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DISTRIBUTIONS THAT ARE CONVOLVABLE WITH
GENERALIZED POISSON KERNEL OF SOLVABLE
EXTENSIONS OF HOMOGENEOUS LIE GROUPS

EWA DAMEK, JACEK DZIUBANSKI, PHILIPPE JAMING
and SALVADOR PÉREZ-ESTEVA∗

Abstract

In this paper, we characterize the class of distributions on a homogeneous Lie group � that
can be extended via Poisson integration to a solvable one-dimensional extension � of �. To
do so, we introduce the S ′-convolution on � and show that the set of distributions that are
S ′-convolvable with Poisson kernels is precisely the set of suitably weighted derivatives of L1-
functions. Moreover, we show that the S ′-convolution of such a distribution with the Poisson
kernel is harmonic and has the expected boundary behavior. Finally, we show that such distributions
satisfy some global weak-L1 estimates.

1. Introduction

The aim of this paper is to contribute to the understanding of the boundary be-
havior of harmonic functions on one dimensional extensions of homogeneous
Lie groups. More precisely, we here address the question of which distributions
on the homogeneous Lie group can be extended via Poisson-like integration to
the whole domain and in which sense this distribution may be recovered as a
limit on the boundary of its extension. This question has been recently settled
in the case of Euclidean harmonic functions on Rn+1

+ in [1], [2]. For sake of
simplicity, let us detail the kind of results we are looking for in this context.

Let us endow Rn+1
+ := {(x, t) : x ∈ Rn, t > 0} with the Euclidean laplacian.

The associated Poisson kernel is then given by Pt (x) = t
(t2+x2)(n+1)/2 and a

compactly supported distribution T can be extended into an harmonic function
via convolution u(x, t) = Pt ∗ T . As Pt is not in the Schwartz class, this
operation is not valid for arbitrary distributions in S ′. The question thus arises

∗ Research partially financed by: E. D., J. D., Ph. J.: European Commission Harmonic Analysis
and Related Problems 2002–2006 IHP Network (Contract Number: HPRN-CT-2001-00273 -
HARP). E. D., J. D.: European Commission Marie Curie Host Fellowship for the Transfer of
Knowledge “Harmonic Analysis, Nonlinear Analysis and Probability” MTKD-CT-2004-013389.
J. D.: Polish founds for science 2005–2008 (research project 1P03A03029). S. P.-E.: Conacyt-
DAIC U48633-F.

Received October 9, 2007.



32 e. damek, j. dziubanski, p. jaming and s. pérez-esteva

of which distributions in S ′ can be extended via convolution with the Poisson
kernel. The first task is to properly define convolution and it turns out that
the best results are obtained by using the S ′-convolution which agrees with
the usual convolution of distributions when this makes sense. The space of
distributions that can be S ′-convolved with the Poisson kernel is then the space
of derivatives of properly-weighted L1-functions. Moreover, the distribution
obtained this way is a harmonic function which has the expected boundary
behavior.

In this paper, we generalize these results to one dimensional extensions
of homogeneous Lie groups, that is homogeneous Lie groups with a one-
dimensional family of dilatations acting on it. This is a natural habitat for
generalizing results on Rn+1

+ and these spaces occur in various situations. The
most important to our sense is that homogeneous Lie groups occur in the
Iwasawa decomposition of semi-simple Lie groups and hence as boundaries
of the associated rank one symmetric space or more generally, as boundaries
of homogeneous spaces of negative curvature [6]. Both symmetric spaces and
homogeneous spaces of negative curvature are semi-direct products � = �R∗+
of a homogeneous group � and R∗+ acting by dilatations in the first case, or
“dilation like” automorphisms in the second. For a large class of left-invariant
operators on � bounded harmonic functions can be reproduced from their
boundary values on � via so called Poisson integrals. They involve Poisson
kernels whose behavior at infinity is very similar to the one of Pt . While for
rank one symmetric spaces and the Laplace-Beltrami operator this is immediate
form an explicit formula, for the most general case it has been obtained only
recently after many years of considerable interest in the subject (see [3] and
references there). Therefore, we consider a large family of kernels on which
we only impose growth conditions that are similar to those of usual Poisson
kernels. This allows us to obtain the desired generalizations.

