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Abstract

This paper studies the asymptotic behaviors of the pairwise angles among n randomly and uni-

formly distributed unit vectors in R
p as the number of points n → ∞, while the dimension p is

either fixed or growing with n. For both settings, we derive the limiting empirical distribution of

the random angles and the limiting distributions of the extreme angles. The results reveal interest-

ing differences in the two settings and provide a precise characterization of the folklore that “all

high-dimensional random vectors are almost always nearly orthogonal to each other”. Applica-

tions to statistics and machine learning and connections with some open problems in physics and

mathematics are also discussed.

Keywords: random angle, uniform distribution on sphere, empirical law, maximum of random

variables, minimum of random variables, extreme-value distribution, packing on sphere

1. Introduction

The distribution of the Euclidean and geodesic distances between two random points on a unit sphere

or other geometric objects has a wide range of applications including transportation networks, pat-

tern recognition, molecular biology, geometric probability, and many branches of physics. The

distribution has been well studied in different settings. For example, Hammersley (1950), Lord

(1954), Alagar (1976) and Garcı́a-Pelayo (2005) studied the distribution of the Euclidean distance

between two random points on the unit sphere S
p−1. Williams (2001) showed that, when the un-

derlying geometric object is a sphere or an ellipsoid, the distribution has a strong connection to the

neutron transport theory. Based on applications in neutron star models and tests for random number

generators in p-dimensions, Tu and Fischbach (2002) generalized the results from unit spheres to

more complex geometric objects including the ellipsoids and discussed many applications. In gen-

eral, the angles, areas and volumes associated with random points, random lines and random planes
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appear in the studies of stochastic geometry, see, for example, Stoyan, et al. (1995) and Kendall and

Molchanov (2010).

In this paper we consider the empirical law and extreme laws of the pairwise angles among a

large number of random unit vectors. More specifically, let X1, · · · ,Xn be random points indepen-

dently chosen with the uniform distribution on S
p−1, the unit sphere in R

p. The n points X1, · · · ,Xn

on the sphere naturally generate n unit vectors
−→

OXi for i = 1,2 · · · ,n, where O is the origin. Let

0 ≤ Θi j ≤ π denote the angle between
−→

OXi and
−→

OX j for all 1 ≤ i < j ≤ n. In the case of a fixed

dimension, the global behavior of the angles Θi j is captured by its empirical distribution

µn =
1
(

n
2

) ∑
1≤i< j≤n

δΘi j
, n ≥ 2. (1)

When both the number of points n and the dimension p grow, it is more appropriate to consider the

normalized empirical distribution

µn,p =
1
(

n
2

) ∑
1≤i< j≤n

δ√p−2( π
2
−Θi j), n ≥ 2, p ≥ 3. (2)

In many applications it is of significant interest to consider the extreme angles Θmin and Θmax defined

by

Θmin = min{Θi j; 1 ≤ i < j ≤ n}; (3)

Θmax = max{Θi j; 1 ≤ i < j ≤ n}. (4)

We will study both the empirical distribution of the angles Θi j, 1 ≤ i < j ≤ n, and the distributions

of the extreme angles Θmin and Θmax as the number of points n → ∞, while the dimension p is either

fixed or growing with n.

The distribution of minimum angle of n points randomly distributed on the p-dimensional unit

sphere has important implications in statistics and machine learning. It indicates how strong spu-

rious correlations can be for p observations of n-dimensional variables (Fan et al., 2012). It can

be directly used to test isotropic of the distributions (see Section 4). It is also related to regularity

conditions such as the Incoherent Condition (Donoho and Huo, 2001), the Restricted Eigenvalue

Condition (Bickel et al., 2009), the ℓq-Sensitivity (Gautier and Tsybakov, 2011) that are needed for

sparse recovery. See also Section 5.1.

The present paper systematically investigates the asymptotic behaviors of the random angles

{Θi j;1 ≤ i < j ≤ n}. It is shown that, when the dimension p is fixed, as n → ∞, the empirical

distribution µn converges to a distribution with the density function given by

h(θ) =
1√
π

Γ( p
2
)

Γ( p−1
2
)
· (sinθ)p−2, θ ∈ [0,π].

On the other hand, when the dimension p grows with n, it is shown that the limiting normalized

empirical distribution µn,p of the random angles Θi j, 1 ≤ i < j ≤ n is Gaussian. When the dimension

is high, most of the angles are concentrated around π/2. The results provide a precise description

of this concentration and thus give a rigorous theoretical justification to the folklore that “all high-

dimensional random vectors are almost always nearly orthogonal to each other,” see, for example,
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Diaconis and Freedman (1984) and Hall et al. (2005). A more precise description is given in

Proposition 5 later in terms of the concentration rate.

In addition to the empirical law of the angles Θi j, we also consider the extreme laws of the

random angles in both the fixed and growing dimension settings. The limiting distributions of the

extremal statistics Θmax and Θmin are derived. Furthermore, the limiting distribution of the sum

of the two extreme angles Θmin +Θmax is also established. It shows that Θmin +Θmax is highly

concentrated at π.

The distributions of the minimum and maximum angles as well as the empirical distributions

of all pairwise angles have important applications in statistics. First of all, they can be used to

test whether a collection of random data points in the p-dimensional Euclidean space follow a

spherically symmetric distribution (Fang et al., 1990). The natural test statistics are either µn or

Θmin defined respectively in (1) and (3). The statistic Θmin also measures the maximum spurious

correlation among n data points in the p-dimensional Euclidean space. The correlations between a

response vector with n other variables, based on n observations, are considered as spurious when

they are smaller than a certain upper quantile of the distribution of |cos(Θmin)| (Fan and Lv, 2008).

The statistic Θmin is also related to the bias of estimating the residual variance (Fan et al., 2012).

More detailed discussion of the statistical applications of our studies is given in Section 4.

The study of the empirical law and the extreme laws of the random angles Θi j is closely con-

nected to several deterministic open problems in physics and mathematics, including the general

problem in physics of finding the minimum energy configuration of a system of particles on the sur-

face of a sphere and the mathematical problem of uniformly distributing points on a sphere, which

originally arises in complexity theory. The extreme laws of the random angles considered in this

paper is also related to the study of the coherence of a random matrix, which is defined to be the

largest magnitude of the Pearson correlation coefficients between the columns of the random ma-

trix. See Cai and Jiang (2011, 2012) for the recent results and references on the distribution of the

coherence. Some of these connections are discussed in more details in Section 5.

This paper is organized as follows. Section 2 studies the limiting empirical and extreme laws

of the angles Θi j in the setting of the fixed dimension p as the number of points n going to ∞. The

case of growing dimension is considered in Section 3. Their applications in statistics are outlined

in Section 4. Discussions on the connections to the machine learning and some open problems in

physics and mathematics are given in Section 5. The proofs of the main results are relegated in

Section 6.

2. When The Dimension p Is Fixed

In this section we consider the limiting empirical distribution of the angles Θi j, 1 ≤ i < j ≤ n when

the number of random points n → ∞ while the dimension p is fixed. The case where both n and

p grow will be considered in the next section. Throughout the paper, we let X1, X2, · · · , Xn be

independent random points with the uniform distribution on the unit sphere S
p−1 for some fixed

p ≥ 2.

We begin with the limiting empirical distribution of the random angles.

Theorem 1 (Empirical Law for Fixed p) Let the empirical distribution µn of the angles Θi j, 1 ≤
i < j ≤ n, be defined as in (1). Then, as n → ∞, with probability one, µn converges weakly to the
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distribution with density

h(θ) =
1√
π

Γ( p
2
)

Γ( p−1
2
)
· (sinθ)p−2, θ ∈ [0,π]. (5)

In fact, h(θ) is the probability density function of Θi j for any i 6= j (Θi j’s are identically dis-

tributed). Due to the dependency of Θi j’s, some of them are large and some are small. Theorem 1

says that the average of these angles asymptotically has the same density as that of Θ12.

