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DISTRIBUTIONS OF MAXIMAL INVARIANTS USING
QUOTIENT MEASURES!

By STEEN ANDERSSON
University of Copenhagen

This paper demonstrates the use of proper actions and quotient measures
in representations of non-central distributions of maximal invariants.

1. Introduction. Consider a statistical model with sample space X, parameter set O
and @ — Py; § € O as the parameterization of the unknown probability measures on X.
For a subset O, of © we have a statistical testing problem of testing the hypothesis
Hy: 0 € O versus the hypothesis H:6 € ©. Let ¢t: X — Y be a statistic related to the test
problem, for example a test statistic or estimator under H,. For the testing problem above
the transformed measure #(P;) is called a central distribution if § € ©, and a non-central
distribution if § € ©\0,. The representation of the non-central distribution is often given
in terms of a correction factor, which is simply the density of £(Py), § € O, with respect to
a t(Py), 6 € ©,. In the description of the correction factor, group actions will often play a
fundamental role. This is especially the case in multivariate statistical analysis. See, e.g.,
James (1964) and the review paper by Muirhead (1978).

The introduction of a group action leads one to the study of a maximal invariant
function. For example, an estimator can be a maximal invariant function; or, if a statistical
testing problem is invariant under a group action, all invariant test statistics have a unique
factorization through a maximal invariant function. For this reason some literature
concentrates on the problem of finding the distribution of a maximal invariant function
from a general point of view: Bondar (1976), Koehn (1970), Wijsman (1967, 1978).

Let G be a group acting on X and let P be a probability measure on X. Let X/G denote
the space of orbits and IT: X — X/G the orbit projection. The main problem of interest is
to represent (find) II(P). Any representation of X/G and II is usually called a maximal
invariant function. Often one wants to find a particular maximal invariant function
t: X — Y where Y has some extra structure (e.g. Y might be a nice subset of R"), such that
t(P) can be represented by a density with respect to a measure on Y (e.g. a restriction of
a Lebesgue measure). As we shall demonstrate later, many general results about distribu-
tions of maximal invariants are simple consequences of the theory of proper actions and
quotient measures, which are defined directly on the abstract space X/G. Since this theory
seems to be unfamiliar to statisticians, we shall outline some of the background by
extracting parts of Bourbaki (1956, 1960, 1963, 1965). See also Tjur (1980).

The idea of using the theory of proper actions and quotient measures to obtain
representations of non-central distributions arises from the work to be reported in An-
dersson, et al. (1982) on a general algebraic theory of normal statistical models. In that
paper, proper actions and quotient measures are used to derive the central distributions of
the maximal invariants, which occur in this theory of multivariate statistical analysis.

2. The decomposition of a measure. A Radon measure on a locally compact
Hausdorff space X is a positive linear form p: #'(X) — R, where 2 (X) is the vector-space
of continuous real valued functions on X with compact support. The integration theory is
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the extension of u to a larger class of functions called the p-integrable functions. The
relation to the abstract measure theory and integration theory on the o-ring generated by
the compact sets in X is obtained through Riesz’s representation theorem. When X is
small, that is, has a denumerable basis for the topology, the difference between the two
approaches is only formal.

Let .# (X) denote the space of (Radon) measures on X equipped with the weak topology.
For p € ./ (X) we denote the support of p by supp(u). The integral of a p-integrable
function f is denoted by [xf(x) du(x) or [xf du. For f € #(X) we have in addition the
expression u( f). The definition of measurability with respect to u of a mapping from X into
a topological space T can be found in Bourbaki (1965); in the cases where T has a
denumerable basis for the topology, the definition of measurability with respect to p is the
classical one, that is the inverse image of a Borel-set in T'is y-measurable. Otherwise the
condition is stronger than the classical one.

Let now » be a measure on Y and let (y,),ey be a family of measures on X indexed by
Y. Suppose that .

(1) for every k€ #(X) the function y— p,(k), y €Y, is r-integrable.

In this case we are able to define a measure A called the mixture of the family (u,),ey with
respect to » by the definition

2 A(k) =f by (k) dv(y), k€ H(X).
v ,

The measure A is also denoted by [y u, d»(y). To ensure the extension of (2) to A-integrable
functions one must assume that the mapping

3) Y>M(X), you

is measurable with respect to » and that all spaces are o-compact. In this case the relation
(2) is extended in the following way: Let f be a A-integrable function; then for »-almost all
Yy € Y we have that f is u,-integrable and the »-almost everywhere defined real valued
function y — [x f(x) dj,(x) on Y is v-integrable with the integral

4) f (f f(x) duo(x)) dv(y) =f fx) dA(x).
Y X X

Let now ¢: X — Y be A-measurable. If furthermore for »-almost all y € Y we have that
(5) supp(py) C ¢7'(y)

then we call the pair ((1,),ev, ») a decomposition of A with respect to ¢.

Construction of measures with densities can be considered as a special case of mixtures:
Suppose for a moment that Y = X and let p be a non-negative locally »-integrable function
on X. (This means that kp is v-integrable for every & € #'(X).) Then the condition (1) is
fulfilled for the family (p(x)e,)cex, where . is the one point measure for x € X. The
mixture of this family with respect to » is denoted p» and (2) becomes

pr(k) = f P(x)k(x) dr(x),

x

k € A (X). It is furthermore seen that (3) is measurable and that ((p(x)ex)rex, v) is a
decomposition of p» w.r.t. the identity mapping on X. Strictly speaking, it is not necessary
for our purpose to define mixtures and decompositions as generally as above. The following
definition will be enough:

(I’) Forevery k€ #(X) the functiony— p,(k), y€ Y, isan elementin #(Y).

Since (1’) does not depend on » we are able to define the mixture of (iy)ye ¥ with respect
to every » € ./ (Y) and obtain a continuous mapping
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(6) MY) > M (X), V_)J’ py dv(y)
Y

defined by the family (g,),ev.

When all spaces are ¢-compact, then the extension of (2) to the A-integrable functions
is ensured. To define a decomposition we can furthermore suppose that ¢ is continuous
and (5) is valid for all y € Y. Again this more restrictive version of (5) does not contain »
and it will ensure that (6) becomes injective. We shall point out that ¢(A) is not in general
defined since ¢ does not in general transform the measure A. Nevertheless, if ¢ does
transform A = [y u, dv(y) (that is, for every 2 € #'(Y), kot is A-integrable) then we have

tA) (k) = A(kot) =f f k(t(x)) dp, (x) dv(y) =J’ k(Y (X) dv(y),
YJX Y

which shows that £(A\) = fv, where f(y) = u,(X) for r-almost all y € Y. If all measures are
probability measures we have #(\) = v and (y,),c v is a version of the conditional distribution
given ¢.

Suppose that we have a decomposition ((,),ev, ») of A. If P = pA—that is, P has density
p w.r.t. A—then although ¢ does not transform A, it is easy to represent ¢(P) as ¢(P) = gv,
where

(7) q(y) = J’ p () du,(x) for v-almostall ye€ Y.
X
This statement follows from the following calculations: For & € #(Y) we have

¢(P) (B) =f

X

hoth=fp(h°t) d)\=f fp(x)h(t(x)) duy, (x) dv(y)
X Y JX
=f h(y)Jp(x) duy (x) dv(y) =J hqdy,.
Y X Y

since supp(yy) C £7*(y) for »-almost all y € Y.

It is seen from the above considerations that the problem of describing the non-central
distribution is reduced or rather changed to the problem of existence and characterization
of a decomposition of the measure A. In the case where X and Y are Riemannian manifolds,
t is a (surjectively) regular transformation, and A is the geometric measure Ax on X, then
such a decomposition ((uy),ey'Ay) with respect to ¢ exists and is characterized in the
following way: Ay is the geometric measure on Y and p, = FAx, where Ax is the geometric
measure on the sub-Riemannian manifold ¢ ~'(y) of X, and the density F'is a differentiable
function on X defined by means of the differential of ¢. Nevertheless we shall not
concentrate on this case but on another case, namely, when a group action is present.
Under “nice” conditions, group actions ensure a decomposition through the so-called
quotient measure.

3. The quotient measure. The relevant references for this section are Bourbaki
(1960, 1963). For a comprehensive treatment see Andersson (1978).

Let G be a 5-compact locally compact Hausdorff group and suppose that G acts properly
on X. The action of g € G on x € X is denoted by gx. Proper action means that the action
is continuous and that the mapping

(8) GXX")XXX’ (g9x)_)(gx’x)

is proper (the inverse image of a compact set is compact). The condition ensures that the
final topology on X/G under the orbit projection IT: X — X/G is Hausdorff and locally
compact (and of course also o-compact) so that the notion of Radon measures on X/G can
be applied. Furthermore the orbit mapping Il.: G— X (g — gx) for x € X becomes proper.
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Since a proper mapping transforms every measure we have that 8, = I, (8) is well defined
for every measure 8 on G.
Under the above assumptions, the mapping

C) X—> M (X), x— B

becomes continuous and supp(8:) C II7'(Il(x)), x € X. If 8 is a right Haar measure on G,
(9) will be a G-invariant function, which then has a unique continuous factorization
through X/G. We then have the continuous mapping

(10) X/G—> M (X), u->Pu,

with supp(B.) = II%(u), u € X/G. For k € #(X) the real valued function % on X/G
defined by A(u) = B.(k) becomes an element in #(X/G) (see condition (1’)) and the
mapping

(11) HX) > HX/G), k—k,

becomes positive, linear, and onto. This defines an injective “linear” mapping

(12) MX/G)— M(X), p—p”

where p*(k) = p(k) and £ € A (X). It can be shown that the image is defined by the
condition that A is in the image if

(13) gr=Ac(g@); VgeEGQG,

where Ag is the modular function of the group G. The condition (13) means that A is
relatively invariant with multiplier Ag'; if G is unimodular then (13) implies that A is
invariant. The modular function Ag is sometimes called the right hand modulus of G.

Later we shall need the following property of the mapping (12): a non-negative function
p on X/G is locally p-integrable if and only if poII is locally u*-integrable, and in this case
one has that

(14) (pp)” = (peIl)p™.

The above considerations then show that for a measure A on X which satisfies (13) there
exists one and only one measure denoted by A/B, called the quotient measure, such that
(A/B)* = A; that is, for every A-integrable function we have the relations

ff(x) d>\(x)=J (f f(x) dB.(x)) dN\/B(w),
(15) X x/¢ \Jx

f(H(z))=f f(x) dﬁl‘l(z)(x)=f f(gz) dB(g), z€X
X G

Thus (15) sixows that ((Bu.)uex/c, A/B) is a decomposition of A with respect to II.

4. The application of the quotient measure to the distribution of a maximal
invariant. Let G act properly on X and let P be a probability density p with respect to
A, where A satisfies (13) in Section 3. Then it follows directly from the considerations in
Sections 2 and 3 that the distribution @ = II(P) of the orbit-projection II (the maximal
invariant function) is given by @ = gA/B where the non-negative A/B-integrable function
g with A/B-integral 1 is given A/B-almost everywhere by

(16) q(Il(x)) = f plgx) dB(g), x€X

fe
(Bourbaki, 1963, VII, Section 2, 3°, Proposition 5c). If u is another measure on X which is
relatively invariant under G with multiplier x, (that is, g7'u = xo(g)u for every g € G,
where xo: G — (0, ) is continuous and xo(g182) = Xo(&1)x0(&2), &1, & € G) then in the
case where P = pu we can use the following facts to obtain a representation of II(P). Since
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X/G@ is o-compact it is also paracompact and it follows from Proposition 7 in Bourbaki
(1963, Section 2, 4°), that for every continuous multiplier x there exists a continuous
positive function n on X with the property

17) n(gx) = x(gnx), =x€X, geEQG

Let n be a continuous positive function on X which satisfies (17) with x = xoA¢. Then the
measure A = (1/n)p satisfies (13) and P = npA. Therefore I1(P) = g\/B, where now (16)
becomes

(18) g(II(x)) = n(x) J' p(gx)xo(g) da(g), x€EX,
G

where a = AgB becomes a left Haar-measure on G. For two probability measures P; and
P; on X with densities p; and p; with respect to g we then can define the function p on
X/G by

J’ DP1(8x)x0(8) da(g)’
G

(19) p(I(x)) =
f p2(8x)x0( &) da(g)
G

for those x € X for which the denominator is positive. The function p is thus a version of
dII(Py)/dII(Pz). .

Under the assumptions that X is an (open) subset of an Euclidean space R”, that u is
the restriction of the Lebesgue measure to X, that G is a Lie subgroup of the group of
n X n nonsingular matrices and that the action has the linear Cartan property, the result
(19) was obtained by Wijsman (1967). His result (3) now follows from our (19) and the
remark that the Lebesgue measure is relatively invariant under G with g — | det(g) | as
the multiplier.

The proper action assumption is nice to work with since we have the following almost
trivial result, which together with the remarks below can be considered as a very useful
extension of Theorem 2 in Wijsman (1967).

PROPOSITION 1. Let G act properly on X, let H be a closed subgroup of G and let
Y C X be closed with the property HY = Y. Then the restriction of the proper action
GXX—>XtoHXY— Y isproper.

Proor. Bourbaki (1960, Chapter 3, Section 4.1, Examples 1 and 2).
REMARK 1. Every continuous action of a compact group is proper.

REMARK 2. The classical (transitive) action of the group of n X n nonsingular matrices
on the set of n X n positive definite matrices is proper. One only has to show that the
inverse image of a bounded set by the mapping (8) is bounded. The fact that this action is
proper was first pointed out in the thesis by Tolver Jensen (1971) written under the
supervision of H. K. Brgns.

REMARK 3. The (transitive and free) action of the translation group on an affine space
is proper. )

By combining the remarks and the proposition above, one easily obtains the proper
action condition needed for the distribution of maximal invariants in multivariate analysis.
A new application is given in Andersson and Perlman (1981).

5. Characterization of the quotient measure by invariance. Suppose that G is
a closed subgroup of a locally compact group K and that the proper action of G on X is a
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restriction of a continuous action of K on X. Furthermore let H be a closed subgroup of K
(H is then a locally compact group in the induced topology) with the properties that for
every g € G and h € H there exists a g’ € G such that

(20) hg=g'h
and that K = HG. The property described by (20) determines a group homomorphism
H—- AuwG), h—-don=(g—>hgh'=g"),

where Aut(G) is the group of automorphisms of G. If the decomposition of & € K into £
= hg is unique then K is a semidirect product of H and G. For every 2~ € H we have the
mapping x — II(Ax) from X into X/G, which is seen to be G-invariant because of (20).
Then & € H uniquely defines #:X/G — X/G, and it is easily seen that we have a
continuous action of H on X/G given by

(21) HXxX/G— X/G, (h, w) = h(u) = hu.
The continuity follows from the facts that the diagram

HxX —-»X
(22) J1xII | 10

HxX/G— X/G

commutes, where the horizontal mappings are the actions, and that 1 X IT and II are open
and onto. We remark that the action of K on X is transitive if and only if the action of H
on X/G@ is transitive.

Let mod¢;,, denote the modulus of ¢», A € H. For f € #'(X) and 2 € H we have (see

(15))
(hf)(I(x)) = J f(h'gx) dB(g) =f for' (gh™'x) dB(8)
G G

= (mod¢n) f f(gh™'x) dB(g) = (modes)f(TI(A'x)) = (moden)hf (1 (x)).
G

Thus one has

(23) (hf) = (modén)hf, h€EH, f€ X (X).
From (23) and (12) it follows that
(24) (hw)* = (moden)hp*,  p € A (X/G).

It now follows from (23) and (14) and the fact that (12) is one to one, that a measure
u € A (X/G) has the property

(25) hu = pnp, hE€H,

where p is a non-negative locally p-integrable function, 2 € H, if and only if

(26) hu* = (modeér) H(preIl)p?,  h € H.

It follows from (13) that (26) is equivalent to

(27) kp* = A (g)(modes) ' (preIDp”,  k=hgEK.

Under continuity assumptions one has the following version of the equivalence between

(25) and (26).

PROPOSITION 2. A measure . € 4 (X/G) has the property (25), where py is a non-
negative continuous function, if and only if
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(28) h* = qwp*, hEH,
where q; is a non-negative continuous function. In this case one has

29) gn(x) = (moden) 'pr(Il(x)),  xEsupp®), heEH.

PROOF. One only has to show that g, is an invariant function on the G-invariant set
supp(e™®) under the action of G. This follows ‘rom

(greg)n” = g7 (qngn*) = Do (8)g  (gw™) = Ac(8)g™ ()
=m*=qun*  gE€G, hEH.

An application of Proposition 2 is given in Andersson, et al. (1981).

Thus one has especially that u € .# (X/G) is relatively invariant under the action of H
with multiplier x if and only if u* is relatively invariant under the action of K with
multiplier 2 — Ag(g) '(moder)x(h), k = hg € K. .

The above considerations show how invariance properties under the action of K of a
measure A, which has the property (13), transform into invariance properties of A/8 under
the action of H.

When K acts transitively and properly on X, then for every multiplier xo on K there
exists one and only one (up to multiplication by a positive constant) relatively invariant
measure on X with multiplier xo.

Although in this case the action of H on X/G generally is not proper (but of course
transitive and continuous) the consideration above shows that for every multiplier x on H
there exists one and only one (up to multiplication by a positive constant) relatively
invariant measure on X/G with multiplier .
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