In doing so, the main difficulty comes from the right choice of definition of
the S ′-convolution, since the various choices are a priori non equivalent du
to the non-commutative nature of the homogeneous Lie group. Once the right
choice is made, we obtain the full characterization of the space of distributions
that can be extended via Poisson integration. We then show that this extension
has the desired properties, namely that it is harmonic if the Poisson kernel is
harmonic and that the original distribution is obtained as a boundary value of
its extension. Finally, we show that the harmonic functions obtained in this
way satisfy some global estimates.

The article is organized as follows. In the next section, we recall the main
results on Lie groups that we will use. We then devote a section to results
on distributions on homogeneous Lie groups and the S ′-convolution on these
groups. Section 4 is the main section of this paper. There we prove the char-



distributions that are convolvable with generalized . . . 33

acterization of the space of distributions that are S ′-convolvable with Poisson
kernels and show that their S ′-convolution with the Poisson kernel has the
expected properties. We conclude the paper by proving that functions that are
S ′-convolutions of distributions with Poisson kernels satisfy global estimates.

2. Background and preliminary results

In this section we recall the main notations and results we need on homogen-
eous Lie algebras and groups. Up to minor changes of notation, all results from
this section that are given without proof can be found in the first chapter of
[4], although in a different order.

2.1. Homogeneous Lie algebras, norms and Lie groups

Let � be a real and finite dimensional nilpotent Lie algebra with Lie bracket
denoted [·, ·]. We assume that � is endowed with a family of dilatations {δa :
a > 0}, consisting of automorphismes of � of the form δa = exp(A log a)
where A is a diagonalizable linear operator on � with positive eigenvalues. As
usual, we will often write aη for δaη and even η/a for δ1/aη. Without loss of
generality, we assume that the smallest eigenvalue of A is 1. We denote

1 = d1 ≤ d2 ≤ · · · ≤ dn := d̄

the eigenvalues of A listed with multiplicity. If α is a multi-index, we will
write |α| = α1 + · · · + αn for its length and d(α) = d1α1 + · · · + dnαn for its
weight.

Next, we fix a basis X1, . . . , Xn of � such that AXj = djXj for each j
and write ϑ1, . . . , ϑn for the dual basis of �∗. Finally we define an Euclidean
structure on � by declaring the Xi’s to be orthonormal. The associated scalar
product will be denoted 〈·, ·〉 and the norm ‖·‖.

We denote by � the connected and simply connected Lie group that cor-
responds to �. If we denote by V the underlying vector space of � and by
θk = ϑk ◦exp−1, then θ1, . . . , θn form a system of global coordinates on � that
allow to see � as V . Note that θk is homogeneous of degree dk in the sense
that θk(δaη) = adk θk(η). The group law is then given by

θk(ηξ) = θk(η)+ θk(ξ)+
∑

α 
=0,β 
=0,d(α)+d(β)=dk
c
α,β

k θα(η)θβ(ξ)

for some constants cα,βk and θα = θ
α1
i · · · θαnn . Note that the sum above only in-

volves terms with degree of homogeneity< dk , that is coordinates θ1, . . . , θk−1.
Although the group law is written in the multiplicative form, we will write 0
for the identity of �.
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Now we consider the semi-direct products � = � � R∗+ of such a nilpotent
group � with R∗+, that is, we consider � = � × R∗+ with the multiplication

(η, a)(ξ, b) = (ηδa(ξ), ab).

Finally, we fix a homogeneous norm on �, that is a continuous function
x �→ |x| from � to [0,+∞) which is C ∞ on � \ {0} such that

(i) |δaη| = a|η|,
(ii) |η| = 0 if and only if η = 0,

(iii) |η−1| = |η|,
(iv) |η · ξ | ≤ γ (|η| + |ξ |), γ ≥ 1 and, according to [5], we will chose |.| in

such a way that γ = 1, so that from now on |η · ξ | ≤ |η| + |ξ |,
(v) this norm satisfies Petree’s inequality: for r ∈ R,

(1 + |ηξ |)r ≤ (1 + |η|)|r|(1 + |ξ |)r .
This inequality is obtained as follows: when r ≥ 0, write

1 + |ξη| ≤ 1 + (|η| + |ξ |) ≤ (1 + |η|)(1 + |ξ |)
and raise it to the power r . For r < 0, write

1 + |ξ | ≤ 1 + (|ξη| + |η−1|) ≤ (1 + |ξη| + |η|) ≤ (1 + |ξη|)(1 + |η|)
and raise it to the power −r .

In particular, d(η, ξ) = |η−1ξ | is a left-invariant metric on �.
For smoothness issues in the next sections, we will need the following

notation. Let 
 be a fixed C∞ function on [0,+∞] such that 
 = 1 in [0, 1],

(x) = x on [2,+∞) and 
 ≥ 1 on [1, 2]. Then for μ ∈ R, we will denote
by ωμ(η) = (1 +
(|η|))μ which is C ∞ in �. In all estimates written bellow,
ωμ can always be replaced by (1 + |η|)μ.

2.2. Haar measure and convolution of functions

If η ∈ � and r > 0, we define

B(η, r) = {ξ ∈ � : |ξ−1η| < r}
the ball of center η and radius r . Note that B(η, r) is compact.

If dλ denotes Lebesgue measure on �, then λ ◦ exp−1 is a bi-invariant Haar
measure on �. We choose to normalize it so as to have |B(η, 1)| = 1 and still
denote it by dλ. Moreover, we have

|B(η, r)| = |B(0, r)| = |r · B(0, 1)| = rQ,
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where Q = d1 + · · · + dn = trA is the homogeneous dimension of �. This
measure admits a polar decomposition. More precisely, if we denote by S =
{η ∈ � : |η| = 1}, there exists a measure dσ on S such that for all ϕ ∈ L1(�),∫

�

ϕ(η) dλ(η) =
∫ +∞

0

∫
S
ϕ(rξ)rQ−1 dσ(ξ) dr.

On � the right-invariant Haar measure is given by dλ da
a

.
Recall that the convolution on a group � with left-invariant Haar measure

dλ is given by

f ∗ g(η) =
∫

�

f (ξ)g(ξ−1η) dλ(ξ) =
∫
G

f (ηξ−1)g(ξ) dλ(ξ).

This operation is not commutative but, writing f̌ (η) = f (η−1), we have
f ∗ g = (ǧ ∗ f̌ )̌.

We will need the following:

Lemma 2.1. Let h be a C ∞ function on � supported in a compact neigh-
borhood of 0 such that ∫

�

h(η) dλ(η) = 1.

Set ha(η) = a−Qh(δa−1η), then the family ha forms a smooth compactly sup-
ported approximate identity. In particular, if f is continuous and bounded on
�, then f ∗ ha → f uniformly on compact sets as a → 0.

We will need the following elementary lemma, which is proved along the
lines of [2, Lemma 9]:

Lemma 2.2. For r, s ∈ R, let

Ir,s(η) =
∫

�

(1 + |ξ |)r (1 + |ξ−1η|)s dλ(ξ).

Then, if r + s +Q < 0, Ir,s(η) is finite. Moreover, if this is the case, there is a
constant Cr,s such that, for every η ∈ �,

Ir,s(η) ≤

⎧⎪⎪⎨
⎪⎪⎩
Cr,s(1 + |η|)r+s+Q if r +Q > 0 and s +Q > 0,

Cr,s(1 + |η|)max(r,s) log(2 + |η|) if r +Q = 0 or s +Q = 0,

Cr,s(1 + |η|)max(r,s) else.

Proof. From Peetre’s inequality we immediately get the first part of the
lemma.



36 e. damek, j. dziubanski, p. jaming and s. pérez-esteva

From now on, we can assume that r+ s+Q < 0. Write � = �1 ∪�2 ∪�3

for a partition of � given by

�1 =
{
ξ ∈ � : |ξ | ≤ 1

2
|η|

}

and

�2 =
{
ξ ∈ � : |ξ | > 1

2
|η|, |ξ−1η| ≤ 1

2
|η|

}

and let

Ii(η) =
∫
�i

(1 + |ξ |)r (1 + |ξ−1η|)s dλ(ξ).

First, for ξ ∈ �1, we have 1
2 |η| ≤ |ξ−1η| ≤ 3

2 |η| so that

I1(η) ≤ Cs(1 + |η|)s
∫
�1

(1 + |ξ |)r dλ(ξ)

≤ Cs(1 + |η|)s
∫ |η|

2

0
tQ−1(1 + t)r dt

≤

⎧⎪⎪⎨
⎪⎪⎩
Cr,s(1 + |η|)r+s+Q if r +Q > 0

Cr,s(1 + |η|)s ln(2 + |η|) if r +Q = 0

Cr,s(1 + |η|)s if r +Q < 0

.

Next, for ξ ∈ �2, we have 1
2 |η| ≤ |ξ | ≤ 3

2 |η|, thus

I2(η) ≤ Cr(1 + |η|)r
∫
�2

(1 + |ξ−1η|)s dλ(ξ)

≤ Cr(1 + |η|)r
∫ |η|/2

0
tQ−1(1 + t)s dt

≤

⎧⎪⎪⎨
⎪⎪⎩
Cr,s(1 + |η|)r+s+Q if s +Q > 0

Cr,s(1 + |η|)r ln(2 + |η|) if s +Q = 0

Cr,s(1 + |η|)r if s +Q < 0

.
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Finally, for ξ ∈ �3, we have 1
3 |ξ | ≤ |ξ−1η| ≤ 3|ξ | so that

I3(η) ≤ Cr,s

∫
�3

(1 + |ξ |)r (1 + |ξ |)sdλ(ξ) ≤ Cr,s

∫
�\�1

(1 + |ξ |)r+s dλ(ξ)

= Cr,s

∫ +∞

|η|
2

tQ−1(1 + t)r+s dt ≤ Cr,s(1 + |η|)r+s+Q.

The proof is then complete when grouping all estimates.

2.3. Invariant differential operators on �

Recall that an elementX ∈ � can be identified with a left-invariant differential
operator on � via

Xf (ξ) = ∂

∂s
f

(
ξ. exp(sX)

)∣∣∣∣
s=0

.

There is also a right-invariant differential operator Y corresponding toX, given
by

Yf (ξ) = ∂

∂s
f

(
exp(sX).ξ

)∣∣∣∣
s=0

.

Note thatX and Y agree at ξ = 0. ForX1, . . . , Xn the basis of � defined in Sec-
tion 2.1 we write Y1, . . . , Yn for the corresponding right-invariant differential
operators.

If α is a multi-index, we will write

Xα = X
α1
1 · · ·Xαnn , X̃α = Xαnn · · ·Xα1

1 ,

Y α = Y
α1
1 · · ·Yαnn , Ỹ α = Yαnn · · ·Yα1

1 .

We will write Zα if something is true for any of the above. For instance, we
will use without further notice that

|Zαωμ| ≤ Cωμ−d(α).

For “nice” functions, one has1∫
�

Xαf (η)g(η) dλ(η) = (−1)|α|
∫

�

f (η)X̃αg(η) dλ(η)

and ∫
�

Yαf (η)g(η) dλ(η) = (−1)|α|
∫

�

f (η)Ỹ αg(η) dλ(η).

1 in [4] the˜is missing, this is usually harmless but not in this article.
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As a consequence, one also has

Xα(f ∗ g) = f ∗ (Xαg),
Y α(f ∗ g) = (Y αf ) ∗ g

and
X̃α(f ∗ g) = f ∗ (X̃αg),
Ỹ α(f ∗ g) = (Ỹ αg) ∗ f.

Moreover, using Xαf̌ = (−1)|α|(Y αf )ˇ or X̃αf̌ = (−1)|α|(Ỹ αf )ˇ and cor-
recting the proof in [4], one gets

(Xαf ) ∗ g = f ∗ (Ỹ αg) and (X̃αf ) ∗ g = f ∗ (Y αg).
Recall that a polynomial on � is a function of the form

P =
∑
finite

aαθ
α

and that its isotropic and homogeneous degrees are respectively defined by
max{|α|, aα 
= 0} and max{d(α), aα 
= 0}.

For sake of simplicity, we will write the Leibniz’ Formula as

Xα(ϕψ) =
∑
β≤α

�α,βX
βϕXα−βψ, X̃α(ϕψ) =

∑
β≤α

�̃α,βX̃
βϕX̃α−βψ.

Further, we may write

(2.1) Ