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In this paper, we derive the cumulative distribution functions (CDF) and probability density functions (PDF) of the ratio and
product of two independent Weibull and Lindley random variables. )e moment generating functions (MGF) and the k-moment
are driven from the ratio and product cases. In these derivations, we use some special functions, for instance, generalized
hypergeometric functions, confluent hypergeometric functions, and the parabolic cylinder functions. Finally, we draw the PDF
and CDF in many values of the parameters.

1. Introduction

)e distributions of ratio of random variables are widely
used in many applied problems of engineering, physics,
number theory, order statistics, economics, biology, ge-
netics, medicine, hydrology, psychology, classification, and
ranking and selection [1, 2]. Examples include safety factor
in engineering, mass to energy ratios in nuclear physics,
target to control precipitation in meteorology, inventory
ratios in economics, and Mendelian inheritance ratios in
genetics [3, 4]. Also, ratio distribution involving two
Gaussian random variables is used in computing error and
outage probabilities [5]. It has many applications especially
in engineering concepts such as structures, deterioration of
rocket motors, static fatigue of ceramic components, fatigue
failure of aircraft structures, and aging of concrete pressure
vessels [6, 7]. An important example of ratios of random
variables is the stress-strength model in the context of re-
liability. It describes the life of a component which has a
random strength and is subjected to random stress. )e
general numerical method is developed for computing the
PDF of the sums, products, or ratio of any number of
nonnegative independent random variables [8]. )e ratio

and product distributions have been studied by several
authors especially when independent random variables
come from the same family or different families. For ratio
distribution, the historical review, see [9, 10] for the normal
family, [11] for Student’s t family, [12] for the Weibull
family, [13] for the noncentral chi-squared family, [14] for
the gamma family, [15] for the beta family, [16] for the
logistic family, [17] for the Frechet family, [3] for the
inverted gamma family, [18] for Laplace family, [7] for the
generalized-F family, [19] for the hypoexponential family,
[2] for the gamma and Rayleigh families, and [20] for gamma
and exponential families. For product distribution, the
historical review, see [21] for t and Rayleigh families, [4] for
Pareto and Kumaraswamy families, [6] for the t and Bessel
families, and [22] for the independent generalized gamma-
ratio family. A new distribution is introduced based on
compounding Weibull and Lindley distributions; in this
approach, several properties of the distribution are derived
[23]. In this paper, we derived the ratio and product of
cumulative distribution functions (CDF) and probability
density functions (PDF) of the independent Weibull and
Lindley random variables. In this derivation, we used some
special functions and integrals, for instance, generalized and
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confluent hypergeometric functions, parabolic cylinder
function, gamma function of negative integer numbers, and
some special integrals. We derived the moment generated
function (MGF), m-moment, mean, and variance of the ratio
random variable Z � X/Y, while we derived the CDF, PDF,
and the MGF with respect to the product random variable
XY. )e rest of this paper is organized as follows: in Section
2, the derivation of the CDF, PDF, CGF, plots of the CDF
and PDF, m-moment, mean, and variance of Z � X/Y by
using some special functions and integrals are given such
that X has Weibull distribution and Y has Lindley distri-
bution. )e CDF, PDF, CGF, and plots of the CDF and PDF
have been given in Section 3. Finally, some conclusions are
considered in Section 4. Weibull distribution X ∼ W(a, b)
with shape parameter a> 0 and scale parameter b> 0, the
PDF and CDF are defined as

f(x) � a

ba
xa− 1 exp − x

b
( )a[ ]. (1)

And the CDF is

F(x) � 1 − exp − x

b
( )a[ ] (2)

such that X> 0. Lindley distribution Y ∼ L(c) with shape
parameter c> 0, the PDF and CDF are given as

f(y) � c2

c + 1
(y + 1)exp[− cy]. (3)

Also, the CDF is

F(y) � 1 − (c + cy + 1)
c + 1

exp[− cy] (4)

such that Y> 0. In this work, we assume that the shape
parameter a � 2 in Weibull distribution. So, the PDF,
equation (1), and CDF, equation (2), become, respectively,

f(x) � 2

b2
x exp − x

b
( )2[ ]. (5)

F(x) � 1 − exp − x

b
( )2[ ]. (6)

)e generalized hypergeometric function [24] is defined
as

aΥb d1, d2, . . . , dp ; e1, e2, . . . , eq;w( ) �∑∞
l�0

d1( )l d2( )2 . . . dp( )
l
wl

e1( )l e2( )2 . . . eq( )
l
l!

 ,
(7)

where Pochhammer symbol (d)l � (Γ(d + l))/Γ(d) or
(e)l � (Γ(e + l))/Γ(e). )e confluent hypergeometric func-
tion [24] is defined as

Ψ(d, e;w) � Γ(1 − e)Γ(d − e + 1) [1Υ1(d; e;w)]

+ Γ(e − 1)
Γ(d) w1− e[1Υ1(d − e + 1; 2 − e;w)],

(8)
where w ∈ R and e≠ 0, ±1, ±2, ±3, . . .. )e gamma
function of the negative integer numbers [25] is given by

Γ(− r) � (− 1)
r

r!
ϕ(r) − (− 1)

r

r!
η, (9)

where ϕ(r) � ∑rl�1 1/l and η � limn⟶∞∑nl�1((1)/(l− ln(n)))
is Euler’s constant [25] such that Γ(0) � − η. )e parabolic
cylinder function [24] is defined as

Λv(w) � 2v/2 exp − w
2

4
[ ]Ψ − v

2
,
1

2
;
w2

2
( ). (10)

)e first special integral [26] is given as

∫∞
0
xτ− 1 exp − ρx2 − σx[ ]dx �(2ρ)− (τ/2)Γ(τ)exp σ2

8ρ
( )[ ]

× Λ− τ
σ��
2ρ

√( ),
(11)

where Re(σ)> 0 and Re(ρ)> 0. )e other special integral
[26] is introduced:

∫∞
0
xτ− 1Ψ(d, e;x)dx � Γ(τ)Γ(d − τ)Γ(τ − e + 1)

Γ(d)Γ(d − e + 1) . (12)

)e m-moment can be defined as

E Zm( ) � ∫∞
0
Zmf(z)dz. (13)

2. Distribution of the Ratio Z= � X/Y

In this section, we derive CDF, PDF, MGF, plots of the CDF
and PDF, m-moment, mean, and variance of Z � X/Y by
using some special functions. LetX ∼ W(2, b) and Y ∼ L(c);
then, it can be found that the CDF of Z � X/Y by

F(z) � Pro(Z≤ z) � Pro
X

Y
≤ z( ) � ∫∞

0
FX(zy)f(y)dy.

(14)

By substituting equations (3) and (6) in equation (14), we
get
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F(z) � ∫∞
0

1 − exp − z
2y2

b2
[ ]( ) c2

c + 1
(y + 1)exp[− cy]

� c2

c + 1
∫∞
0
(1 + y)exp[− cy]dy − c2

c + 1
∫∞
0
(1 + y)exp − z

2y2

b2
− cy[ ]dy

� c2

c + 1
∫∞
0
(1 + y)exp[− cy]dy − c2

c + 1
∫∞
0
y1− 1 exp − z

2y2

b2
− cy[ ]dy

− c2

c + 1
∫∞
0
y2− 1 exp − z

2y2

b2
− cy[ ]dy.

(15)

By using the first special integral in equation (11) to
calculate the integral (c2)/(c + 1)∫∞

0
y1− 1 exp[− (z2y2)/

(b2) − cy]dy and the integral (c2)/(c + 1)∫∞
0
y2− 1

exp[− (z2y2)/(b2) − cy]dy, one can obtain

c2

c + 1
∫∞
0
y1− 1 exp − z

2y2

b2
− cy[ ]dy � 2z2

b2
( )− (1/2) exp b2c2

8z2
[ ]Λ− 1 bc�

2
√

z
( )

� b

2z
Ψ 1

2
,
1

2
;
b2c2

4z2
( ),

(16)

c2

c + 1
∫∞
0
y2− 1 exp − z

2y2

b2
− cy[ ]dy � 2z2

b2
( )− 1 exp b2c2

8z2
[ ]Λ− 2 bc�

2
√

z
( )

� b2

4z2
Ψ 1,

1

2
;
b2c2

4z2
( ).

(17)

We substitute equations (16) and (17) in equation (15):

F(z) � 1 − c2

c + 1

b

2z
Ψ 1

2
,
1

2
;
b2c2

4z2
( )

− b2

4z2
Ψ 1,

1

2
;
b2c2

4z2
( ).

(18)

Equation (18) represents the CDF of Z � X/Y, where
X ∼ W(2, b) and Y ∼ L(c) by the confluent hypergeometric
function Ψ(d, e;w). We can analysis equation (18) as the
following picture:

F(z) � 1 − c2

c + 1

b

2z

��
π

√
1Υ1 0.5; 0.5;

b2c2

4z2
( )[ ]

− bc

2z
( ) 1Υ1 1;

3

2
;
b2c2

4z2
( )[ ]

− b2

2z2 1Υ1 1; 0.5;
b2c2

4z2
( )[ ]

−
��
π

√ bc

z
( ) 1Υ1

3

2
;
3

2
;
b2c2

4z2
( )[ ].

(19)

Equation (19) is CDF of Z by the generalized hyper-
geometric function pΥq(d1, d2, . . . , dp; e1, e2, . . . , eq;w).

)e PDF of Z � X/Y such that X ∼ W(2, b) and
Y ∼ L(c) can be defined as

f(z) � Pro(Z � z) � Pro X

Y
� z( ) � ∫∞

0
yfX(zy)f(y)dy.

(20)

By substituting equations (3) and (5), one can obtain

f(z) � Pro(Z � z) � ∫∞
0

2

b2
zy2 exp − zy

b
( )2[ ]

c2

c + 1
(y + 1)exp(− cy)dy,

(21)

f(z) � 2zc2

b2(c + 1) ∫
∞

0
y3 + y2( )exp − z

2y2

b2
− cy[ ]dy

� 2zc2

b2(c + 1) ∫∞
0
y3− 1 exp − z

2y2

b2
− cy[ ]dy[

+ ∫∞
0
y4− 1 exp − z

2y2

b2
− cy[ ]dy].

(22)

By using the first special integral in equation (11) to

compute the integrals ∫∞
0
y3− 1 exp[− ((z2y2)/(b2)) − cy]dy

and ∫∞
0
y4− 1 exp[− ((z2y2)/(b2)) − cy]dy, one can obtain

Journal of Probability and Statistics 3



f(z) � 2zc2

b2(c + 1) 2− 2
b3

z3
Ψ 3

2
,
1

2
;
b2c2

4z2
( ) + 3b4

8z4
Ψ 2,

1

2
;
b2c2

4z2
( )[ ].

(23)
Equation (23) is PDF of Z � X/Y, where X ∼ W(2, b)

and Y ∼ L(c) by the confluent hypergeometric function.
Figure 1 is the plot of CDF in equation (18).

Figure 2 is the plot of PDF in equation (23).
By substituting equation (8) in equation (23), we have

f(z) � 2zc2

b2(c + 1)2
− 2b

3

z3
��
π

√
1Υ1

3

2
;
1

2
;
b2c2

4z2
( )[ ]

− 4
cb�
2

√
z 1Υ1 2;

3

2
;
b2c2

4z2
( )[ ]

+ 2zc2

b2(c + 1)
3b4

8z4
4

3 1Υ1 2;
1

2
;
b2c2

4z2
( )[ ]

− 2
��
π

√ cb�
2

√
z 1Υ1

5

2
;
1

2
;
b2c2

4z2
( )[ ].

(24)

Equation (24) is PDF of z-generalized hypergeometric
function. We put equation (23) in equation (13) to get the
following:

E Zm( ) � 2

b(c + 1) ∫∞
0
Zm
b2c2

4z2
Ψ 3

2
,
1

2
;
b2c2

4z2
( )dz[ ]

+ 3

c + 1
∫∞
0
Zm− 1

b2c2

4z2
Ψ 2,

1

2
;
b2c2

4z2
( )dz[ ]

� − (cb/2)
m+1

b(c + 1) ∫∞
0
ω((1− m)/2)− 1Ψ 3

2
,
1

2
;ω( )dω[ ]

− 3

2(c + 1)
cb

2
( )m ∫∞

0
ω(2− m/2)− 1Ψ 2,

1

2
;
b2c2

4z2
( )dω[ ].

(25)
By using the second special integral in equation (12), we

obtain as

E Zm( ) � (cb/2)m+1
b(c + 1)

Γ(1 − m/2)Γ(2 +m/2)mΓ(− m/2)��
π

√[ ]

− 3

2(c + 1)
cb

2
( )m 4

Γ(2 − m/2)Γ(2 +m/2)Γ(3 − m/2)
3
��
π

√[ ].
(26)

Equation (27) is m-moment of Z.
Now, if m � 1, the mean of Z in equation (27) is

E(Z) � (cb/2)2

b(c + 1) [−
��
π

√
η] − 3

2(c + 1)
cb

2
( ) 2

��
π

√

3
[ ]. (27)

If m � 2, the second moment in equation (27) is

E Z2( ) � (cb/2)3

b(c + 1) 4[1 − η] −
3

2(c + 1)
cb

2
( )2 − 4η

3
[ ]. (28)

)e varianceV(Z) can be found from equations (28) and
(29) as

V(Z) � (cb/2)3

b(c + 1) 4[1 − η] −
3

2(c + 1)
cb

2
( )2 − 4η

3
[ ]

− (cb/2)2

b(c + 1) [−
��
π

√
η] − 3

2(c + 1)
cb

2
( ) 2

��
π

√

3
[ ][ ]2.

(29)
)e MGF of Z can be calculated as

MZ(t) � E(exp[tz])

� 2

b(c + 1) ∫∞
0
exp[tz] b

2c2

4z2
Ψ 3

2
,
1

2
;
b2c2

4z2
( )dz[ ]

+ 3

c + 1
∫∞
0
z− 1 exp[tz] b

2c2

4z2
Ψ 2,

1

2
;
b2c2

4z2
( )dz[ ]

� − c

2(c + 1) ∫∞
0
ω− 1/2 exp

cbω− 1/2t

2
[ ]Ψ 3

2
,
1

2
;ω( )dω[ ]

− 3

2(c + 1) ∫∞
0
exp

cbω− 1/2t

2
[ ]Ψ 2,

1

2
;ω( )dω[ ],

(30)
where ω � (b2c2)/(4z2). Using equations (7) and (8) to
rewrite equation (31) as the following picture,

MZ(t) �
2c

(c + 1) ∑
∞

l�0

(2)l
(3/2)ll!

− 2

c + 1
∑∞
l�0

(2)l
(1/2)ll!

 

× ∫∞
0
ωl exp

cbω− 1/2t

2
[ ]dω + −

��
π

√
c

2(c + 1) ∑
∞

l�0

(3/2)l
(1/2)ll!

 

× ∫∞
0
ωl− (1/2) exp

cbω− 1/2t

2
[ ]dω

+ 3
��
π

√

c + 1
∑∞
l�0

(5/2)l
(3/2)ll!

  ∫∞
0
ωl+(1/2) exp

cbω− 1/2t

2
[ ]dω.

(31)
To solve the integrals in equation (32), we assume that

− R � (cbω(− 1)/2t)/(2); then, equation (32) becomes

MZ(t) � −
2c

(c + 1) ∑
∞

l�0

(2)l
(3/2)ll!

− 2

c + 1
∑∞
l�0

(2)l
(1/2)ll!

 

× (bct)
2lΓ(− (2l + 2))
22l+1

+ −
��
π

√
c

2(c + 1) ∑
∞

l�0

(3/2)l
(1/2)ll!

 

×(− 2) bct

2
( )2l+1

Γ(− (2l + 1)) + 3
��
π

√

c + 1
∑∞
l�0

(5/2)l
(3/2)ll!

 

×(− 2) bct

2
( )2l+3

Γ(− (2l + 3)).

(32)
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Figure 1: )e graph of CDF for equation (18); we take three cases of the values of the parameters: first case b � c � 0.2, second case b � 0.3
and c � 0.5, and final case b � 0.1 and c � 0.9.
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Figure 2: )e graph of PDF for equation (23); we take three cases of the values of the parameters: first case b � c � 0.2, second case b � 0.3
and c � 0.5, and final case b � 0.1 and c � 0.9.
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where Γ(− (2l + 2)), Γ(− (2l + 1)), and Γ(− (2l + 3)) are
gamma functions of the negative integer numbers.

3. Distribution of the Product Z= � XY
In this section, we derive CDF, PDF, MGF, plots of the CDF
and PDF, m-moment, mean, and variance of Z � XY by

using some special functions. LetX ∼ W(2, b) and Y ∼ L(c);
then, the CDF of Z � XY can be computed by

F(z) � Pro X≤y
z

( ) � ∫∞
0
FX

y

z
( )f(y)dy

� ∫∞
0

1 − exp
− y2
b2z2
[ ][ ] c2

c + 1
(y + 1)exp[− cy]dy

� 1 − c2

c + 1

bz

2
Ψ 1

2
,
1

2
;
b2c2z2

4
( ) − c2

c + 1

b2c2

4
Ψ 1,

1

2
;
b2c2z2

4
( ).

(33)

Equation (33) is CDF of Z � XY by the confluent
hypergeometric function. By using equation (8), equation
(33) can be written as the following:

F(z) � 1 − bzc2

2(c + 1)
��
π

√
1Υ1

1

2
;
1

2
; θ( )[ ] − 2θ1/2 1Υ1

1

2
;
1

2
; θ( )[ ][ ]

− b2c4

4(c + 1) 2 1Υ1 1;
1

2
; θ( )[ ] − 2

��
π

√
θ1/2 1Υ1

3

2
;
3

2
; θ( )[ ][ ].
(34)

Equation (34) is CDF of Z by generalized hyper-
geometric function, where θ � (b2c2z2)/(4). )e PDF of Z �
XY can be considered:

f(z) � ∫∞
0

1

x
fY

z

x
( )fX(x)dx

� 2c2

b2(c + 1) ∫
∞

0
1 + z

x
( )exp − x

2

b2
[ ]exp − cz

x
[ ]dx

� 2c2

b2(c + 1) ∫
∞

0
1 + z

x
( )exp − x

2

b2
[ ] ∑∞

l�0

(− 1)l(cz)lx− l
k!

 

� 2c2

b2(c + 1) ∑
∞

l�0

(− 1)l(cz)l

l!
∫∞
0
x− l exp − x2

b2
[ ][ ][ +z∫∞

0
x− l− 1 exp − x2

b2
( )[ ]dx[ ]

� 2c2

b2(c + 1) ∑
∞

l�0

(− 1)l(cz)l

l!

b− l+1

2
Γ − l + 1

2
( )[ +z b

− l

2
Γ − l

2
( )[ ],

(35)

where R � (x2)/(b2). So,

f(z) � 2c2

b2(c + 1) ∑
∞

l�0

(− 1)l(cz)l

l!

b− l+1

2
Γ − l + 1

2
( ) + z b− l

2
Γ − l

2
( )[ ].
(36)

Figure 3 is the plot of CDF in equation (33). Equation
(36) is PDF of Z by gamma function of the negative integer
number.

)e MGF of Z can be computed as
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MZ(t) �
2c2

b2(c + 1) ∑
∞

l�0

(− 1)l(c)l

l!

b− l+1

2
Γ − l + 1

2
( )∫∞

0
zl exp[tz][

+b
− l

2
Γ − l

2
( )∫∞

0
zl+1 exp[tz]]

� 2c2

b2(c + 1) ∑
∞

l�0

(− 1)l(c)l

l!

b− l+1

2
Γ − l + 1

2
( ) (− 1)lΓ(l + 1)

tl+1
[ ][

+ b
− l

2
Γ − l

2
( ) (− 1)lΓ(l + 2)

tl+2
[ ]],

(37)
where − R � tz. )erefore,

MZ(t) �
2c2

b2(c + 1) ∑
∞

l�0

(− 1)l(c)l

l!

b− l+1

2
Γ − l + 1

2
( ) (− 1)lΓ(l + 1)

tl+2
[ ][

+ b− l

2
Γ − l

2
( ) (− 1)lΓ(l + 2)

tl+2
[ ][ ].

(38)
Equation (38) is MGF of Z.

4. Conclusion

In this paper, we discussed distribution of the ratio in-
dependent Weibull and Lindley random variables. In this
approach, we derived the CDF, PDF, and MGF of the ratio
independent Weibull and Lindley random variables. Also,
the plots of CDF and PDF are drawn. )e m-moment,
mean, and variance are calculated. )e CDF and PDF are
derived in two formulas with respect to each one of them,
first formula by confluent hypergeometric function and
another formula by generalized hypergeometric function.

We studied distribution of the product independent
Weibull and Lindley random variables. In this case, the
CDF, PDF, and MGF are derived from the product in-
dependent Weibull and Lindley random variables. )e
plots of CDF and PDF are drawn.)e CDF is derived in two
formulas: first formula by using confluent hypergeometric
function and another formula by using generalized
hypergeometric function. However, PDF is derived by
using gamma function of negative integer numbers.
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