DISTRIBUTIONS OF MATRIX VARIATES AND LATENT ROOTS
DERIVED FROM NORMAL SAMPLES'

By Avan T. James

Yale University

1. Summary. The paper is largely expository, but some new results are in-
cluded to round out the paper and bring it up to date.

The following distributions are quoted in Section 7.

1. Type oF , exponential: (i) x°, (ii) Wishart, (iii) latent roots of the covari-
ance matrix.

2. Type 1Fy, binomial series: (i) variance ratio, F, (ii) latent roots with un-
equal population covariance matrices.

3. Type oFy, Bessel: (i) noncentral x’, (ii) noncentral Wishart, (iii) non-
central means with known covariance.

4. Type 1F,, confluent hypergeometric: (i) noncentral F, (ii) noncentral
multivariate F, (iii) noncentral latent roots.

5. Type oF1, Gaussian hypergeometric: (i) multiple correlation coefficient,
(ii) canonical correlation coefficients.

The modifications required for the corresponding distributions derived from
the complex normal distribution are outlined in Section 8, and the distributions
are listed. '

The hypergeometric functions ,F, of matrix argument which oceur in the multi-
variate distributions are defined in Section 4 by their expansions in zonal poly-
nomials as defined in Section 5. Important properties of zonal polynomials and
hypergeometric functions are quoted in Section 6. Formulae and methods for
the calculation of zonal polynomials are given in Section 9 and the zonal poly-
nomials up to degree 6 are given in the appendix.

The distribution of quadratic forms is discussed in Section 10, orthogonal
expansions of o/ and ,F; in Laguerre polynomials in Section 11 and the asymp-
totic expansion of ,Fy in Section 12. Section 13 has some formulae for moments

2. Introduction. Two major aims in principal component analysis, multiple
discriminant analysis and canonical correlation analysis are: (1) to assess the
joint significance of a number of variables, and (2) to replace them with a smaller
number of linear functions which eontain all or most of the essential information.

The magnitudes of the effects within the population can be measured by the
latent roots of certain matrices or determinantal equations depending upon the
population parameters. It is important to know the sampling distributions of the
estimates of them: (1) to be aware of the magnitude of possible sampling errors.
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476 ALAN T. JAMES

(2) to construct exact significance tests, particularly in the case when certain
population roots are acknowledged to be real and thereupon become nuisance
parameters in tests of significance of further roots, and (3) to find the sensitivity
or power of various tests.

3. The symmetry of a normal multivariate sample. This is the key to the
sampling distributions. Suppose that the columns of a m X n matrix X are
independently normally distributed with covariance matrix = and E[X] = M.
The probability density,

(1) @) epl— 3 ir(27T (X — M) (X — M)')] (dX),
is invariant under the group of transformations

X — LXH L & Gl(m)
(2) M—LMH H e 0(n)

> — L3I,

where Gl(m) is the group of all real m X m nonsingular matrices L, and O(n)
is the group of all n X n orthogonal matrices H.

On account of the symmetry, the Fourier analysis of the group plays a big
role in the distributional theory.

4. Hypergeometric functions. The noncentral x’, noncentral F and multiple
correlation distributions, as found by Fisher [11] in 1928, involve Bessel and
hypergeometric functions which can all be written as special cases, for par-
ticular integers p and ¢, of the generalized hypergeometric function

(3) qu(aly"';ap;bl,"',bq;x)=;%%

where the hypergeometric coefficient (a): is given by

(4) (a)r=ala+ 1) --- (¢ +k—1).

oFq is a function of the real or complex variable z depending upon the real or
complex numbers @, -, dp, b1, -+, by. Special cases are

(5) Fo(z) = ¢ exponential
(6) Folayz) = (1 —2)™° binomial series
1) oF1(dn; 3a°) = fo T e in™ g do / fo " ™ 0 do

Bessel (in the noncentral x* distribution)
(8) 1Fila; b; x) confluent (in the noncentral F distribution)

(9) JFi(ay, a8 5b;2) Gaussian (in the multiple correlation distribution).



MATRIX VARIATES AND LATENT ROOTS 477

The corresponding multivariate distributions involve a generalization of this
function to the case in which the variable x is replaced by a symmetrie matrix
S and ,F, is a real or complex valued symmetric funetion of the latent roots of
S.

The Bessel function of matrix argument was introduced by Bochner
[4] as an inverse Laplace transform of the exponential function. The general
system of hypergeometric functions of matrix argument is due to Herz [18] who
defined them by Laplace and inverse Laplace transforms as in Equations (28)
and (29). Constantine [8] discovered the power series representation which we
take as our definition.

As we are now dealing with symmetric functions of m variables, the power
series can be expanded in terms of one of the types of symmetric polynomials.
For any such type of basis of the symmetriec polynomials, the individual homo-
geneous polynomials of degree k are usually-indexed by partitions « = (k1 , ko,
k) iz ez -2 k=0, k04 - +kn=1Fk, of k into not more
than m parts. Hence whereas in the case of a single variable, we sum over all
Integers k, in the case of a matrix variable, we sum over all partitions « of all
integers. While in theory any basis of the symmetric polynomials would do, in
practice a colossal simplification of the coefficients is achieved if certain homo-
geneous symmetric polynomials, C.(S), called zonal polynomials derived from
the group representation theory of Gl(m), are used. They will be defined in the
next section.

The hypergeometric functions which appear in the distributions of the matrix
variates are given by the (Constantine [8]).

DEFINITION

(10) P oo, b ) = 2 30 (e o D

@, " ,0p,b1,++,b, are real or complex constants and the multivariate
hypergeometric coefficient (a), is given. by
(11) (a)x=1_11(a—%(i— 1))k

where, as before,
(12) (a)r=ala+1)---(a+k—1).

The latent roots distributions involve functions of both population and sample
roots, namely,
DEFINITION.

. . _ - (al)x (ap)x CK(S)CK(T)
(13)  Flar, -+ ,ap3b, - ,bg; 8, T) ",;, ), O

Zonal polynomials and hypergeometric functions of products ST of symmetric
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matrices are defined as symmetric functions of the latent roots of ST. Note that
although ST may not bg a symmetric matrix, its latent roots are equal to the
latent roots of §* 7S}, T* ST* and TS.

6. Zonal polynomials. The definition of zonal polynomials requires a few
concepts from group representation theory. Let V; be the vector space of homo-
geneous polynomials ¢(S) of degree k& in the n = Im(m + 1) different elements
of the m X m symmetric matrix S. The dimension N of V; is the number N =
(n4+k—1)/(n— 1) k! of monomials

11 sk of degree D ki = k.

) R
Corresponding to any congruence transformation
(14) S — LSL'

by a nonsingular m X m matrix L, we can define a linear transformation of the
space V. of polynomials ¢(S), namely

(15) ¢— Lo : (Lp) (8) = o(L7" SL™).

A subspace V' < V is called énvariant if LV’ < V' for all nonsingular matrices
L. V' is called an érreducible invariant subspace if it has no proper invariant
subspace. Thrall {39] in 1942, Theorem 3, p. 378 proved that V; decomposes
into a direet sum of irreducible invariant subspaces V, corresponding to each
partition « of £ into not more than m parts

(16) Vi=@ V..

The polynomial (tr S)* ¢ 7, then has a unique decomposition

(17) (tr $)" = 22 Cu(9)

into polynomials, C.(8) ¢ V,, belonging to the respective invariant subspaces.

The zonal polynomial C(8) is defined as the component of (tr 8)* in the sub-
space V, . It is a symmetric homogeneous polynomial of degree % in the latent
roots of S. ’

Equation (17) holds for all m, and the zonal polynomials look the same for
all m; but if the partition x has more than m parts, the corresponding zonal
polynomial C.(S) will be identically zero.

Zonal polynomials, denoted by Z.(8) because they are given a different
normalizing constant, are listed up to & = 6 in the appendix. General methods
of calculating them will be described in Section 8. By comparing Equation (17)
with Equation (28) in James {27], one sees that

(18) Cu(8) = [xuwa(1) 21/ (2k) 1 Z.(8),

where x2(1) is the dimension of the representation [2«] of the symmetric group
on 2k symbols.
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It is found by substituting (2x) = (2ky, ---,2k,) for « = (ky, -+, kp) in
the well-known formula (Weyl [41] p. 213. Theorem (7.7.B)) that
Y4 ¥4
(19) xi (1) = k'I<I (ki = kj — 7+ ) H(’w-*—’p —1)!
i< i=

From Equation (38) of Constantine [8], namely
(20) Zx(Im) = 2k %"L)K )

we have the value of the zonal polynomial at the unit matrix;
y4 y 4

(21)  Cu(Lw) = 2"k1Gm) ][] (ke — 2k, — i+ ) / I] (2k + p — 9)!
T<J =1

Note that if m = 1, Equation (17) which defines the zonal polynomials
becomes z* = Cuy (). Thus zonal polynomials of a matrix variable are analogous
to powers of a single variable. For functions of latent roots of determinantal
equations, group representation theory makes it clear that they are also the
analogues of cos n8 and sin n8 in ordinary Fourier series.

Zonal polynomials have been developed by Hua [22] in other contexts and
independently by the author [27].

6. Properties of zonal polynomials and hypergeometric functions. All the
power series expansions of the latent roots distributions follow from 3 essential
properties of zonal polynomials;

2k . (%)k ’
(22) fo(m) (tr(XH)" (aH) = T g2t (XX,
111! 7 __ CK(S)CK(T)
(23) fo(m) C(SHTH') (dH) = =255,
(24) EW(n)[Cx(XX,)] = 2k (%n)xCK(E)7

where E [ | stands for the expectation with respect to the Wishart distribution
(Formula (55)) on n degrees of freedom, and (dI{) stands for the invariant or
Haar measure on the orthogonal group O(m), normalized so that the measure of
the whole group is unity. The invariant measure on O(m) is proportional to the
area of the im(m — 1) dimensional hypersurface in Euclidean m*-space defined
by the m(m + 1) equations, HH' = I, ,in the m* components of H.

Property 1 is a special case of Equation (45) proved below.

Constantine [8] discovered the remarkable reproductive property 3 of the
zonal polynomial under expectation taken with respect to the Wishart distribu-
tion.

Special cases of the generalized hypergeometric function of matrix argument
are (cf. Equations (5), (6) and (7))

(25) oFo(S) = gtr§

(26) WFola; 8) = [T — 8™

(27) oFi(bn; 1XX) = f ¢ X d.
O(n)
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Equation (25) follows from (17), Equation (26) from (25) and (28) below,
and Equation (27) from (22). The following integrals, which are a generaliza-
tion of Laplace and inverse Laplace transforms, were used by Bochner [4] to
define the Bessel function and by Herz [18] to define the hypergeometric func-
tions:

1 —tr 8| gja=homtD) I S
(28) I‘,,.(a) >0 € ISI qu(al ) » Gp bl bq ) ST) das
= P+1Fq(a1; 3apra';b13 7bq; T)
where T'»(a) is defined in Equation (56), and
2§m(m—l)rm(b)
(29)  (@mi)imtt) g ry=xo>0
T_IS) (dT) = qu-{—l(aly o 7a1>§b1) )bq7b§ S)
Equation (28) follows from (24). For a proof of (29), see Constantine [8].
The integral is taken over all matrices T = X, + 7Y for fixed positive definite
X, and Y arbitrary real symmetric.
From Equation (23), it is seen that the hypergeometric function of two vari-
ables follows from that of one, by an average over O(m).

qu(al;"'iap;Ih)"'7bq;S;T)

etrTlTI—bPFq(ali "'70'13;1)1; "';bq;

(30) ,
= JFolar, -+ apiby, - by SHTH') (dH).
)

O(m

The function of two variables clearly does not depend upon the order in which
they occur, and it has the same properties of Laplace and inverse Laplace trans-
form taken with respect to either variable

1

—trS| g|a—3(m+1) . . e .
(31) m >0 e "|8] oFola, )Gy 5 b1, »bg 3 8T, U)(dS)

b =p‘-l-qu(alj"'7a'paa;b1)"')bq;T)U)'

2§m (m—1) T, ( b )

2wy m(Tme”ITI_” Fa(ar, - vy ap3be, -0, b ;T78, U)(AT)

(32)

= pFenlar, -+, ap; b1, -+ ,bg,b; 8, U).

The power series for the function 1Fo(a; S, T'), which occurs in the distribution
(65) of latent roots with unequal covariance matrices, may not converge for all
requisite values of S and T, but the integral

(33) Fola; =8, T) = fo( |1+ SHTH'[*(aH)

is well defined forall 8 > Qand T > 0.
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The zonal polynomials can be expressed as integrals over the orthogonal group
O(m) of the characters x2(X) of the linear group Gl(m); X ¢ Gl(m);

C(XX') _
m = fo(m)X{M(XH)(dH),

see e.g. Helgason [17] Theorem 6.5 p. 426. The character x;(X) of Gl(m) is
given by

(34)

(35) X (X) = [(&7F)|/|(&7)]

(36) = | (hiy—jys)|

(37) = [(@hj—jts)]

(38) = |(8k;42m—i-)|/|(S2m—i-7)]|

where ¢ , - - -, en are the latent roots of X'; h; is the monomial symmetric function
of them, i.e. the sum of all monomials of &, -« , e, of degree 2, b = 1, h; = 0

for 7 < 0; a; is the ith elementary symmetric function,
(39) = D, &6y @=1 a; =0, fori <0
<re<e e <vyg

(ky, ke, -+, kw) is the conjugate partition to x = (&1, --- , kn), see Little-
wood [29] p. 60; and

(40) Si= D € & =m.

y=1

x2e1 (X)) is found by substituting the partition (2k;, - -+, 2k,) for «. If one
or more parts by , - - - , k, of the partition « is odd, then

(41) fo _xa(XH) (@) = 0.

If f(X), X £ Gl(m), is a symmetric function of the latent roots e, « -+ , en Of
X, then from its expansion in characters

(42) X = 3 3 eax(X),

we can derive an expansion in zonal polynomials, for an integral of the function
over O(m)

_ 2 C(XX')
(43) ‘/;)(M) f(XH) (dH) - I;—O ; Cax Cx(Ln) '

Thus from the formula in Littlewood [25] Equation (6.2; 15) p. 86
(44) tr(X*™) tr(X*™) - -« tr(X*) = ; xm(©) xp (X)),
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where xp(«) is the character of the representation [A] of the symmetric group
forclass « = (%1, -+, km), we have

@5) [ (X" (XH)™ - (X)) = 5 () XD
om) C\(In)
where the summation is over all partitions A = (A\;, --- , A») of 3k if & is even,
and
(46) [ w(xm . w(XHY"(aH) = 0
O(m)

if k is odd. The statistically important Equation (22) is a special case of this.

Further integral representations of hypergeometric functions are given by
Herz [18], namely of F; as the moment generating function of the multivariate
beta distribution

j ! r 8 a—}(m —a—3(m
(47) lFl(a; b; S) = _z_)_f_((?_ a) o S'T|T| 116 +1)|] . T|b ] +1)(dT),
and .F, as the Laplace transform of this function

oFi(a , a2 ;b S)
(48) T,.(b) r ) ‘
- om Q|2 rer—3mtD)  r _ mb—a—3(m+D)

The hypergeometric functions of matrix argument satisfy some of the Kummer
relations. Herz [18] gives

(49) zFl(al , Q2 ,b, S) = |] - Sl—ﬂz zFl(b — ay, Qe ,b, — S(I - S)_I)

(50) =T — 8™ Fy(b —ar,b — az; b; S)
and

(51) Fi(a;b; 8) = e ° \Fi(b — a;b; —8),

and also the obvious confluences

(562) liMayae 2Py (a1, 02 50502 8) = 1Fi(ar 5 b; 8)

(53) limMa, e 1F1(@1 50501 S) = o1 (b; S).

7. A comparison of univariate with multivariate distributions.

1. Type oF, , exponential.

(i) The x* distribution. The sum of squares, X’ = Zi + -+ + Z> of n inde-
pendent normal variates Z; of mean 0 and variance 1, i.e. distributed as N (0, 1),
has the distribution

(54) ST e—%xz(xz)§n—1 dxz
Pearson [31]..
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(ii) The Wishart Distribution. If X is an m X n matrix variate whose columns
are independently normally distributed with mean vector 0 and covariance
matrix 2, i.e. N(0, ), i.c. distributed as (1) with E[X] = 0, then the distribu-
tion of XX is

(55) exp [—% t,r(E"]XX’)] XX (d(X X))

1
Wishart {42},

where T',.(a) is the multwariate gamma function defined by

Il

(56) I‘m(a) f e—tr S|S]a——5(m+l) (dS)
>0

(57) — A S p(g — 3G — 1),

i=1

The domain of integration is the set of all positive definite symmetric matrices,

S>0.
(iii) Latent roots of the covariance matriz. If X is distributed as in (ii), then the

distribution of the latent roots w;, -+, wn of XX depends only upon the
latent roots of Z and is
=7 oFo(—327, W)
(58) e
- 2T (3n)Tu(3m)

(W T (ws — wy) T] duws
<5 i
James [25]

where W = diag(w;), and ¢F, is defined by Equation (13) for ,F, when p = 0

and ¢ = 0. .
The function, (¥ , comes from the exponential factor in the Wishart distribu-

tion, viz.

(59) exp(—itr 27 XX') = oFo(—327' XX,

and

(60) f exp(—1 tr S HXX'H')(dH) = oFp(—12~", XX').
O(m)

Fisher [12] Hsu [21] and Roy [35] gave the distribution when X is a scalar
matrix in 1939.

2. Type 1Fy, binomial series.

(i) Variance ratio F. If the variates Z,, --- , Z, are independent, N(0, o3)
and the independent variates Z,41, - -+ , Zp1. are independent N (0, ¢3) then
the distribution of

(61) F=7i+ - +Zy/Zpa+ - +Zpin
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2 2 .
depends on w = ¢1/03, and is

TG + ) (/) (/)P p o

(62) TGpTGn) [+ (p/n)(F/w) e no &

Fisher [10].

(ii) Latent roots when =, % Z, . Suppose that the m X p matrix variate X with
p > m has independent columns distributed as N (0, Z;) and Y is an independent
m X n matrix variate with columns independently distributed as N(0, =), i.e.
XX’ and Y'Y’ are independently distributed as in (55). Then the distribution of
the latent roots f; of

(63) XX —fYY'| =0
depends on the latent roots w; of
(64) 121 il szl = 0

and is, with F = diag(f;), @ = diag(w;)
[ Fo[3(p + n); —07, F)

(65) T3 + )
La(3p)Tm(37)Tn(3m

s [FPre s I (f = 1) T
<7
Constantine (unpublished),

where ;F is defined by Equation (33).

3. Type oF1, Bessel.

(i) Noncentral x°. If variates Z; are independent N (0, 1) then the distribution
of X' = (Zi+ )+ Z5+ - +Z0 is
e OAT T A

—w . 2 1
(66) € oFl(%n, Fox’) W

Fisher [11].

(ii) Noncentral Wishart. If the m X m matrix variate X has independent
normally distributed columns with covariance = and E[X] = M, ie. if X is
distributed as in (1), then the distribution of XX’ is

expl—% tr(Z7MM") ] oF1(3n; 2 MM 'ETHXX'))

67
(67) : W exp[—3% tr(Z7X X)) ]| XX PP (X X)),
T. W. Anderson [1] gave the distribution for rank (M) = 2 in 1946 and Weibull
[40] for rank (M) = 3 in 1953. James [23], [24] gave a method of calculating the
coefficients in 1955 and the zonal polynomial expansion in [27] 1961.

(iii) Noncentral means with known covariance. If X is distributed as in (ii) and
w; are the latent roots of [ XX’ — wZ| = 0, then the distribution of W = diag
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(w;) depends only upon @ = diag(w:) where w; are the latent roots of |MM' —
wZ| = 0, and is
e oFy(3m; 102, )
(68) e
D WET I

e—%tr W]W[%(n-m—l) ;LIJ (’w,- — wj) H dw; .

James [27].

4. Type 1F; confluent hypergeometric.
(i) Noncentral F on p and n degrees of freedom. If variates Zy, -+ , Zp , Zp1,
-+, Z, are independent N (0, 1), then

po (N +Zit -+ 2/
Zon+ o+ Zhim)/n

(69)

is distributed as
e Fi(3(p + n); 3p; 3o(1 + [(p/m)FI)™)

(70) DG +n) (MF)™ p 5
TGPTGn) 1+ (p/mF)e n

Fisher [11].

(ii) Noncentral multivariate F. If the matrix variate X is m X p and Y is
m X nwithp £ m £ n, if the columns are all independently normally distributed
with covariance Z, and if E[X] = M, E[Y] = 0, then the distribution of

(71) F=X (YY) "X
depends upon @ = M’ =7 M, and is
e FG(p + n); dm; 30U + F)7)

2) LG +n)  |Fe
ST, + 1 —m) [T+ P 1,

D. G. Kabe [28] has given the distribution for @ rank 2, and Sitgreaves [37] for
p = 2 in connection with the distribution of the classification statistic, for the
numerical evaluation of which, see Sitgreaves [38].

The case p = 1 is Hotelling’s [18a] T™

(iii) Noncentral latent roots. If X and ¥ are as in (ii) then the distribution of
the latent roots f; of |XX' — fYY’'| = 0 depends upon the population latent
roots w; of [MM' — wZ| = 0 and is, for p = m,

o ir o 1F1(%(p -+ n); 3p; 30, I + F—-l)—l)
(p—m—1) .
L+ ) T ILG=5
T(3p)Tm )Tn(3m) lI + Fli(p*'")

(73)
dfl M dfm

Constantine [8].
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Fisher [12] Hsu [21] and Roy [35] gave the distribution for @ = 0 in 1939, Roy
[35a) for one non-zero root in 1942, T. W. Anderson [1] for 2 non-zero roots in
1946, and Bartlett [3] in 1946 gave a method of calculating the first few terms.

For p = m, the distribution of the non-zero roots f1, - -« , f» is
(3 (p + n); dms 30, (1 4+ F)7TY
(74) (3 ( 1p? e
o2(p + n))” |F|
: i £ dfy - df,.
(EmE b 7 — m)S(Ep) [ + P 1k o = 1) d -

5. Type oF, Gaussian hypergeometric.

(1) Mwultiple correlation coefficient. The multiple correlation coefficient R
between variates y and z;, --- , z,, caleulated from a sample of N = n + 1
observations, is distributed as

(1 — p2)%n 2F1(3n, 3n; 3q; p°RY)
(75) I'(3n)

: 2yhe—ley _ ptyie—o-l 2
G = oyt ()~ BT AR

Fisher [11].
(ii) Canonical correlation coefficients. The distribution of the canonical correla-
tion coefficients 75 , - - - , 7 between variates y;, - ,yp and z1, - - - , z, caleu-
lated from a sample of N = n 4+ 1 observations depends on the population
canonical correlation coefficients o1, -« , p, and is, with B = diag(r:), P =
diag(p;)
I — P'I" sFi(3n, 4m; 3g; P, BY)
Tp(3n)« 2/H(g~p~1) 21H(n—g—p—1)
. RYHe—rUi7 _ pYnap
(76) 5Gm - onGona & T R

-1 (r; — 73) [T dri
i<J
Constantine [8].

Fisher [11] Hsu [21] and Roy [35] found the distribution when P = 0 in 1939.
Bartlett [3] in 1947 found the distribution for 1 non-zero root and a method of
calculating the first few terms of the expansion of the general distribution.

From the confluences (52) (53), we have the following limiting distribution
of nR* = Wasn— o such that 0 < nP’ = @ < =,

et e oF1(3¢; 1Q, W)
(77) 1 v w ?
N ———— A A w; — w;) dwy - - dw, .
e, GG ¢ L () du e d
It is the distribution (68) of non central means with known covariance for ¢

d.f. and noncentrality 2. For the case p = 1, Fisher [11] showed that the limiting
form of the distribution of the multiple correlation coefficient is noncentral x”.
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8. The complex normal distribution. Wooding [43] and Goodman [14] have
studied distributions derived from a sample of » independent observations from
a complex m-variate normal distribution. Writing the observations as the columns
of a m X m matrix

Z =X+
we have the probability density

m

cexpl —tr 27NZ — M)(Z — )T T 11 dei, dy.; .
i1l

1
7 [
( 8) 1rmnl2l1 poe

The matrix of means M = E[Z] is a matrix of mn complex parameters and the
covariance matrix = = n ' E[(Z — M)(Z — M)'] is Hermitian; ie. 3 = 2.

The distribution (78) is symmetrical; it is invariant under the group of trans-
formations,

(79) Z — LZU LeGl (m, ()
(80) M — LMU UeU(n)
(81) 3 — LZL.

Gl (m, C) is the full linear group i.e. the group of all nonsingular m X m
matrices L with complex elements, and U(n) is the unitary group i.e. the group
of all n X n complex unitary matrices U; UU = I, .

The complex normal distribution (78) and the distributions derived from it
are analogous to the real distributions given in Section 7 except that they in-
volve the Fourier analysis of the functions of a Hermitian matrix 4 under con-
gruence transformation

(82) A—LAL LeGl (m,C)
by the full linear group in place of the Fourier analysis of functions of the real
symmetric matrices under congruence transformation by the real linear group.
Concepts required are:
1. The complex multivariate gamma function.

(83) Fula) = [ &4 AIT(@A) = 2 Il r(a— 3+ 1)

Al=4>0

2. The complex multivariate hypergeometric coefficient

ya
(84) @ = 1L (@ =i+ 1)
where k = (ky, ko, -+ -, kp) is & partition of the integer k;

3. The zonal polynomial of a Hermitian matrix, 4,

(85) C(4) = xa(Dxi(4)
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where x(q(1) is the dimension of the representation [x] of the symmetric group
and is given in (19), and x4 (4) is the character of the representation {«} of the
linear group and is given as a symmetric function of the latent roots e, « -« , €m
of A by Equations (35)—(38);

4. The reproductive property of the zonal polynomial

_1
f‘m(a) Ar=4>0

(86) ¢ * A" "C.(AB)(dA) = la). C(B);

5. The hypergeometric functions

87 Flar, 0y, by A) = 3 5 e Tk Gl

> [all]x ctt [ap]x ax(A)CYx(B) .

(88) pﬁq(al; )a‘p;bl, Y bq;A: B) = I;) - [bllx [bq]x Gx(Im)kY 3

6. The special cases

(89) oﬁo(A) - etr 4
(90) 1ﬁo(a;A) = |l — Al—a

and

(91) ofi(n; XX') = f . SETED (g7

where X is a m X n, m £ n, complex matrix and (dU) is the invariant measure
on the unitary group U(n) normalized to make the total measure unity;
7. The splitting

(92) [ ., FAAUBU)(@D) = ,F,(4, B);

and finally, ,

8. The result that, if f(A)(dA) is the probability density of a Hermitian
matrix variate A, then the distribution of the diagonal matrix W of the latent
roots of A, A = UWU', is

m(m—1) m

(93) fU o JUATY @) T T (s = 10" o - do.

By means of these results, the complex analogues of all the distributions in
Section 7 can be written down practically at sight, as follows:

1. Type oFy , exponential.
(i) Wishart. If X is a m X n matrix of complex variates distributed in the

complex multivariate normal distribution (78) with E[X] = 0, then 4 = XX’
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is a positive definite Hermitian matrix distributed as

1

—tr 314 n—m
FamEr° Al

(94)

Goodman [14].

(ii) Roots of the complex covariance matriz. The latent roots a;, -+, an of A
are real and distributed as

27" oFo (=27, 4)
(95) 7m0
f‘m(n)fm(m)
2. Type 1F,, binomial series.
Latent roots with unequal covariance matrices. If A and B are independent
central complex Wishart variates distributed as (94) with p and n degrees of

freedom and covariance matrices =; and Z,, then the distribution of the roots
F = diag (f;) of

|A["_1"H (ai — aj)2H da;
1<y =1

(96) |A —fB| =0
depends on the roots @ = diag (w;) of
(97) [Z1 — w2 = 0
and is

2™ 1Fo(p + n; —Q7, F)
(98) "I (p+n)

o Eetmiy U L G = 50" dfi - d

3. Type oF'1 , Bessel.
(i) Noncentral Wishart. If X is a m X n matrix of normal variates distributed
as (78), then the distribution of A = XX’ is

e_" ziMh oﬁl(n; E_IMM,E_IA)
(99) _ 1
I'n(n)[Z["

(ii) Noncentral means with known covariance. If X is again distributed as in
(78), then the distribution of the latent roots W = diag (w;) of

(100) XX — w2 =0

e—trE‘lA lAln—m(dA).

depends on the parameters @ = diag (w,),

(101) MM — w2 =0
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and is
e o Fi(ny, W)
(102) 7D

1. Type 1F1, confluent. .

(i) Noncentral multivariate F. If X and Y are independent m X p and m X n
complex matrix variates, p < m, whose columns are independent complex nor-
mal m-variates with covariance matrix Z, and if E[X] = M and E[Y] = O,
then the distribution of

m
W I (we — wi)? dwn -+ duw,,
i<J

(103) F=Xy)y'x
depends on the parameters

(104) Q=M3"M
and is

et 1F1(p + n;m; QI + F"l)ﬂ)

(105) L Tptm) il
T (m)Tp(p + n — m) |I + Fi#*»

(i1) Noncentral latent rools when p = m. The latent roots of F are the same as
the non-zero latent roots of [ XX’ — f YY'| = 0 and are distributed as

e—trﬂ lﬁl(p + n; m; Q’ (I + F“l)wl)
(106) ' P T (p + n) L
T, (m)Ty(p +n — m)Ty(p) [T + FJ

where @ = diag (w;) is the diagonal matrix of latent roots of '="A[.
(iii) Noncentral latent roots when p Z m. The distribution of the latent roots of

(dF).

I (e — £ af - dfm

(107) XX —fYY'| =0
depends on the latent roots of

(108) MM — w2} =0
and is

e Fip +nyp; @, (I +F ™Y

o a4 e
Tu(P)Tn(n)Tm(m) [I + F|rtr

5. Type oF1, Gaussian hypergeometric.

II ¢ =5 dfy - dfm.

>

Canonical correlation coefficients. The columns of [;‘v:l are n independent
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complex normal (p + ¢)-variates, (p = ¢), with zero means and covariance

matrix
Zu e
-
The latent roots i , - - - , 75 of
(110) XY (YY) 'YX — i XX'| =0

are real and are the squares of the canonical correlation coefficients. The distri-
bution of R = diag (r;) depends on the population correlation coefficients
P = diag (p;) given by

(111) 12622 2 — p°Zu| = 0
and is

I — PY",Fi(n, n; q; P°, RY)
(112) ' £, (n)x? D

. 2)1q—p _ 2(n—q—p 2 22 2 g2
A oty F 1= B LI =)t dr).

9. Calculation of zonal polynomials. An explicit usable formula for zonal
polynomials is only available in special cases, as far as the author is aware, but
the following considerations yield a general method of calculating them.

A glance at the table in the appendix for the zonal polynomials in terms of the
elementary symmetric functions of the latent roots reveals a triangular arrange-
ment of coefficients. The phenomenon can best be described in terms of weights.
Let us order the partitions of the positive integer & lexicographically, i.e, if

k= (ki, -, kn)and X = (&, -+, L) are two partitions of %, then « > A if
ky =1, -, ki =L, kiyg > liy . If two monomials €' -+ é&m and ¢! - .- er

have indices « and A, the former is said to be of higher weight. It is evident from
the formula (35) for the character x4 (X) of Gl (m) that

TeEOREM.
(113) xi(X) = &' - ém + terms of lower weight,
where e, + -+, € are the latent roots of the matrizx X £ Gl (m).

If we put X = diag (e;) and substitute (113) in (34), we have
(114) CAXX') = cei™ -+ ex™ + terms of lower weight,

for some constant ¢, (which is actually given subsequently in Equation (132)).
Hence putting o; = ¢ for the latent roots of § = XX ' we have the
THEOREM.

(115) C(8) = ¢t - & + terms of lower weight.
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When the zonal polynomials are expressed in terms of sums of powers of the
roots
(116) Z(8S) = . X Co SIUSY e,

v1+2ro+8vgte - o=k

where » = (123’ - -.) is the partition of & consisting of » ones, », twos ete.,
then the coefficients satisfy orthogonality relations (James [26])

(117) 2 2o/ 2ay = aN/x12q(1)
(118) 2 xea (1) zuzin = 8aNz@e
8

where N = (2k)!/2"%! and 2y, is the coefficient of the top zonal polynomial
Zay(8) and is given by the formula

(119) 20y = 2%/ vy loalgl <o - 27147268 L

The reader may verify these relations for the zonal polynomials of low order
given in the appendix.

A general method of calculating the zonal polynomial is as follows: (1) the
elementary symmetric monomial functions of degree % are arranged according to
their monomials of highest weight, (2) they are expressed in terms of the sums of
powers, e.g. by the tables of David and Kendall [8a] and then (3) they are
Gramm Schmidt orthogonalized relative to the orthogonality relation (117)
from the bottom upwards.

The resulting polynomials are proportional to the zonal polynomials. They
may be normalized to Z,(8) by dividing by the coefficient of s* and then C(8)
is given by (18). For example, the lowest elementary symmetric function

(120) G = Z Ty Oig *** 04y
1261<iy< - <ip<m

is proportional to the zonal polynomial, in fact,
(121) Z(1k)(S) = Lkla .

The second lowest zonal polynomial Z s 15-2,(8) is a linear combination of a;a;_;
and a; . By expressing these in terms of sums of powers and finding the coeffi-
cient a such that the polynomial

(122) M0y + oa

is orthogonal to a; relative to the orthogonality relation (117), one obtains the
polynomial (122) which is proportional to Z y%~2(S). Gramm Schmidt ortho-
gonalization of the higher elementary symmetric monomial functions yields the
zonal polynomials of higher weight.

Another general method of calculating the zonal polynomials is given in
James [26].
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Explicit formulae are available for the special cases in which the partition of &
only has one part, k = (%), or for the case in which there are only two variables.

. svlsw‘sv;
(123)  Zay(4) = 2%! 17223
yit2vgfargdeeo=k V1 o g 1 oo 2n1402G%8 ...
Harold Ruben [36]
votvytrgeee 1
— 9*1 » (-1) 5 ($) s 1tvatvgees allalals - -
v1+2gt gt s o=k vilvlog!l-.

(124)

m
i —
si=2 0l a= > 0iy Gy 0 0y
i=1 1541<i9< < <ij<m

The second formula follows from the generating function given by Ruben and
others, but is implicit in. Pitman and Robbins {33].

(125) fI (1-—ot)?= ,,Z:% Zay(S)¢* /2!

=1

Ruben [36] gives a recurrence relation

I
—

k—1
(126) by = (2]6)_1 Z_% Sk_ibi bo

(127) Zay(8) = 2"k 1by .

A zonal polynomial Zy,...x, (o1 - - - ¢:) in [ variables corresponding to a par-
tition of I parts contains the kith power

(0'102 cct 0'1)’?'

of the determinant (a1 - -+ o1) as a factor. When the factor is divided out, the
quotient must be a constant multiple of Zy,_4;...k; _;—#;0. The numerical multi-
plying constant can be determined by the fact that we know that

(128) Z(L) = 2" (31)«.

Thus we have the recurrence formula

Zklkg"'kl(a.l y " 0'1)
1
(129) =2 L3 = 36 = 1) + ki = B (oo - o)™

Ziykyhg—tyerty -ty (01 * + 1),
In particular for I = 2,

;2+k2
ke ! y1+2vgmly—kg v lwg !

14
’'a

(130)  Zy(o102) =



494 ALAN T. JAMES

If «= (ki,- -, k), then
F {
ZK(S) == 2kH H (%l —_ '%(’L - 1) + ]Ci —_ kl)kl—kl+1
(131) 1=1 =1
ai1Regke TR L gfr L terms of lower weight
and thus

D

(132) ¢ = [xea(D)2%%/ NI I Gl — 3G = 1) + ki — k)eri, -

1=1 i=1

10. Distribution of quadratic forms. This is a special case of the latent roots
of the covariance matrix for a sample of 1.

Ifz,, -+, 2m are independent standard normal variables and
(133) z=a2 + -+ omtm,
then the probability density of x is
1 1\ gme o
(134) ST (3 3] oFo( =327, 2)2™ dx 3 = [ : ,02]

Pitman and Robbins, [33].

Only the zonal polynomials of top order Caw(—3%27") are involved in the
expansion and Cy)(z) = 2t

11. Expansions in Laguerre polynomials. Hotelling [20] and Gurland [16]
have given an expansion of the distribution of a quadratic form in Laguerre
polynomials in «, and Grad and Solomon [15] have given some values using 5
terms of the expansion, along with other methods. The expansion generalizes to

def
Fo(—2 74 8) = f exp(—tr 2~ HSH') (dH)
0(m)
(135) )
z“’: D C(I — Z)LETF™D(S)
=0 % C k!

— |E|ae—trs

where L{”(8) is a Laguerre polynomial of a matrix variable in the sense of
Herz [18] and Constantine (unpublished).

The Laguerre polynomials of a single variable are the orthogonal polynomials
relative to the x° distribution. Herz [18] showed that Hankel transforms of
homogeneous polynomials of different degrees of the latent roots of a symmetric
matrix S are orthogonal relative to the Wishart distribution. Constantine
(unpublished) defined Laguerre polynomials as Hankel transforms of zonal
polynomials C,(8) and derived the formula

(136) LOE) =T ((fy J_ﬁ;&i 1_3); @C.(S)
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where the coefficients «, are given by the expansion

(137) Co(I — 8) = 2 ali(8).
KT
For a single variable they reduce to the classical Laguerre polynomials. Con-
stantine strongly conjectures that they are orthogonal relative to the Wishart
distribution.
A similar formula holds for the ;F; hypergeometric function,

' . ke -1 _ a —tr § > (a)KCK(I _Z)L,((a—”i(m+1))(s)
(58 abesbs = 78 = BT g .0k

k=0 «

though in this case, it would be more natural to expand in Jacobi polynomials
of a matrix variable if these could be found.

12. Asymptotic expansions. In

(139) (]F()( —'%T, W) = j exp <—% i 'r{ll),hf,) (dH)

o(m)
where T = diag (), W = diag (w;), H = (hs;), we substitute
(140) H=e¢ =1+ 8+ 8/2!1+ 8/31+ ---

where S = (s;;) is skew symmetric matrix. When the latent roots r; of T and
w; of W are large and well spread out, the integrand becomes negligible for all
but very small values of s;; and we obtain an asymptotic series for (F, and thus
for the likelihood function of the distribution (58) of the latent roots of the
covariance matrix on n degrees of freedom, the first term of which is, with =™ =
T, W = nC = n diag (c¢;),

|T|%n0Fo( —%T, nC)

in —1n S e
(141) _ Fm(%1n)2}m(m—l) <H T ) exp < 1L 1’z=:1 T161> {1

- imOn+1) m .
H {n(r; — r)(cc — e}’
i<j

+ e

13. Moments. If XX’ is distributed in the Wishart distribution (55), then
the moment generating function of tr (XX’) is obviously

(142) Bywle' "™ = I —2e2™ = [T (1 = 2te)™

i=1
if the o; are the latent roots of =. The kth moment is the coefficient of ¢*/k! in
this expansion. Alternatively, we have

0

(143) [T — 22| = \Foldm, 22) = 3, (2" 20 (3n).Cu(2)) /R,

k=0
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yielding the kth moment as
(144) Ewwl(tr (XX')") = 2° 22 (30)0u(2).

If the positive definite symmetric matrix variate S has a multivariate beta
distribution,

(145) ?:((11:);‘!;(7;)) S[Hm |7 _ P (g9,
then, from (47), the moment generating function of its trace is
(146) Ele' " %) = \Fy(u; u + v; tl,)

and hence the kth moment is

(147) El(tr 8)F] = Z; [(w)o/ (u + 0)JC(Im)

where C,(I) is given by (21).

The noncentral moments of the generalized variance |[XX'| have been given
by Anderson for the case of Q of rank < 2 and in general by Herz [18] who is
quoted by Constantine [8] as

(148) Byl XX = 2 _’"—(r’%ﬂ ISP —k; dn; —30),
which is a polynomial for positive integral k. The variate XX’ has the noncentral
Wishart distribution (67) with @ = MM’

The noncentral moments of the likelihood ratio statistic have been given by
Constantine [8] as

YY| V7] _ Tulk+ 3)T.G(p + n)) _
09 | (e yn) | = Tleatet K

+ i(p + n); —1Q)

where XX’ is a noncentral Wishart variate on p degrees of freedom and non-
centrality @ = M=""M’ and YY' is a central Wishart variate on n degrees of
freedom.

Pillai {32] and Mijares [30] have considered moments of elementary symmetrie
functions of the roots of a multivariate beta variate S distributed as (145). One
method of obtaining the expectation of a monomial a;'as* - - - in the elementary
symmetric functions @, , @z, - -+ of the roots is to express it as a linear combina-
tion of zonal polynomials by solving a triangular system of equations given in
the tables in the appendix and use the formula of Constantine (8]

(150) EIC(8)] = [(u)«/ (v + 0)JCe(Im)

for the expectation of a zonal polynomial when S is distributed as (145).
Constantine [8], Equations (60) and (61), gives formulae for the incomplete
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gamma and beta functions in the matrix case. Comparison of the noncentral
Wishart distribution (67) with the integral representation given by Anderson
[1] yields Anderson’s integral

(151)  oFs(b; 1XX) = 2D ¢T3 (L — Yy (g

N o, (b — 4k) Jocrvi<r
where X and Y are m X k matrices. If & < m, we replace T'y(3m) by T'n(3k).
Form = k =.1, Equation (151) reduces to the Poisson integral for the ordinary
Bessel function as given in Erdelyi et al. [9] p. 81 Formula (7) or (10). Godement
[13] has given a generalization of Bochner and Herz’s Bessel functions.

14. Conclusion. For numerical evaluation of the probability density func-
tions the power series expansions (10) and (13) of the hypergeometric functions
oceurring in the distributions are of very limited value. If even one root is sig-
nificant, it will take a very large number of terms of the series to give values of
the likelihood function accurate enough to be of use.

The importance of the preceding theory lies in the mathematical characteri-
zation of the functions involved in the distributions. When a sufficient number
of the representations of the functions are known, e.g. as series, integrals, asymp-
totic expansions etc., together with the relations between them, then it is to be
hoped that some good points of attack on the numerical values will be found,
and in particular, it may be possible to calculate the likelihood functions of the
parameters of the distributions.

Added in proof. I am indebted to C. G. Khatri and A. G. Constantine who in-
dependently pointed out two errors in my original version of Equation (93).
This necessitated a correction of all the complex roots distributions.
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