . . . ,K},(2.18)

q ∈ R
m−m1 , Q̄ ∈ R

m−m1×m−m1 .

Note that even if m1 (number of components used) is small, problem (2.18) as an SDP
problem is still computationally challenging to solve. Alternatively, a weaker bound
Z2
gap(m1) can be computed as

Z2
gap(m1) = minimize

s,q

K∑

k=1

s+
(qk

m−m1
− q)T (qk

m−m1
− q)

4s

subject to s ≥ 0, q ∈ R
m−m1 ,(2.19)

which is a conservative approximation to (2.18) since

Q̄ =

K∑

k=1

(qk
m−m1

− q)(qk
m−m1

− q)T

4s
.
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Problem (2.19) can be formulated as a second-order conic programming problem and
thus is significantly more tractable.

3. Low-rank approximations for chance constrained optimization. In
section 2, it was assumed that the uncertainty lies in the objective function. We now
turn our attention to the case in which the uncertainty lies in the feasible set X;
specifically, the constraint function involves uncertainty as follows:

(3.1) X =
{
x ∈ R

n : x ∈ X0,

minimize
F∈D

PF {h
0
l (x) + hl(x)

T ξ < 0} ≥ 1− ǫl ∀l = 1, . . . , L
}
,

where X0 ⊂ R
n is a convex closed set that can be represented by semidefinite con-

straints, ξ ∈ R
m is a random vector with a distribution F , hl(x) = [h1

l (x), . . . , h
m
l (x)],

and h0
l (x) are affine in x for l = 1, . . . , L. In addition, P is a probability measure on

R
m induced by ξ. Constraint (3.1) is called an individual chance constraint, where ǫl,

l = 1, . . . , L, are confidence parameters chosen by the decision maker, typically close
to zero (e.g., 0.05, 0.10).

Theorem 3.1. When the support of ξ is polyhedral with at least one interior
point, i.e., S = {ξ|Aξ ≤ b} with A ∈ R

n1×m and b ∈ R
n1 , set X is equivalent to the

following set:

X̄ :=

{
x ∈ R

n : x ∈ X0, ∃tl ≥ 0, sl ∈ R, ql ∈ R
m, 0 � Ql ∈ R

m×m, λl, λ̄l ∈ R
n1

+

subject to sl + µTql + (Σ + µµT ) •Ql ≤ ǫltl,(3.2a)
[
sl − h0

l (x)− tl − bT λ̄l
(ql−hl(x)+AT λ̄l)

T

2
ql−hl(x)+AT λ̄l

2 Ql

]
� 0,(3.2b)

[
sl − bTλl

(ql+ATλl)
T

2
ql+ATλl

2 Ql

]
� 0, l = 1, . . . , L

}
.(3.2c)

Constraints (3.2b) and (3.2c) are linear matrix inequalities. The PCA approxi-
mation can be applied to chance constraints in order to reduce the size of the matrix
inequality constraints. Akin to section 2.3, we replace ξ by Um×m1

Λ
1/2
m1

ξr + µ in
constraint (3.1), where the ambiguity set of ξr is still Dr. Accordingly, the PCA
approximation of set X̄ is given as follows:

X̄r(m1) :=

{

x ∈ R
n : x ∈ X0, ∃tl ≥ 0, sl ∈ R, ql ∈ R

m1 , 0 � Ql ∈ R
m1×m1 , λl, λ̄l ∈ R

n1

+

subject to sl + Im1
•Ql ≤ ǫltl,





sl − h0
l (x)− hl(x)

Tµ− tl − (b−Aµ)T λ̄l
(ql−(Um×m1

Λ
1/2
m1

)Thl(x)+(AUm×m1
Λ
1/2
m1

)T λ̄l)
T

2

(ql−(Um×m1
Λ
1/2
m1

)Thl(x)+(AUm×m1
Λ
1/2
m1

)T λ̄l)

2
Ql





� 0,




sl − (b−Aµ)Tλl
(ql+(AUm×m1

Λ
1/2
m1

)Tλl)
T

2

(ql+(AUm×m1
Λ
1/2
m1

)Tλl)

2
Ql



 � 0, l = 1, . . . , L

}

.
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Proposition 3.2. The feasible set X̄ is a subset of X̄r(m1), i.e., X̄ ⊂ X̄r(m1).
At the same time, X̄r(m2) ⊂ X̄r(m1) if m1 ≤ m2. Furthermore, if m1 = m,
X̄r(m1) = X̄.

Proof. The idea of proof is similar to that of Theorem 2.4.

These results show that the proposed PCA approach can be extended to solving
distributionally robust chance constrained problems. We now present comprehensive
computational results to prove the efficacy of our approach in terms of runtime and
solution quality.

4. Experimental results. In this section, we compare the performances of the
proposed PCA approximation with that of the original formulation on a distribution-
ally robust conditional value-at-risk (CVaR) application and a risk-averse production-
transportation application. All algorithms are implemented in MATLAB using the
modeling language CVX [18, 19] and the corresponding SDP instances are solved
using Mosek with default parameters on a machine with an Intel Core i7 2.8 GHz
processor and 16GB RAM.

4.1. Distributionally robust CVaR. We consider a distributionally robust
version of CVaR problems. CVaR, as an approximation of value-at-risk (VaR), has
been extensively studied due to desirable properties like subadditivity and convexity
[34]. Additionally, in chance constrained programming, the CVaR approximation is
the least conservative convex approximation of the chance constraints [30]. For more
details on CVaR, we refer the reader to Rockafellar and Uryasev [34].

Rockafellar and Uryasev [34] proved that the CVaR1−α of a cost function g(x, ξ)
can be formulated as the following optimization problem:

(4.1) minimize
t∈R

t+
1

α
EF [g(x, ξ)− t]+

where α ∈ (0, 1) is a risk tolerance level, F is the probability distribution of ξ, and
[·]+ := max{0, ·}. When the exact distribution F is not available but information
about the distribution family D is available, we can consider the following distribu-
tionally robust variant of the CVaR problem:

(4.2) minimize
x∈X

maximize
F∈D

minimize
t∈R

t+
1

α
EF [g(x, ξ)− t]+.

In what follows, we assume that g(x, ξ) = xT ξ and X = {x ∈ R
n
+|
∑n

i=1 xi = 1} and
that the distribution family D satisfies Assumption 1. In this case, problem (4.2) is
equivalent to the following mini-max problem:

(4.3) minimize
x∈X,t∈R

maximize
F∈D

t+
1

α
EF [x

T ξ − t]+.

The equivalence of (4.2) and (4.3) follows directly from the application of the min-
imax theorem [10] to maximizeF∈D minimizet∈R. Observe that t + 1

α [x
T ξ − t]+ :=

max{t, t+ 1
α (x

T ξ − t)} satisfies Corollary 2.2. Thus, we can solve the CVaR problem
exactly using the results of Corollary 2.2 or approximately using the proposed PCA
approximation scheme.
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Table 4.1

Performance of the PCA approximation on a 200-dimensional CVaR application for varying
ambiguity set support and number of principal components.

PCA PCA PCA PCA PCA
CVAR Orig. (m1 = 200) (m1 = 150) (m1 = 100) (m1 = 50) (m1 = 20)

m = 200 time time Gap Gap2 time Gap Gap2 time Gap Gap2 time Gap Gap2 time Gap Gap2
Support (s) (s) (%) (%) (s) (%) (%) (s) (%) (%) (s) (%) (%) (s) (%) (%)

[−2σ, 2σ] 1019.5 654.5 0.00 0.00 219.4 0.26 8.37 41.1 1.55 9.10 3.1 3.57 12.93 2.0 5.24 18.45

[−3σ, 3σ] 1290.9 1078.3 0.00 0.00 334.2 2.46 7.40 40.8 4.20 9.93 2.7 6.45 14.85 1.1 8.49 19.50

[−4σ, 4σ] 1309.2 1362.0 0.00 0.00 324.1 3.06 7.42 42.9 5.49 10.19 3.1 8.37 14.18 1.7 10.56 19.13

4.1.1. Experimental setup: Approximation quality vs. number of prin-

cipal components. In this section, we focus on the effects of the number of principal
components of the PCA approximation on solution quality and runtime. Compu-
tational results are presented for both randomly generated instances and instances
based on historical financial market data. For randomly generated instances, we set
m = n = 200 and α = 0.05. The mean µ is picked uniformly at random from
the interval [−5, 5], the standard deviation of ξ is picked uniformly from the interval
[0, 2], and the correlation matrix is generated randomly using the MATLAB function
“gallery('randcorr',n).” We consider three different supports for the ambiguity
set, specifically S ∈ {[−2σ, 2σ], [−3σ, 3σ], [−4σ, 4σ]}, where σ is the randomly gener-
ated standard deviation of ξ. For the PCA approximations, the number of principal
components is m1 ∈ {200, 150, 100, 50, 20}, which correspond to 100%, 75%, 50%,
25%, and 10% of the size of ξ, respectively. In the second part of the computational
experiments, all means and covariances are estimated using historical market data
(obtained from Yahoo Finance) and the tests are conducted using different values for
α and different numbers of principal components.

4.1.2. Results on randomly generated covariance matrices. To randomly
generate Σ, we apply the MATLAB function “gallery('randcorr',n),” which gen-
erates a full-rank matrix. For each different support, 10 instances are generated and
solved. The results are presented in Figures 4.1–4.3 (see color figures in the online
version) and the average statistics over 10 instances are summarized in Table 4.1. Fig-
ures 4.1–4.3 show the runtime and the relative gap of the optimal value using different
numbers of principal components for 2σ, 3σ, and 4σ supports. We define the relative
gap of the optimal value between the PCA approximation and the original reformula-
tion as |(Z∗(m)−Z∗(m1))/Z

∗(m)|×100%, where Z∗(m) and Z∗(m1) are the optimal
values of the original reformulation and the PCA approximation, respectively.

In Figures 4.1–4.3, we display statistics for the relative gaps (GAP) over 10 ran-
domly generated instances for three different supports S (2σ, 3σ, and 4σ). For each
boxplot, the minimum, 9th percentile, median, 91st percentile, and maximum are
given in order (bottom to top). We also show the average runtime over the 10 in-
stances. In Table 4.1, column 1 shows the support of the ambiguity set and column
2 shows the runtime for solving the original reformulation. Each set of three columns
that follows shows computational performance for the PCA approximation with vary-
ing number of principal components (m1 = 200, 150, 100, 50, and 20). The metrics
presented are runtime (in seconds), relative gap (Gap), and theoretical relative gap
(Gap2) derived from Proposition 2.6.

Results in Figures 4.1–4.3 and Table 4.1 first show that as the number of principal
components m1 increases the numerical and theoretical gaps decrease and the runtime
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Fig. 4.1. Performance of the PCA approximation when the support is [−2σ, 2σ] with 20, 50,
100, 150, 200 components. The red line shows the runtime in seconds, while the blue line shows the
optimality gap (%). Each boxplot displays the minimum, the 9th percentile, the median, the 91st
percentile, and the maximum.
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Fig. 4.2. Performance of the PCA approximation when the support is [−3σ, 3σ] with 20, 50,
100, 150, 200 components.
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Fig. 4.3. Performance of the PCA approximation when the support is [−4σ, 4σ] with 20, 50,
100, 150, 200 components.
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Table 4.2

Performance of the PCA approximation on a 300-dimensional problem for varying number of
principal components.

Size

PCA PCA PCA PCA PCA
Orig. (m1 = 300) (m1 = 225) (m1 = 150) (m1 = 75) (m1 = 30)
time time Gap time Gap time Gap time Gap time Gap
(h) (h) (%) (h) (%) (h) (%) (h) (%) (h) (%)

m = 300 9.416 8.605 0.00 0.867 1.56 0.088 3.71 0.004 5.89 0.000 7.55

increases. Not surprisingly, the theoretical gap obtained via Proposition 2.6 is larger
than the observed gap. The difference between Gap2 and Gap suggests that the
theoretical gap may potentially be improved. Secondly, when we use all the principal
components (i.e., m1 = m), the PCA approximation yields an exact reformulation
of the original problem, which is consistent with Theorem 2.4. Moreover, the PCA
approximations with only a subset of the components provide lower bounds to the
original problem. Finally, it is clear that the proposed PCA approximation allows for
practical trade-offs between solution quality and computation time, higher solution
quality comes at the cost of increased runtime. For instance, with n = 200 and support
[−2σ, 2σ], solving the original (exact) reformulation requires 1019 seconds; however,
a high-quality solution within a 1.55% optimality gap can be computed within 42
seconds.

In addition, we also consider a larger CVaR problem with m = 300 and supports
S = [−3σ, 3σ]. For the PCA approximations, the number of the principal components
is m1 ∈ {300, 225, 150, 70, 30}, which correspond to 100%, 75%, 50%, 25%, and 10%
of the size of ξ, respectively. Similarly, 10 instances are generated and solved, and the
average performance is shown in Table 4.2. The first column shows the value of m
and the second column shows the runtime for solving the original reformulation. Each
pair of columns that follows shows computational performance, runtime (in hours),
and relative gap (Gap) for the PCA approximation with varying number of principal
components.

From Table 4.2, we can draw similar conclusions for the PCA approximations.
Moreover, the runtime reductions of the PCA approximations for the larger-size prob-
lems are even more substantial. For instance, it took more than nine hours to solve
the original reformulation. This is in sharp contrast to the runtime of the PCA ap-
proximation with 75% of the principal components, which completed in under one
hour and with only a 1.56% optimality gap.

4.1.3. Specially structured covariance matrices. In this section, we con-
sider the specially structured covariance matrix Σ. All the parameters are ran-
domly generated using the same procedure as the previous experiment. For concise-
ness, we only consider one support for the ambiguity set with m = 200, specifically
S = [−3σ, 3σ]. With the randomly generated covariance matrix Σ, we replace its ith
largest eigenvalue by three different kinds of generating functions: the first one is con-
stant, i.e., 1, for i = 1, . . . ,m; the second one is linear, i.e., 1− 0.5 i−1

m−1 , i = 1, . . . ,m;
the third one is exponential, i.e., 1 − (e

−i+m+1

m γ − 1)/(eγ − 1), i = 1, . . . ,m, with
slope γ. Here we consider four different slopes, γ ∈ {0.1, 1, 5, 15}. We display the six
generating-eigenvalue functions in Figure 4.4 (see color figures in the online version).
Similar to the previous experiment, 10 test instances are solved for each generating
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Fig. 4.4. Eigenvalue generating functions used in the experiments.
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Fig. 4.5. Performance of the PCA approximation with 20, 50, 100, 150, 200 components for
six different eigenvalue generating functions.

function. The main results are presented in boxplot form in Figure 4.5 and the average
statistics are listed in Table 4.3.

In Figure 4.4, we consider three cases for eigenvalue decay: no decay, linear de-
cay, and exponential decay. Note that for the exponential case, when γ increases
the eigenvalues decay rapidly. From Figure 4.5 and Table 4.3, we can deduce sim-
ilar conclusions about the solution quality and runtime improvements for instances
with randomly generated Σs. First, the Gap and the runtime are inversely propor-
tional, and as the Gap decreases computation time increases. Second, the faster the
eigenvalues decay, the smaller the relative gap between the PCA approximation and
the original reformulation. For instance, when the number of principal components is
100, the gap decreases from 19.24% for the constant eigenvalues case to 10.82% for the
case of linearly decaying eigenvalues. Further, in the case of exponentially decreasing
eigenvalues, the gap decreases from 5.88% to 0.01% when the parameter γ increases
from 0.1 to 15. In addition, when γ is 15, only 50% of the principal components are
needed to obtain a high-quality, near-optimal solution (Gap is 0.01% and runtime
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Table 4.3

Performance of the PCA approximation on a 200-dimensional problem for varying number of
principal components and decay parameters for the eigenvalues. Metrics presented are runtime (in
seconds) and relative gap % (Gap).

Slope

PCA PCA PCA PCA PCA
Orig. (m1 = 200) (m1 = 150) (m1 = 100) (m1 = 50) (m1 = 20)
time time Gap time Gap time Gap time Gap time Gap
(s) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%)

Identical 1234.2 1036.9 0.00 148.8 10.24 21.6 19.29 2.2 21.02 2.0 21.40

Linear 1344.8 1326.5 0.00 296.8 5.58 41.7 10.82 3.0 13.58 2.0 15.47

0.1 1401.0 1561.2 0.00 337.9 3.12 42.4 5.88 3.1 9.24 2.0 12.06

1 1643.7 1800.1 0.00 340.0 1.38 51.1 2.70 2.7 4.62 1.0 7.31

5 1731.4 1560.0 0.00 346.5 0.26 45.4 0.75 2.8 1.83 1.0 3.26

15 1503.1 1624.7 0.00 325.2 0.00 42.3 0.01 2.6 0.21 1.1 1.59

is 42.3 seconds). This computation time is drastically less than the 1503.1 seconds
runtime required for solving the original reformulation. These results suggest that the
PCA approximation performs well with fewer principal components and can be used
to obtain high-quality, near-optimal solutions when the eigenvalues of the Σs drop
rapidly.

In the next set of experiments, we will showcase how our techniques can be
adopted to solve problems that are too large to be solved by existing methods. For
these experiments, we consider a larger CVaR problem with specially structured
Σ when m = 1000 in the case of exponential generating functions with different
slopes. For the PCA approximations, the number of the principal components is
m1 ∈ {200, 150, 100, 50}, which correspond to 20%, 15%, 10%, and 5% of the size of
ξ, respectively. Similarly, 10 instances are generated and solved and the average per-
formance is shown in Table 4.4. When m = 1000, the original reformulation problem
and the PCA approximation problem using even 50% of principal components are
too large to solve due to memory limits. Thus, we present an upper bound on the
relative gap of the optimal value between the PCA approximation and the original
reformulation as |Z2

gap(m1)/Z
∗
lb| × 100, where Z2

gap(m1) is a theoretical gap derived
from (2.19) and Z∗

lb is a lower bound of the absolute value of the optimal value of
the original reformulation. Here Z∗

lb = min{|Z∗(m1) + Z2
gap(m1)|, |Z

∗(m1)|}, where
Z∗(m1) is the optimal value of the PCA approximation with m1 = 200.

From Table 4.4, we can draw similar conclusions for the PCA approximations in
the case in which m = 200. Moreover, the runtime reductions obtained by using PCA
approximations for the larger-size problems are even more substantial. For example,
in this setup the original reformulation is intractable due to memory limitations.
However, the PCA approximation with 20% (m1 = 200) of the principal components
solved in less than half an hour and obtained a solution within a 1.91% optimality
gap when γ = 15. We want to stress that gaps presented here are theoretical gaps
that provide upper bounds, and actual gaps are tighter. Nevertheless, the results
show that our methods can be used to compute provably accurate approximations to
problems that are too large to be solved exactly in practice.

D
o

w
n
lo

ad
ed

 0
9
/2

4
/1

8
 t

o
 1

5
0
.1

3
5
.1

1
9
.9

2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH PCA 1835

Table 4.4

Performance of the PCA approximation on a 1000-dimensional problem for varying number of
principal components and decay parameters for the eigenvalues. “–” indicates that no solution was
found and “∗” indicates an upper bound for the relative gap rather than the actual gap.

Slope

PCA PCA PCA PCA
Orig. (m1 = 200) (m1 = 150) (m1 = 100) (m1 = 50)
time time Gap time Gap time Gap time Gap
(s) (s) (%) (s) (%) (s) (%) (s) (%)

0.1 – 1947.5 17.25* 427.4 18.81* 61.8 20.01* 4.6 26.14*

1 – 1781.1 16.50* 408.5 17.22* 50.7 19.42* 4.7 25.02*

5 – 1817.9 8.72* 381.0 9.92* 54.2 11.44* 4.3 14.33*

15 – 1661.1 1.91* 421.6 2.61* 48.5 4.35* 4.3 6.62*

Table 4.5

Tickers of 123 Assets in the Yahoo financial market data.

Energy
CMLP CELP NTI KNOP DLNG USAC MMLP GMLP EXLP DPM

CLMT NGL GLOP GLP TLP WPT TCP DKL

Basic
UAN ARLP AHGP NRP HCLP OCIR TNH VALE BBL RIO

Materials

Consumer
CHSCO CHSCP CHSCN TIS GTY PG SON KMB UL CLX

Staples

Consumer CLCT MAT MHG FUN PM BGS EBF BTI GM TUP

Discretionary MO CRWS RMCF NTRI

RSO TICC NYMT PMT PSEC HTS NLY CMO MFA NEWT

Financials OSBHF GAIN STWD SLRC IEP HPT MAIN BX CLNY OTCM

EPR

Healthcare
PDLI SNH SBRAP SBRA HCN LTC OHI AZN PETS PMD

ARE LLY

Industrials TAL SSW TGH FLY AIRI CVA CTT PLOW AYR GE

Utilities
APU CPL EGAS NGG BIP ED WR HE PEG EXC

WGL

Technology MNDO WILN CCUR AREEP IRM DFT DLR EVOL GRMN CPSI

Telecoms CTL PHI TLSYY T BCE VOD VZ

4.1.4. Covariance matrices based on financial market data. In this sec-
tion, we evaluate the proposed PCA approximation on CVaR problems using historical
market data in 2014/2015 for 123 assets (obtained from Yahoo Finance). The top
assets of 10 industry sectors [21] (see Table 4.5) are considered for the portfolio. The
mean and variance of 123 returns are estimated using 2014/2015 historical data, and
historical ranges are used as support. We perform the numerical tests using different
percentages of principal components (100% to 10%) and several values for the confi-
dence parameter α (0.01 to 0.1). The corresponding results are reported in Table 4.6.
The first column shows the percentages of principal components used. Columns 2 to
4 (and corresponding sets of subcolumns) show the optimal value, the relative gap,
and the runtime, respectively, for α ∈ {0.01, 0.05, 0.10}.

From Table 4.6, similar conclusions to randomly generated Σ and structured Σ
computational experiments can be drawn. First, as the number of components in-
creases the relative gap decreases and runtime increases. Second, the runtime for
solving the PCA approximations with less than full components is significantly less
than the runtime for solving the original reformulation, albeit at the expense of sub-
optimality. However, with α = 0.01 the PCA approximation with 50% of components
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Table 4.6

Performance of the PCA approximations for Yahoo financial market data. The first column
shows the percentages of principal components used. Columns 2 to 4 (and corresponding sets of sub-
columns) show the optimal value, the relative gap, and the runtime, respectively, for the confidence
parameter α ∈ {0.01, 0.05, 0.10}.

α = 0.01 α = 0.05 α = 0.1
Value Gap time Value Gap time Value Gap time
(%) (%) (s) (%) (%) (s) (%) (%) (s)

Original 2.21 – 98.6 1.45 – 160.2 0.99 – 153.4

100% 2.21 0.00 98.8 1.45 0.00 162.2 0.99 0.00 155.9

95% 2.21 0.00 82.0 1.44 0.69 135.3 0.98 1.01 125.5

90% 2.21 0.00 65.7 1.43 1.38 113.5 0.98 1.01 103.5

80% 2.21 0.00 38.9 1.39 4.14 50.5 0.95 4.04 62.8

70% 2.21 0.00 21.5 1.36 6.22 34.8 0.93 6.06 29.5

50% 2.21 0.00 5.8 1.17 19.31 8.1 0.80 19.19 8.1

25% 1.40 36.65 1.2 0.83 42.76 1.3 0.57 42.42 1.3

10% 0.89 59.72 1.2 0.70 51.72 1.2 0.48 51.51 1.2

finds the optimal solution (optimality gap 0.00%) within less than one tenth of the
time it took to solve the original reformulation. Results again suggest that the PCA
approximation yields good solution quality and runtime trade-offs under a range of
conditions.

4.2. Risk-averse production-transportation problem. In this section, we
illustrate the use of the PCA approximation for the solution of DRO applied to a
risk-averse production-transportation problem with random transportation cost (see
Bertsimas et al. [6]). In the production-transportation problem, there are m facilities
(supply points) and n customer locations (demand points). It is assumed that there
is a normalized capacity for each facility. Let xi ≥ 0 be the amount that is produced
at each facility i and let yij be the amount that is shipped from facility i to customer
location j. We denote the unit production cost at facility i by ci, the demand at
customer location j by dj , and the unit transportation cost from facility i to customer
location j by ξij . We further assume that demand dj is known in advance and∑

j dj ≤ m, which means the total demand does not exceed the total production
capacity. If ξij is deterministic, then the deterministic production-transportation
problem can be formulated as follows:

minimize
x,y

m∑

i=1

cixi +

m∑

i=1

n∑

j=1

ξijyij

subject to

m∑

i=1

yij = dj , j = 1, . . . , n,

n∑

j=1

yij = xi, i = 1, . . . ,m,(4.4)

0 ≤ xi ≤ 1, i = 1, . . . ,m,

yij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n.

When the transportation cost ξij is random, we have a two-stage version of the prob-
lem where production decision xi should be made now whereas transportation decision
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yij will be made after the realization of the random transportation cost ξij . Un-
der these assumptions, the distributionally robust variant of risk-averse production-
transportation problem can be formulated as follows:

minimize
x

m∑

i=1

cixi +maximize
F∈D

EF [U(Q(x, ξ))]

subject to 0 ≤ xi ≤ 1, i = 1, . . . ,m,(4.5)

where Q(x, ξ) is the optimal value of the second-stage problem, defined as

minimize
y

m∑

i=1

n∑

j=1

ξijyij

subject to
m∑

i=1

yij = dj , j = 1, . . . , n,

n∑

j=1

yij = xi, i = 1, . . . ,m,

yij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n,

and the function U(·) is a convex nondecreasing disutility function that captures risk
aversion with respect to the total achieved cost. The definition of disutility function
U(·) follows Bertsimas et al. [6] and is given as

(4.6) U(Q(x, ξ)) = max
k∈{1,2,...,K}

akQ(x, ξ) + bk,

with nonnegative coefficients, i.e., ak ≥ 0 for all k.
For clarity, we also assume that the support of the ambiguity set satisfies Assump-

tion 1 with S = R
nm. Then the original formulation of the risk-averse production-

transportation problem is as follows (see [6]):

minimize
x,y,s,q,Q

cTx+ s+ µTq + (Σ + µµT ) •Q

subject to

[
s− bk

(q−akyk)
T

2
(q−akyk)

2 Q

]
� 0, k = 1, . . . ,K,

m∑

i=1

yijk = dj , j = 1, . . . , n, k = 1, . . . ,K,

n∑

j=1

yijk = xi, i = 1, . . . ,m, k = 1, . . . ,K,(4.7)

0 ≤ xi ≤ 1, i = 1, . . . ,m,

yijk ≥ 0, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . ,K,

where s ∈ R, q ∈ R
mn, Q ∈ R

mn×mn, c = [c1; . . . ; cm], and yk ∈ R
mn is a vector

whose (i− 1) ∗m+ jth element is yijk.
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The PCA approximation with m1 principal components for the risk-averse pro-
duction-transportation problem is given as

minimize
x,y,s,qr,Qr

cTx+ s+ Im1
•Qr

subject to


 s− bk − akµ

Tyk
(qr−ak(Umn×m1

Λ1/2
m1

)Tyk)
T

2
(qr−ak(Umn×m1

Λ1/2
m1

)Tyk)

2 Qr


 � 0

∀k ∈ {1, . . . ,K},

m∑

i=1

yijk = dj , j = 1, . . . , n, k = 1, . . . ,K,

n∑

j=1

yijk = xi, i = 1, . . . ,m, k = 1, . . . ,K,(4.8)

0 ≤ xi ≤ 1, i = 1, . . . ,m,

yijk ≥ 0, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . ,K,

where s ∈ R, qr ∈ R
m1 , and Qr ∈ R

m1×m1 .

4.2.1. Effect of the number of principal components. In this section, we
conduct numerical experiments on the risk-averse production-transportation problem
to demonstrate the efficacy of the PCA approximation. Following the setup in Bert-
simas et al. [6], we randomly generate m facilities and n customer locations within a
unit square. Let ξ̄ij be the distance between facility i and customer location j for the
randomly generated transportation network. The mean and covariance matrix of ξ
are set to be the sample mean and sample covariance of 10,000 independent samples
ξt generated from independent uniform distributions on intervals [0.5ξ̄ij , 1.5ξ̄ij ] for all
i, j. The production cost ci is uniformly generated on the interval [0.5c̄, 1.5c̄], where
c̄ is the average transportation cost. The demand hj is uniformly generated on the
interval [0.5m

n , m
n ]. We perform our tests on three different problem sizes character-

ized by the following parameters: number of facilities m ∈ {5, 8, 10} and number of
customer locations n ∈ {20, 25, 30}. We also consider the same disutility function
U(x) = γ(eδx− 1), where γ, δ > 0. In the following numerical tests, γ and δ are set to
be 0.25 and 2, respectively. We approximate the convex disutility function U(x) by
using an equidistant linear approximation with K = 5 on the interval [0, 1].

For each different size of the problem, 10 instances are generated and solved and
the average statistics over the 10 instances are summarized in Table 4.7, where the
first column lists the size of the problem and the second column shows the runtime (in
seconds) for solving the original formulation. Each pair of columns that follow show
computational performance for the PCA approximation with varying percentages of
number of principal components (100%, 75%, 50%, 25%, and 10%). The metrics
presented are runtime (in seconds) and relative gap (Gap). When (m,n) = (10, 30),
the original reformulation problem and the PCA approximation problem using all
principal components are too large to solve for the computer due to memory limits.
Thus, for this problem size, we present an upper bound of the relative gap of the
optimal value between the PCA approximation and the original reformulation as
|Z1

gap(m1)/Z
∗(m1)| × 100, where Z1

gap(m1) is a theoretical gap derived from (2.18)
and Z∗(m1) is the optimal value of the PCA approximation.
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Table 4.7

Performance of the PCA approximation for production-transportation problems of various sizes.
m and n denote the numbers of facilities and customer locations, respectively. Time is in seconds
and Gap measures the difference between the optimal solution and its PCA approximation. “–”
indicates that no solution was found and “∗” indicates an upper bound (computed based on (2.18))
for the relative gap rather than the actual gap.

(m,n)

PCA PCA PCA PCA PCA
Orig. (100%) (75%) (50%) (25%) (10%)
time time Gap time Gap time Gap time Gap time Gap
(s) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%)

(5, 20) 91.4 88.2 0.00 27.4 0.25 7.7 0.57 2.2 0.93 1.7 0.94

(8, 25) 2574.5 2392.1 0.00 609.6 0.06 99.0 0.11 9.2 0.12 2.5 0.12

(10, 30) – – – 4888.2 1.07* 705.2 1.44* 42.7 1.76* 5.3 2.35*

Results presented in Table 4.7 indicate that using a small number of principal
components can produce high quality solutions. First, as the number of components
increases, the relative gap decreases and runtime increases. Second, the PCA approxi-
mation using all principal components yields the same optimal solution as the original
reformulation with similar runtimes. Overall the results show the efficacy of the PCA
approximation for this class of problem. The solution quality is extremely high even
when only 10% of the principal components are used. For example, the PCA approx-
imation using only 10% of components provides a high-quality, near-optimal solution
with a gap less than 2.35% (upper bound) in less than 6 seconds, a runtime speedup
of several orders of magnitude.

5. Conclusions and future work. We have proposed a computationally ef-
ficient approximation for distributionally robust optimization (DRO) problems with
moment-based ambiguity sets. Previous results provide a way to reformulate DROs
with moment-based ambiguity sets as equivalent semidefinite programs (SDPs), which
can be solved in polynomial time. However, when the dimensionality of uncertainty
is large, corresponding SDP instances become intractable in practice. Thus, new ap-
proximation methods that can trade off between solution quality and computation
time are needed. For this purpose, we proposed an efficient approximation method
based on principal component analysis (PCA), which reduces the dimensionality of
the uncertainty space, with minimum loss of information. We showed that the pro-
posed PCA approximation is a relaxation of the original problem when only a subset
of the principal components are used. However, when all principal components are
used the PCA approximation is exact. We also provided a theoretical bound on the
differences between the optimal objective function values of the original problem and
the proposed PCA approximation. This bound can serve as a guide to determine the
number of principal components to use in practice and to allow for direct trade-offs
between solution quality and runtime.

Finally, a comprehensive computational study using a distributionally robust
CVaR problem with different covariance structures as well as a risk-averse production-
transportation problem was conducted to show the strengths of the proposed PCA
approximation. We have observed reductions in runtime as we used fewer principal
components with reasonable deviations in accuracy. For instance, in many cases for
the CVaR problem and the risk-averse production-transportation problem, using only
50% of the principal components provides a near-optimal solution with an optimality
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gap of less than 1% while reducing the runtimes by orders of magnitude. Our proposed
approximation scheme provides decision makers with greater flexibility in dealing with
the computational challenges of solving large-scale DRO problems, allowing for direct
control of the trade-offs between solution quality and runtime.

Future work will consider extending our PCA-based approximation technique
for DRO with moment-based ambiguity sets to the context of DRO with Wasserstein
ambiguity sets. Further, there would be significant value in determining whether there
is an equivalence between regularization and DRO with moment-based ambiguity sets.

Acknowledgments. The authors would like to thank the two anonymous ref-
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