Notice that when p = 2, h(θ) is the uniform density on [0,π], and when p > 2, h(θ) is unimodal

with mode θ = π/2. Theorem 1 implies that most of the angles in the total of
(

n
2

)

angles are

concentrated around π/2. This concentration becomes stronger as the dimension p grows since

(sinθ)p−2 converges to zero more quickly for θ 6= π/2. In fact, in the extreme case when p → ∞,

almost all of
(

n
2

)

angles go to π/2 at the rate
√

p. This can be seen from Theorem 4 later.

It is helpful to see how the density changes with the dimension p. Figure 1 plots the function

hp(θ) =
1√

p−2
h
(π

2
− θ√

p−2

)

=
1√
π

Γ( p
2
)

Γ( p−1
2
)
√

p−2
·
(

cos
θ√

p−2

)p−2

, θ ∈ [0,π] (6)

which is the asymptotic density of the normalized empirical distribution µn,p defined in (2) when the

dimension p is fixed. Note that in the definition of µn,p in (2), if “
√

p−2” is replaced by “
√

p”, the

limiting behavior of µn,p does not change when both n and p go to infinity. However, it shows in our

simulations and the approximation (7) that the fitting is better for relatively small p when “
√

p−2”

is used.

Figure 1 shows that the distributions hp(θ) are very close to normal when p ≥ 5. This can also

be seen from the asymptotic approximation

hp(θ) ∝ exp
(

(p−2) log
{

cos
( θ√

p−2

)}

)

≈ e−θ2/2. (7)

We now consider the limiting distribution of the extreme angles Θmin and Θmax.

Theorem 2 (Extreme Law for Fixed p) Let Θmin and Θmax be defined as in (3) and (4) respec-

tively. Then, both n2/(p−1)Θmin and n2/(p−1)(π−Θmax) converge weakly to a distribution given

by

F(x) =

{

1− e−Kxp−1

, if x ≥ 0;

0, if x < 0,
(8)

as n → ∞, where

K =
1

4
√

π

Γ( p
2
)

Γ( p+1
2
)
. (9)

The above theorem says that the smallest angle Θmin is close to zero, and the largest angle Θmax is

close to π as n grows. This makes sense from Theorem 1 since the support of the density function

h(θ) is [0,π].
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Figure 1: Functions hp(θ) given by (6) for p = 4,5,10 and 20. They are getting closer to the normal

density (thick black) as p increases.

In the special case of p = 2, the scaling of Θmin and π−Θmax in Theorem 2 is n2. This is in fact

can also be seen in a similar problem. Let ξ1, · · · ,ξn be i.i.d. U [0,1]-distributed random variables

with the order statistics ξ(1) ≤ ·· · ≤ ξ(n). Set Wn := min1≤i≤n−1(ξ(i+1)−ξ(i)), which is the smallest

spacing among the observations of ξi’s. Then, by using the representation theorem of ξ(i)’s through

i.i.d. random variables with exponential distribution Exp(1) (see, for example, Proposition 4.1 from

Resnick (2007)), it is easy to check that n2Wn converges weakly to Exp(1) with the probability

density function e−xI(x ≥ 0).

To see the goodness of the finite sample approximations, we simulate 200 times from the distri-

butions with n = 50 for p = 2,3 and 30. The results are shown respectively in Figures 2–4. Figure

2 depicts the results when p = 2. In this case, the empirical distribution µn should approximately

be uniformly distributed on [0,π] for most of realizations. Figure 2 (a) shows that it holds approxi-

mately truly for n as small as 50 for a particular realization (It indeed holds approximately for almost

all realizations). Figure 2(b) plots the average of these 200 distributions, which is in fact extremely

close to the uniform distribution on [0,π]. Namely, the bias is negligible. For Θmin, according to

Theorem 1, it should be well approximated by an exponential distribution with K = 1/(2π). This is

verified by Figure 2(c), even when sample size is as small as 50. Figure 2(d) shows the distribution

of Θmin +Θmax based on the 200 simulations. The sum is distributed tightly around π, which is

indicated by the red line there.

The results for p = 3 and p = 30 are demonstrated in Figures 3 and 4. In this case, we show

the empirical distributions of
√

p−2(π/2−Θi j) and their asymptotic distributions. As in Figure 1,

they are normalized. Figure 3(a) shows a realization of the distribution and Figure 3(b) depicts

the average of 200 realizations of these distributions for p = 3. They are very close to the asymp-

totic distribution, shown in the curve therein. The distributions of Θmin and Θmax are plotted in

Figure 3(c). They concentrate respectively around 0 and π. Figure 3(d) shows that the sum is

concentrated symmetrically around π.

When p = 30, the approximations are still very good for the normalized empirical distributions.

In this case, the limiting distribution is indistinguishable from the normal density, as shown in

Figure 1. However, the distribution of Θmin is not approximated well by its asymptotic counterpart,
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Figure 2: Various distributions for p = 2 and n = 50 based on 200 simulations. (a) A realization

of the empirical distribution µn; (b) The average distribution of 200 realizations of µn;

(c) the distribution of Θmin and its asymptotic distribution exp(−x/(2π))/(2π); (d) the

distribution of Θmin +Θmax; the vertical line indicating the location π.

as shown in Figure 4(c). In fact, Θmin does not even tends to zero. This is not entirely surprising

since p is comparable with n. The asymptotic framework in Section 3 is more suitable. Nevertheless,

Θmin +Θmax is still symmetrically distributed around π.

The simulation results show that Θmax + Θmin is very close to π. This actually can be seen

trivially from Theorem 2: Θmin → 0 and Θmax → π in probability as p → ∞. Hence, the sum goes

to π in probability. An interesting question is: how fast is this convergence? The following result

answers this question.

Theorem 3 (Limit Law for Sum of Largest and Smallest Angles) Let X1, X2, · · · , Xn be inde-

pendent random points with the uniform distribution on S
p−1 for some fixed p ≥ 2. Let Θmin and

Θmax be defined as in (3) and (4) respectively. Then, n2/(p−1)
(

Θmax +Θmin −π
)

converges weakly

to the distribution of X −Y , where X and Y are i.i.d. random variables with distribution function

F(x) given in (8).
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Figure 3: Various distributions for p = 3 and n = 50 based on 200 simulations. (a) A realization

of the normalized empirical distribution µn,p given by (2); (b) The average distribution of

200 realizations of µn,p; (c) the distribution of Θmin and its asymptotic distribution; (d)

the distribution of Θmin +Θmax; the vertical line indicating the location π.

It is interesting to note that the marginal distribution of Θmin and π−Θmax are identical. How-

ever, n2/(p−1)Θmin and n2/(p−1)(π−Θmax) are asymptotically independent with non-vanishing limits

and hence their difference is non-degenerate. Furthermore, since X are Y are i.i.d., X −Y is a sym-

metric random variable. Theorem 3 suggests that Θmax +Θmin is larger or smaller than π “equally

likely”. The symmetry of the distribution of Θmax +Θmin has already been demonstrated in Fig-

ures 2–4.

3. When Both n and p Grow

We now turn to the case where both n and p grow. The following result shows that the empiri-

cal distribution of the random angles, after suitable normalization, converges to a standard normal

distribution. This is clearly different from the limiting distribution given in Theorem 1 when the

dimension p is fixed.
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Figure 4: Various distributions for p = 30 and n = 50 based on 200 simulations. (a) A realization

of the normalized empirical distribution µn,p given by (2); (b) The average distribution of

200 realizations of µn,p; (c) the distribution of Θmin and its asymptotic distribution; (d)

the distribution of Θmin +Θmax; the vertical line indicating the location π.

Theorem 4 (Empirical Law for Growing p) Let µn,p be defined as in (2). Assume limn→∞ pn = ∞.
Then, with probability one, µn,p converges weakly to N(0,1) as n → ∞.

Theorem 4 holds regardless of the speed of p relative to n when both go to infinity. This has also

been empirically demonstrated in Figures 2–4 (see plots (a) and (b) therein). The theorem implies

that most of the
(

n
2

)

random angles go to π/2 very quickly. Take any γp → 0 such that
√

pγp → ∞

and denote by Nn,p the number of the angles Θi j that are within γp of π/2, that is, |π
2
−Θi j| ≤ γp.

Then Nn,p/
(

n
2

)

→ 1. Hence, most of the random vectors in the high-dimensional Euclidean spaces

1844



DISTRIBUTIONS OF ANGLES IN RANDOM PACKING ON SPHERES

are nearly orthogonal. An interesting question is: Given two such random vectors, how fast is their

angle close to π/2 as the dimension increases? The following result answers this question.

Proposition 5 Let U and V be two random points on the unit sphere in R
p. Let Θ be the angle

between
−→
OU and

−→
OV. Then

P(|Θ− π

2
| ≥ ε)≤ K

√
p(cosε)p−2

for all p ≥ 2 and ε ∈ (0,π/2), where K is a universal constant.

Under the spherical invariance one can think of Θ as a function of the random point U only. There

are general concentration inequalities on such functions, see, for example, Ledoux (2005). Proposi-

tion 5 provides a more precise inequality.

One can see that, as the dimension p grows, the probability decays exponentially. In particular,

take ε =
√

(c log p)/p for some constant c > 1. Note that cosε ≤ 1− ε2/2+ ε4/24, so

P

(

|Θ− π

2
| ≥
√

c log p

p

)

≤ K
√

p

(

1− c log p

2p
+

c2 log2 p

24p2

)p−2

≤ K′p−
1
2
(c−1)

for all sufficiently large p, where K′ is a constant depending only on c. Hence, in the high di-

mensional space, the angle between two random vectors is within
√

(c log p)/p of π/2 with high

probability. This provides a precise characterization of the folklore mentioned earlier that “all high-

dimensional random vectors are almost always nearly orthogonal to each other”.

We now turn to the limiting extreme laws of the angles when both n and p → ∞. For the extreme

laws, it is necessary to divide into three asymptotic regimes: sub-exponential case 1
p

logn → 0,

exponential case 1
p

logn→ β∈ (0,∞), and super-exponential case 1
p

logn→∞. The limiting extreme

laws are different in these three regimes.

Theorem 6 (Extreme Law: Sub-Exponential Case) Let p = pn → ∞ satisfy
logn

p
→ 0 as n → ∞.

Then

(i). max1≤i< j≤n |Θi j − π
2
| → 0 in probability as n → ∞;

(ii). As n → ∞, 2p logsinΘmin + 4logn− log logn converges weakly to the extreme value distri-

bution with the distribution function F(y) = 1 − e−Key/2

, y ∈ R and K = 1/(4
√

2π). The

conclusion still holds if Θmin is replaced by Θmax.

In this case, both Θmin and Θmax converge to π/2 in probability. The above extreme value distribu-

tion differs from that in (8) where the dimension p is fixed. This is obviously caused by the fact that

p is finite in Theorem 2 and goes to infinity in Theorem 6.

Corollary 7 Let p = pn satisfy limn→∞
logn√

p
= α ∈ [0,∞). Then pcos2 Θmin−4logn+ log logn con-

verges weakly to a distribution with the cumulative distribution function exp{− 1

4
√

2π
e−(y+8α2)/2},

y ∈ R. The conclusion still holds if Θmin is replaced by Θmax.

Theorem 8 (Extreme Law: Exponential Case) Let p = pn satisfy
logn

p
→ β ∈ (0,∞) as n → ∞,

then
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(i). Θmin → cos−1
√

1− e−4β and Θmax → π− cos−1
√

1− e−4β in probability as n → ∞;

(ii). As n → ∞, 2p logsinΘmin + 4logn − log logn converges weakly to a distribution with the

distribution function

F(y) = 1− exp
{

−K(β)e(y+8β)/2
}

, y ∈ R, where K(β) =
( β

8π(1− e−4β)

)1/2

,

and the conclusion still holds if Θmin is replaced by Θmax.

In contrast to Theorem 6, neither Θmax nor Θmin converges to π/2 under the case that (logn)/p→
β ∈ (0,∞). Instead, they converge to different constants depending on β.

Theorem 9 (Extreme Law: Super-Exponential Case) Let p = pn satisfy
logn

p
→ ∞ as n → ∞.

Then,

(i). Θmin → 0 and Θmax → π in probability as n → ∞;

(ii). As n → ∞, 2p logsinΘmin +
4p

p−1
logn− log p converges weakly to the extreme value distri-

bution with the distribution function F(y) = 1 − e−Key/2

, y ∈ R with K = 1/(2
√

2π). The

conclusion still holds if Θmin is replaced by Θmax.

It can be seen from Theorems 6, 8 and 9 that Θmax becomes larger when the rate β= lim(logn)/p

increases. They are π/2, π− cos−1
√

1− e−4β ∈ (π/2,π) and π when β = 0, β ∈ (0,∞) and β = ∞,
respectively.

Set f (β) = π−cos−1
√

1− e−4β. Then f (0) = π/2 and f (+∞) = π, which corresponds to Θmax

in (i) of Theorem 6 and (i) of Theorem 9, respectively. So the conclusions in Theorems 6, 8 and 9

are consistent.

Theorem 3 provides the limiting distribution of Θmax +Θmin −π when the dimension p is fixed.

It is easy to see from the above theorems that Θmax +Θmin −π → 0 in probability as both n and p

go to infinity. Its asymptotic distribution is much more involved and we leave it as future work.

Remark 10 As mentioned in the introduction, Cai and Jiang (2011, 2012) considered the limiting

distribution of the coherence of a random matrix and the coherence is closely related to the minimum

angle Θmin. In the current setting, the coherence Ln,p is defined by

Ln,p = max
1≤i< j≤n

|ρi j|

where ρi j = XT
i X j. The results in Theorems 6, 8 and 9 are new. Their proofs can be essentially

reduced to the analysis of max1≤i< j≤n ρi j. This maximum is analyzed through modifying the proofs

of the results for the limiting distribution of the coherence Ln,p in Cai and Jiang (2012). The key

step in the proofs is the study of the maximum and minimum of pairwise i.i.d. random variables

{ρi j; 1 ≤ i < j ≤ n} by using the Chen-Stein method. It is noted that {ρi j; 1 ≤ i < j ≤ n} are not

i.i.d. random variables (see, for example, p.148 from Muirhead (1982)), the standard techniques to

analyze the extreme values of {ρi j; 1 ≤ i < j ≤ n} do not apply.
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4. Applications to Statistics

The results developed in the last two sections can be applied to test the spherical symmetry (Fang

et al., 1990):

H0 : Z is spherically symmetric in R
p

based on an i.i.d. sample {Zi}n
i=1. Under the null hypothesis H0, Z/‖Z‖ is uniformly distributed on

S
p−1. It is expected that the minimum angle Θmin is stochastically larger under the null hypothesis

than that under the alternative hypothesis. Therefore, one should reject the null hypothesis when

Θmin is too small or formally, reject H0 when

n2/(p−1)Θmin ≤ cα,

where the critical value cα, according to Theorem 2, is given by

cα =
(

−K−1 log(1−α)
)1/(p−1)

for the given significance level α. This provides the minimum angle test for sphericity or the packing

test on sphericity.

We run a simulation study to examine the power of the packing test. The following 6 data

generating processes are used:

Distribution 0: the components of X follow independently the standard normal distribution;

Distribution 1: the components of X follow independently the uniform distribution on [−1,1];

Distribution 2: the components of X follow independently the uniform distribution on [0,1];

Distribution 3: the components of X follow the standard normal distribution with correlation 0.5;

Distribution 4: the components of X follow the standard normal distribution with correlation 0.9;

Distribution 5: the components of X follow independently the mixture distribution 2/3exp(−x)I(x≥
0)+1/3exp(x)I(x ≤ 0).

The results are summarized in Table 1 below. Note that for Distribution 0, the power corresponds

to the size of the test, which is slightly below α = 5%.

Distribution 0 1 2 3 4 5

p = 2 4.20 5.20 20.30 5.55 10.75 5.95

p = 3 4.20 6.80 37.20 8.00 30.70 8.05

p = 4 4.80 7.05 64.90 11.05 76.25 11.20

p = 5 4.30 7.45 90.50 18.25 99.45 11.65

Table 1: The power (percent of rejections) of the packing test based on 2000 simulations

The packing test does not examine whether there is a gap in the data on the sphere. An alternative

test statistic is µn or its normalized version µn,p when p is large, defined respectively by (1) and (2).

A natural test statistic is then to use a distance such as the Kolmogrov-Smirnov distance between µn
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and h(θ). In this case, one needs to derive further the null distribution of such a test statistic. This

is beyond the scope of this paper and we leave it for future work.

Our study also shed lights on the magnitude of spurious correlation. Suppose that we have a re-

sponse variable Y and its associate covariates {X j}p
j=1 (for example, gene expressions). Even when

there is no association between the response and the covariate, the maximum sample correlation

between X j and Y based on a random sample of size n will not be zero. It is closely related to the

minimum angle Θmin (Fan and Lv, 2008). Any correlation below a certain thresholding level can

be spurious—the correlation of such a level can occur purely by chance. For example, by Theorem

6(ii), any correlation (in absolute value) below

√

1−n−4/p(log(n))1/p

can be regarded as the spurious one. Take, for example, p = 30 and n = 50 as in Figure 4, the

spurious correlation can be as large 0.615 in this case.

The spurious correlation also helps understand the bias in calculating the residual σ2 = var(ε)
in the sparse linear model

Y = XT
S βS + ε

where S is a subset of variables {1, · · · p}. When an extra variable besides XS is recruited by a

variable selection algorithm, that extra variable is recruited to best predict ε (Fan et al., 2012).

Therefore, by the classical formula for the residual variance, σ2 is underestimated by a factor of

1− cos2(Θmin). Our asymptotic result gives the order of magnitude of such a bias.

5. Discussions

We have established the limiting empirical and extreme laws of the angles between random unit

vectors, both for the fixed dimension and growing dimension cases. For fixed p, we study the

empirical law of angles, the extreme law of angles and the law of the sum of the largest and smallest

angles in Theorems 1, 2 and 3. Assuming p is large, we establish the empirical law of random

angles in Theorem 4. Given two vectors u and v, the cosine of their angle is equal to the Pearson

correlation coefficient between them. Based on this observation, among the results developed in this

paper, the limiting distribution of the minimum angle Θmin given in Theorems 6-9 for the setting

where both n and p → ∞ is obtained by similar arguments to those in Cai and Jiang (2012) on

the coherence of an n× p random matrix (a detailed discussion is given in Remark 10). See also

Jiang (2004), Li and Rosalsky (2006), Zhou (2007), Liu et al. (2008), Li et al. (2009) and Li et al.

(2010) for earlier results on the distribution of the coherence which were all established under the

assumption that both n and p → ∞.

The study of the random angles Θi j’s, Θmin and Θmax is also related to several problems in

machine learning as well as some deterministic open problems in physics and mathematics. We

briefly discuss some of these connections below.

5.1 Connections to Machine Learning

Our studies shed lights on random geometric graphs, which are formed by n random points on

the p-dimensional unit sphere as vertices with edge connecting between points Xi and X j if Θi j >
δ for certain δ (Penrose, 2003; Devroye et al., 2011). Like testing isotropicity in Section 4, a

generalization of our results can be used to detect if there are any implanted cliques in a random
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graph, which is a challenging problem in machine learning. It can also be used to describe the

distributions of the number of edges and degree of such a random geometric graph. Problems

of hypothesis testing on isotropicity of covariance matrices have strong connections with clique

numbers of geometric random graphs as demonstrated in the recent manuscript by Castro et al.

(2012). This furthers connections of our studies in Section 4 to this machine learning problem.

Principal component analysis (PCA) is one of the most important techniques in high-dimensional

data analysis for visualization, feature extraction, and dimension reduction. It has a wide range

of applications in statistics and machine learning. A key aspect of the study of PCA in the high-

dimensional setting is the understanding of the properties of the principal eigenvectors of the sample

covariance matrix. In a recent paper, Shen et al. (2013) showed an interesting asymptotic conical

structure in the critical sample eigenvectors under a spike covariance models when the ratio between

the dimension and the product of the sample size with the spike size converges to a nonzero con-

stant. They showed that in such a setting the critical sample eigenvectors lie in a right circular cone

around the corresponding population eigenvectors. Although these sample eigenvectors converge

to the cone, their locations within the cone are random. The behavior of the randomness of the

eigenvectors within the cones is related to the behavior of the random angles studied in the present

paper. It is of significant interest to rigorously explore these connections. See Shen et al. (2013) for

further discussions.

5.2 Connections to Some Open Problems in Mathematics and Physics

The results on random angles established in this paper can be potentially used to study a number of

open deterministic problems in mathematics and physics.

Let x1, · · · ,xn be n points on S
p−1 and R = {x1, · · · ,xn}. The α-energy function is defined by

E(R,α) =

{

∑1≤i< j≤n ‖xi −x j‖α, if α 6= 0;

∑1≤i< j≤n log 1
‖xi−x j‖ , if α = 0,

and E(R,−∞) = min1≤i< j≤n
1

‖xi−x j‖ where ‖·‖ is the Euclidean norm in R
p. These are known as the

electron problem (α = 0) and the Coulomb potential problem (α =−1). See, for example, Kuijlaars

and Saff (1998) and Katanforoush and Shahshahani (2003). The goal is to find the extremal α-

energy

ε(R,α) :=

{

infR E(R,α), if α ≤ 0,

supR E(R,α), if α > 0,

and the extremal configuration R that attains ε(R,α). In particular, when α = −1, the quantity

ε(R,−1) is the minimum of the Coulomb potential

∑
1≤i< j≤n

1

‖xi −x j‖
.

These open problems, as a function of α, are: (i) α =−∞: Tammes problem; (ii) α =−1: Thomson

problem; (iii) α = 1: maximum average distance problem; and (iv) α = 0: maximal product of

distances between all pairs. Problem (iv) is the 7th of the 17 most challenging mathematics problems

in the 21st century according to Smale (2000). See, for example, Kuijlaars and Saff (1998) and

Katanforoush and Shahshahani (2003), for further details.
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The above problems can also be formulated through randomization. Suppose that X1, · · · ,Xn

are i.i.d. uniform random vectors on S
p−1. Suppose R = {x1, · · · ,xn} achieves the infinimum or

supremum in the definition of ε(R,α). Since P(max1≤i≤n ‖Xi−xi‖< ε)> 0 for any ε > 0, it is easy

to see that ε(R,α) = ess · inf(E(R,α)) for α ≤ 0 and ε(R,α) = ess · sup(E(R,α)) for α > 0 with

R = {X1, · · · ,Xn}, where ess · inf(Z) and ess · sup(Z) are the essential infinimum and the essential

maximum of random variable Z, respectively.

For the Tammes problem (α = −∞), the extremal energy ε(R,−∞) can be further studied

through the random variable Θmax. Note that ‖xi − x j‖2 = 2(1− cosθi j), where θi j is the angle

between vectors
−→
Oxi and

−→
Ox j. Then

1

2E(R,−∞)2
= max

x1,··· ,xn∈Sp−1
(1− cosθi j) = 1− cosΘ̃max,

where Θ̃max = max{θi j; 1 ≤ i < j ≤ n}. Again, let X1, · · · ,Xn be i.i.d. random vectors with the

uniform distribution on S
p−1. Then, it is not difficult to see

1

2ε(R,−∞)2
= sup

R

1

2E(R,−∞)2
= sup

R

(1− cosΘ̃max) = 1− cos∆

where ∆ := ess · sup(Θmax) is the essential upper bound of the random variable Θmax as defined in

(4). Thus,

ε(R,−∞) =
1

√

2(1− cos∆)
. (10)

The essential upper bound ∆ of the random variable Θmax can be approximated by random sampling

of Θmax. So the approach outlined above provides a direct way for using a stochastic method to

study these deterministic problems and establishes connections between the random angles and open

problems mentioned above. See, for example, Katanforoush and Shahshahani (2003) for further

comments on randomization. Recently, Armentano et al. (2011) studied this problem by taking

xi’s to be the roots of a special type of random polynomials. Taking independent and uniform

samples X1, · · · ,Xn from the unit sphere Sp−1 to get (10) is simpler than using the roots of a random

polynomials.

6. Proofs

We provide the proofs of the main results in this section.

6.1 Technical Results

Recall that X1,X2, · · · are random points independently chosen with the uniform distribution on

S
p−1, the unit sphere in R

p, and Θi j is the angle between
−→

OXi and
−→

OX j and ρi j = cosΘi j for any

i 6= j. Of course, Θi j ∈ [0,π] for all i 6= j. It is known that the distribution of (X1,X2, · · ·) is the same

as that of

( Y1

‖Y1‖
,

Y2

‖Y2‖
, · · ·
)
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where {Y1,Y2, · · ·} are independent p-dimensional random vectors with the normal distribution

Np(0,Ip), that is, the normal distribution with mean vector 0 and the covariance matrix equal to the

p× p identity matrix Ip. Thus,

ρi j = cosΘi j =
YT

i Y j

‖Yi‖ · ‖Yi‖

for all 1 ≤ i < j ≤ n. See, for example, the Discussions in Section 5 from Cai and Jiang (2012) for

further details. Of course, ρii = 1 and |ρi j| ≤ 1 for all i, j. Set

Mn = max
1≤i< j≤n

ρi j = cosΘmin. (11)

Lemma 11 ((22) in Lemma 4.2 from Cai and Jiang (2012)) Let p ≥ 2. Then {ρi j; 1 ≤ i < j ≤ n}
are pairwise independent and identically distributed with density function

g(ρ) =
1√
π

Γ( p
2
)

Γ( p−1
2
)
· (1−ρ2)

p−3
2 , |ρ|< 1. (12)

Notice y = cosx is a strictly decreasing function on [0,π], hence Θi j = cos−1 ρi j. A direct com-

putation shows that Lemma 11 is equivalent to the following lemma.

Lemma 12 Let p ≥ 2. Then,

(i) {Θi j; 1 ≤ i < j ≤ n} are pairwise independent and identically distributed with density func-

tion

h(θ) =
1√
π

Γ( p
2
)

Γ( p−1
2
)
· (sinθ)p−2, θ ∈ [0,π]. (13)

(ii) If “Θi j” in (i) is replaced by “π−Θi j”, the conclusion in (i) still holds.

Let I be a finite set, and for each α ∈ I, Xα be a Bernoulli random variable with pα = P(Xα =
1) = 1−P(Xα = 0)> 0. Set W = ∑α∈I Xα and λ = EW = ∑α∈I pα. For each α ∈ I, suppose we have

chosen Bα ⊂ I with α ∈ Bα. Define

b1 = ∑
α∈I

∑
β∈Bα

pα pβ and b2 = ∑
α∈I

∑
α 6=β∈Bα

P(Xα = 1, Xβ = 1).

Lemma 13 (Theorem 1 from Arratia et al. (1989)) For each α ∈ I, assume Xα is independent of

{Xβ; β ∈ I −Bα}. Then
∣

∣P(Xα = 0 for all α ∈ I)− e−λ
∣

∣≤ b1 +b2.

The following is essentially a special case of Lemma 13.

Lemma 14 Let I be an index set and {Bα,α ∈ I} be a set of subsets of I, that is, Bα ⊂ I for each

α ∈ I. Let also {ηα,α ∈ I} be random variables. For a given t ∈ R, set λ = ∑α∈I P(ηα > t). Then

|P(max
α∈I

ηα ≤ t)− e−λ| ≤ (1∧λ−1)(b1 +b2 +b3)
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where

b1 = ∑
α∈I

∑
β∈Bα

P(ηα > t)P(ηβ > t), b2 = ∑
α∈I

∑
α 6=β∈Bα

P(ηα > t,ηβ > t),

b3 = ∑
α∈I

E|P(ηα > t|σ(ηβ,β /∈ Bα))−P(ηα > t)|,

and σ(ηβ,β /∈ Bα) is the σ-algebra generated by {ηβ,β /∈ Bα}. In particular, if ηα is independent of

{ηβ,β /∈ Bα} for each α, then b3 = 0.

Lemma 15 Let p = pn ≥ 2. Recall Mn as in (11). For {tn ∈ [0,1]; n ≥ 2}, set

hn =
n2 p1/2

√
2π

∫ 1

tn

(1− x2)
p−3

2 dx.

If limn→∞ pn = ∞ and limn→∞ hn = λ ∈ [0,∞), then limn→∞ P(Mn ≤ tn) = e−λ/2.

Proof. For brevity of notation, we sometimes write t = tn if there is no confusion. First, take

I = {(i, j); 1 ≤ i < j ≤ n}. For u = (i, j)∈ I, set Bu = {(k, l)∈ I; one of k and l = i or j, but (k, l) 6=
u}, ηu = ρi j and Au = Ai j = {ρi j > t}. By the i.i.d. assumption on X1, · · · ,Xn and Lemma 14,

|P(Mn ≤ t)− e−λn | ≤ b1,n +b2,n (14)

where

λn =
n(n−1)

2
P(A12) (15)

and

b1,n ≤ 2n3P(A12)
2 and b2,n ≤ 2n3P(A12A13).

By Lemma 11, A12 and A13 are independent events with the same probability. Thus, from (15),

b1,n ∨b2,n ≤ 2n3P(A12)
2 ≤ 8nλ2

n

(n−1)2
≤ 32λ2

n

n
(16)

for all n ≥ 2. Now we compute P(A12). In fact, by Lemma 11 again,

P(A12) =
∫ 1

t
g(x)dx =

1√
π

Γ( p
2
)

Γ( p−1
2
)

∫ 1

t
(1− x2)

p−3
2 dx.

Recalling the Stirling formula (see, for example, p.368 from Gamelin (2001) or (37) on p.204 from

Ahlfors (1979)):

logΓ(z) = z logz− z− 1

2
logz+ log

√
2π+O

(

1

x

)

as x = Re(z)→ ∞, it is easy to verify that

Γ( p
2
)

Γ( p−1
2
)
∼
√

p

2
(17)
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as p → ∞. Thus,

P(A12)∼
p1/2

√
2π

∫ 1

t
(1− x2)

p−3
2 dx

as n → ∞. From (15), we know

λn ∼
p1/2n2

2
√

2π

∫ 1

t
(1− x2)

p−3
2 dx =

hn

2

as n → ∞. Finally, by (14) and (16), we know

lim
n→∞

P(Mn ≤ t) = e−λ/2 if lim
n→∞

hn = λ ∈ [0,∞). �

6.2 Proofs of Main Results in Section 2

Lemma 16 Let X1,X2, · · · be independent random points with the uniform distribution on the unit

sphere in R
p.

(i) Let p be fixed and µ be the probability measure with the density h(θ) as in (5). Then, with

probability one, µn in (1) converges weakly to µ as n → ∞.
(ii) Let p = pn and {ϕn(θ); n ≥ 1} be a sequence of functions defined on [0,π]. If ϕn(Θ12)

converges weakly to a probability measure ν as n → ∞, then, with probability one,

νn :=
1
(

n
2

) ∑
1≤i< j≤n

δϕn(Θi j) (18)

converges weakly to ν as n → ∞.

Proof. First, we claim that, for any bounded and continuous function u(x) defined on R,

1
(

n
2

) ∑
1≤i< j≤n

[u(ϕn(Θi j))−Eu(ϕn(Θi j))]→ 0 a.s. (19)

as n → ∞ regardless p is fixed as in (i) or p = pn as in (ii) in the statement of the lemma. For conve-

nience, write un(θ) = u(ϕn(θ)). Then un(θ) is a bounded function with M := supθ∈[0,π] |un(θ)|< ∞.
By the Markov inequality

P
(∣

∣

∣ ∑
1≤i< j≤n

(un(Θi j)−Eun(Θi j))
∣

∣

∣
≥ ε

(

n

2

)

)

≤ 1
(

n
2

)2
ε2

E

∣

∣

∣ ∑
1≤i< j≤n

(un(Θi j)−Eun(Θi j))
∣

∣

∣

2

for any ε > 0. From (i) of Lemma 12, {Θi j; 1 ≤ i < j ≤ n} are pairwise independent with the

common distribution, the last expectation is therefore equal to
(

n
2

)

Var(un(Θ12))≤
(

n
2

)

M2. This says

that, for any ε > 0,

P
(∣

∣

∣ ∑
1≤i< j≤n

(un(Θi j)−Eun(Θi j))
∣

∣

∣
≥ ε

(

n

2

)

)

= O
( 1

n2

)

1853



CAI, FAN AND JIANG

as n → ∞. Note that the sum of the right hand side over all n ≥ 2 is finite. By the Borel-Cantelli

lemma, we conclude (19).

(i) Take ϕn(θ) = θ for θ ∈ R in (19) to get that

1
(

n
2

) ∑
1≤i< j≤n

u(Θi j)→ Eu(Θ12) =
∫ π

0
u(θ)h(θ)dθ a.s.

as n → ∞, where u(θ) is any bounded continuous function on [0,π] and h(θ) is as in (5). This leads

to that, with probability one, µn in (1) converges weakly to µ as n → ∞.
(ii) Since ϕn(Θ12) converges weakly to ν as n → ∞, we know that, for any bounded continu-

ous function u(x) defined on R, Eu(ϕn(Θ12)) →
∫ ∞
−∞ u(x)dν(x) as n → ∞. By (i) of Lemma 12,

Eu(ϕn(Θi j)) = Eu(ϕn(Θ12)) for all 1 ≤ i < j ≤ n. This and (19) yield

1
(

n
2

) ∑
1≤i< j≤n

u(ϕn(Θi j))→
∫ ∞

−∞
u(x)dν(x) a.s.

as n → ∞. Reviewing the definition of νn in (18), the above asserts that, with probability one, νn

converges weakly to ν as n → ∞. �

Proof of Theorem 1. This is a direct consequence of (i) of Lemma 16. �

Recall X1, · · · ,Xn are random points independently chosen with the uniform distribution on

S
p−1, the unit sphere in R

p, and Θi j is the angle between
−→

OXi and
−→

OX j and ρi j = cosΘi j for all

1 ≤ i, j ≤ n. Of course, ρii = 1 and |ρi j| ≤ 1 for all 1 ≤ i 6= j ≤ n. Review (11) to have

Mn = max
1≤i< j≤n

ρi j = cosΘmin.

To prove Theorem 2, we need the following result.

Proposition 17 Fix p ≥ 2. Then n4/(p−1)(1−Mn) converges to the distribution function

F1(x) = 1− exp{−K1x(p−1)/2}, x ≥ 0,

in distribution as n → ∞, where

K1 =
2(p−5)/2

√
π

Γ( p
2
)

Γ( p+1
2
)
. (20)

Proof. Set t = tn = 1− xn−4/(p−1) for x ≥ 0. Then

t → 1 and t2 = 1− 2x

n4/(p−1)
+O

( 1

n8/(p−1)

)

(21)

as n → ∞. Notice

P(n4/(p−1)(1−Mn)< x) = P(Mn > t) = 1−P(Mn ≤ t).

Thus, to prove the theorem, since F1(x) is continuous, it is enough to show that

P(Mn ≤ t)→ e−K1x(p−1)/2

(22)
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as n → ∞, where K1 is as in (20).

Now, take I = {(i, j); 1 ≤ i < j ≤ n}. For u = (i, j) ∈ I, set Bu = {(k, l) ∈ I; one of k and l =
i or j, but (k, l) 6= u}, ηu = ρi j and Au = Ai j = {ρi j > t}. By the i.i.d. assumption on X1, · · · ,Xn

and Lemma 14,

|P(Mn ≤ t)− e−λn | ≤ b1,n +b2,n (23)

where

λn =
n(n−1)

2
P(A12) (24)

and

b1,n ≤ 2n3P(A12)
2 and b2,n ≤ 2n3P(A12A13).

By Lemma 11, A12 and A13 are independent events with the same probability. Thus, from (24),

b1,n ∨b2,n ≤ 2n3P(A12)
2 ≤ 8nλ2

n

(n−1)2
≤ 32λ2

n

n
(25)

for all n ≥ 2. Now we evaluate P(A12). In fact, by Lemma 11 again,

P(A12) =
∫ 1

t
g(x)dx =

1√
π

Γ( p
2
)

Γ( p−1
2
)

∫ 1

t
(1− x2)

p−3
2 dx.

Set m = p−3
2

≥− 1
2
. We claim

∫ 1

t
(1− x2)m dx ∼ 1

2m+2
(1− t2)m+1 (26)

as n → ∞. In fact, set s = x2. Then x =
√

s and dx = 1
2
√

s
ds. It follows that

∫ 1

t
(1− x2)m dx =

∫ 1

t2

1

2
√

s
(1− s)m ds

∼ 1

2

∫ 1

t2
(1− s)m ds =

1

2m+2
(1− t2)m+1

as n → ∞, where the fact limn→∞ t = limn→∞ tn = 1 stated in (21) is used in the second step to replace
1

2
√

s
by 1

2
. So the claim (26) follows.

Now, we know from (24) that

λn ∼
n2

2
√

π

Γ( p
2
)

Γ( p−1
2
)

∫ 1

t
(1− x2)

p−3
2 dx ∼ n2

2
√

π

Γ( p
2
)

(p−1)Γ( p−1
2
)
(1− t2)(p−1)/2

=
1

4
√

π

Γ( p
2
)

Γ( p+1
2
)

(

n4/(p−1)(1− t2)
)(p−1)/2

as n → ∞, where (26) is used in the second step and the fact Γ(x+ 1) = xΓ(x) is used in the last

step. By (21),

n4/(p−1)(1− t2) = 2x+O
( 1

n4/(p−1)

)
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as n → ∞. Therefore,

λn →
2(p−5)/2

√
π

Γ( p
2
)

Γ( p+1
2
)
x(p−1)/2 = K1x(p−1)/2

as n → ∞. Finally, by (23) and (25), we know

lim
n→∞

P(Mn ≤ t) = e−K1x(p−1)/2

.

This concludes (22). �

Proof of Theorem 2. First, since Mn = cosΘmin by (3), then use the identity 1−cosh = 2sin2 h
2

for

all h ∈ R to have

n4/(p−1)(1−Mn) = 2n4/(p−1) sin2 Θmin

2
. (27)

By Proposition 17 and the Slusky lemma, sin Θmin

2
→ 0 in probability as n→∞. Noticing 0≤Θmin ≤

π, we then have Θmin → 0 in probability as n → ∞. From (27) and the fact that limx→0
sinx

x
= 1 we

obtain

n4/(p−1)(1−Mn)
1
2
n4/(p−1)Θ2

min

→ 1

in probability as n → ∞. By Proposition 17 and the Slusky lemma again, 1
2
n4/(p−1)Θ2

min converges

in distribution to F1(x) as in Proposition 17. Second, for any x > 0,

P(n2/(p−1)Θmin ≤ x) = P
(1

2
n4/(p−1)Θ2

min ≤
x2

2

)

→ 1− exp{−K1(x
2/2)(p−1)/2}= 1− exp{−Kxp−1} (28)

as n → ∞, where

K = 2(1−p)/2K1 =
1

4
√

π

Γ( p
2
)

Γ( p+1
2
)
. (29)

Now we prove

n2/(p−1)(π−Θmax) converges weakly to F(x) as n → ∞. (30)

In fact, recalling the proof of the above and that of Proposition 17, we only use the following

properties about ρi j :

(i) {ρi j; 1 ≤ i < j ≤ n} are pairwise independent.

(ii) ρi j has density function g(ρ) given in (12) for all 1 ≤ i < j ≤ n.
(iii) For each 1 ≤ i < j ≤ n, ρi j is independent of {ρkl; 1 ≤ k < l ≤ n; {k, l}∩{i, j}= /0}.
By using Lemmas 11 and 12 and the remark between them, we see that the above three proper-

ties are equivalent to

(a) {Θi j; 1 ≤ i < j ≤ n} are pairwise independent.

(b) Θi j has density function h(θ) given in (13) for all 1 ≤ i < j ≤ n.
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(c) For each 1 ≤ i < j ≤ n, Θi j is independent of {Θkl; 1 ≤ k < l ≤ n; {k, l}∩{i, j}= /0}.
It is easy to see from (ii) of lemma 12 that the above three properties are equivalent to the

corresponding (a) , (b) and (c) when “Θi j” is replaced by “π−Θi j” and “Θkl” is replaced by “π−
Θkl .” Also, it is key to observe that min{π−Θi j; 1 ≤ i < j ≤ n}= π−Θmax. We then deduce from

(28) that

P(n2/(p−1)(π−Θmax)≤ x)→ 1− exp{−Kxp−1} (31)

as n → ∞, where K is as in (29). �

Proof of Theorem 3. We will prove the following:

lim
n→∞

P
(

n2/(p−1)Θmin ≥ x, n2/(p−1)(π−Θmax)≥ y
)

= e−K(xp−1+yp−1) (32)

for any x ≥ 0 and y ≥ 0, where K is as in (9). Note that the right hand side in (32) is identi-

cal to P(X ≥ x, Y ≥ y), where X and Y are as in the statement of Theorem 3. If (32) holds, by

the fact that Θmin,Θmax,X ,Y are continuous random variables and by Theorem 2 we know that

Qn :=
(

(n2/(p−1)Θmin,n
2/(p−1)(π−Θmax)

)

∈ R
2 for n ≥ 2 is a tight sequence. By the standard sub-

sequence argument, we obtain that Qn converges weakly to the distribution of (X ,Y ) as n → ∞.
Applying the map h(x,y) = x− y with x,y ∈ R to the sequence {Qn; n ≥ 2} and its limit, the de-

sired conclusion then follows from the continuous mapping theorem on the weak convergence of

probability measures.

We now prove (32). Set tx = n−2/(p−1)x and ty = π−n−2/(p−1)y. Without loss of generality, we

assume 0 ≤ tx < ty < ∞ for all n ≥ 2. Then

P
(

n2/(p−1)Θmin ≥ x, n2/(p−1)(π−Θmax)≥ y
)

= P(tx ≤ Θi j ≤ ty for all1 ≤ i < j ≤ n)

= P
(

Xu = 0 for all u ∈ I
)

(33)

where I := {(i, j); 1 ≤ i < j ≤ n} and

Xu :=

{

1, if Θu /∈ [tx, ty];

0, if Θu ∈ [tx, ty].

For u= (i, j)∈ I, set Bu = {(k, l)∈ I; one of k and l = i or j, but (k, l) 6= u}. By the i.i.d. assumption

on X1, · · · ,Xn and Lemma 13

|P
(

Xu = 0 for all u ∈ I
)

− e−λn | ≤ b1,n +b2,n (34)

where

λn =
n(n−1)

2
P(A12) and A12 =

{

Θ12 /∈ [tx, ty]
}

(35)

and

b1,n ≤ 2n3P(A12)
2 and b2,n ≤ 2n3P(A12A13) = 2n3P(A12)

2 (36)
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by Lemma 12. Now

P(A12) = P(Θ12 < tx)+P(Θ12 > ty). (37)

By Lemma 12 again,

P(Θ12 > ty) =
1√
π

Γ( p
2
)

Γ( p−1
2
)

∫ π

ty

(sinθ)p−2 dθ

=
1√
π

Γ( p
2
)

Γ( p−1
2
)

∫ n−2/(p−1)y

0
(sinη)p−2 dη (38)

by setting η = π−θ. Now, set v = cosη for η ∈ [0,π]. Write (sinη)p−2 =−(sinη)p−3(cosη)′. Then

the integral in (38) is equal to

∫ 1

vy

(1− v2)(p−3)/2 dv

where

vy := cos(n−2/(p−1)y) = 1− y2

2n4/(p−1)
+O

( 1

n8/(p−1)

)

as n → ∞ by the Taylor expansion. Trivially,

v2
y = 1− y2

n4/(p−1)
+O

( 1

n8/(p−1)

)

as n → ∞. Thus, by (26),

∫ 1

vy

(1− v2)(p−3)/2 dv ∼ 1

p−1
(1− v2

y)
(p−1)/2 =

yp−1

(p−1)n2

(

1+O
( 1

n4/(p−1)

))

as n → ∞. Combining all the above we conclude that

P(Θ12 > ty) =
Γ( p

2
)

√
π(p−1)Γ( p−1

2
)

yp−1

n2
(1+o(1))

=
Γ( p

2
)

2
√

πΓ( p+1
2
)

yp−1

n2
(1+o(1)) (39)

as n → ∞. Similar to the part between (38) and (39), we have

P(Θ12 < tx) =
1√
π

Γ( p
2
)

Γ( p−1
2
)

∫ n−2/(p−1)x

0
(sinθ)p−2 dθ

=
Γ( p

2
)

2
√

πΓ( p+1
2
)

xp−1

n2
(1+o(1))

as n → ∞. This joint with (39) and (37) implies that

P(A12) =
Γ( p

2
)

2
√

πΓ( p+1
2
)

xp−1 + yp−1

n2
(1+o(1))
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as n → ∞. Recalling (35) and (36), we obtain

lim
n→∞

λn = K(xp−1 + yp−1)

and b1,n ∨b2,n = O
(

1
n

)

as n → ∞, where K is as in (9). These two assertions and (34) yield

lim
n→∞

P
(

Xu = 0 for all u ∈ I
)

= e−K(xp−1+yp−1).

Finally, this together with (33) implies (32). �

6.3 Proofs of Main Results in Section 3

Proof of Theorem 4. Notice (p−2)/p → 1 as p → ∞, to prove the theorem, it is enough to show

that the theorem holds if “µn,p” is replaced by “ 1

(n
2)

∑1≤i< j≤n δ√p( π
2
−Θi j).” Thus, without loss of

generality, we assume (with a bit of abuse of notation) that

µn,p =
1
(

n
2

) ∑
1≤i< j≤n

δ√p( π
2
−Θi j), n ≥ 2, p ≥ 2.

Recall p = pn. Set Yn :=
√

p(π
2
−Θ12) for p ≥ 2. We claim that

Yn converges weakly to N(0,1) (40)

as n → ∞. Assuming this is true, taking ϕn(θ) =
√

p(π
2
−θ) for θ ∈ [0,π] and ν = N(0,1) in (ii) of

Lemma 16, then, with probability one, µn,p converges weakly to N(0,1) as n → ∞.
Now we prove the claim. In fact, noticing Θ12 has density h(θ) in (13), it is easy to see that Yn

has density function

hn(y) : =
1√
π

Γ( p
2
)

Γ( p−1
2
)
·
[

sin
(π

2
− y√

p

)]p−2

·
∣

∣

∣
− 1√

p

∣

∣

∣

=
1√
pπ

Γ( p
2
)

Γ( p−1
2
)
·
(

cos
y√
p

)p−2

(41)

for any y ∈ R as n is sufficiently large since limn→∞ pn = ∞. By (17),

1√
pπ

Γ( p
2
)

Γ( p−1
2
)
→ 1√

2π
(42)

as n → ∞. On the other hand, by the Taylor expansion,

(

cos
y√
p

)p−2

=
(

1− y2

2p
+O

( 1

p2

))p−2

→ e−y2/2

as n → ∞. The above together with (41) and (42) yields that

lim
n→∞

hn(y)→
1√
2π

e−y2/2 (43)
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for any y ∈ R. The assertions in (41) and (42) also imply that supy∈R |hn(y)| ≤ C for n sufficiently

large, where C is a constant not depending on n. This and (43) conclude (40). �

Proof of Proposition 5. By (i) of Lemma 12,

P(|Θ− π

2
| ≥ ε) =Cp

∫
|θ− π

2
|≥ε

(sinθ)p−2 dθ =Cp

∫
ε≤|t|≤π/2

(cos t)p−2 dt

by making transform t = θ− π
2
, where Cp := 1√

π
Γ( p

2
)/Γ( p−1

2
). The last term above is identical to

2Cp

∫ π/2

ε
(cos t)p−2 dt ≤ πCp(cosε)p−2.

It is known that limx→+∞ Γ(x+a)/(xaΓ(x)) = 1, see, for example, Dong, Jiang and Li (2012). Then

πCp ≤ K
√

p for all p ≥ 2, where K is a universal constant. The desired conclusion then follows.

�

Proof of Theorem 6. Review the proof of Theorem 1 in Cai and Jiang (2012). Replacing |ρi j|,
Ln in (2) and Lemma 6.4 from Cai and Jiang (2012) with ρi j, Mn in (11) and Lemma 15 here,

respectively. In the places where “n−2” or “n−4” appear in the proof, change them to “p−1” or

“p−3” accordingly. Keeping the same argument in the proof, we then obtain the following.

(a) Mn → 0 in probability as n → ∞.
(b) Let Tn = log(1−M2

n). Then, as n → ∞,

pTn +4logn− log logn

converges weakly to an extreme value distribution with the distribution function F(y)= 1−e−Key/2

, y∈
R and K = 1/(2

√
8π) = 1/(4

√
2π). From (11) we know

Mn = max
1≤i< j≤n

ρi j = cosΘmin and Θmin ∈ [0,π]; (44)

Tn = log(1−M2
n) = 2logsinΘmin. (45)

Then (a) above implies that Θmin → π/2 in probability as n → ∞, and (b) implies (ii) for Θmin in the

statement of Theorem 6. Now, observe that

min
1≤i< j≤n

{π−Θi j}= π−Θmax and sin(π−Θmax) = sinΘmax. (46)

By the same argument between (30) and (31), we get π−Θmax → π/2 in probability as n → ∞, that

is, Θmax → π/2 in probability as n → ∞. Notice

max
1≤i< j≤p

∣

∣

∣
Θi j −

π

2

∣

∣

∣

≤
∣

∣

∣
Θmax −

π

2

∣

∣

∣
+
∣

∣

∣
Θmin −

π

2

∣

∣

∣
→ 0

in probability as n → ∞. We get (i).

Finally, by the same argument between (30) and (31) again, and by (46) we obtain

2p logsinΘmax +4logn− log logn
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converges weakly to F(y) = 1− e−Key/2

, y ∈ R and K = 1/(4
√

2π). Thus, (ii) also holds for Θmax.
�

Proof of Corollary 7. Review the proof of Corollary 2.2 from Cai and Jiang (2012). Replacing Ln

and Theorem 1 there by Mn and Theorem 6, we get that

pM2
n −4logn+ log logn

converges weakly to the distribution function exp{− 1

4
√

2π
e−(y+8α2)/2}, y ∈ R. The desired conclu-

sion follows since Mn = cosΘmin. �

Proof of Theorem 8. Review the proof of Theorem 2 in Cai and Jiang (2012). Replacing |ρi j|, Ln

in (2) and Lemma 6.4 from Cai and Jiang (2012) with ρi j, Mn in (11) and Lemma 15, respectively.

In the places where “n− 2” and “n− 4” appear in the proof, change them to “p− 1” and “p− 3”

accordingly. Keeping the same argument in the proof, we then have the following conclusions.

(i) Mn →
√

1− e−4β in probability as n → ∞.
(ii) Let Tn = log(1−M2

n). Then, as n → ∞,

pTn +4logn− log logn

converges weakly to the distribution function

F(y) = 1− exp
{

−K(β)e(y+8β)/2
}

, y ∈ R,

where

K(β) =
1

2

( β

2π(1− e−4β)

)1/2

=
( β

8π(1− e−4β)

)1/2

.

From (44) and (45) we obtain

Θmin → cos−1
√

1− e−4β in probability and (47)

2p logsinΘmin +4logn− log logn (48)

converges weakly to the distribution function

F(y) = 1− exp
{

−K(β)e(y+8β)/2
}

, y ∈ R, where K(β) =
( β

8π(1− e−4β)

)1/2

(49)

as n → ∞. Now, reviewing (46) and the argument between (30) and (31), by (47) and (48), we

conclude that Θmax → π− cos−1
√

1− e−4β in probability and 2p logsinΘmax + 4logn− log logn

converges weakly to the distribution function F(y) as in (49). The proof is completed. �

Proof of Theorem 9. Review the proof of Theorem 3 in Cai and Jiang (2012). Replacing |ρi j|, Ln

in (2) and Lemma 6.4 from Cai and Jiang (2012) with ρi j, Mn in (11) and Lemma 15, respectively.

In the places where “n− 2” or “n− 4” appear in the proof, change them to “p− 1” or “p− 3”

accordingly. Keeping the same argument in the proof, we get the following results.

i) Mn → 1 in probability as n → ∞.
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ii) As n → ∞,

pMn +
4p

p−1
logn− log p

converges weakly to the distribution function F(y) = 1−e−Key/2

, y ∈R with K = 1/(2
√

2π). Com-

bining i), ii), (44) and (45), we see that, as n → ∞,

Θmin → 0 in probability;

2p logsinΘmin +
4p

p−1
logn− log p converges weakly to

F(y) = 1 − e−Key/2

, y ∈ R with K = 1/(2
√

2π). Finally, combining the above two convergence

results with (46) and the argument between (30) and (31), we have

Θmax → π in probability;

2p logsinΘmax +
4p

p−1
logn− log p converges weakly to

F(y) = 1− e−Key/2

, y ∈ R with K = 1/(2
√

2π). �
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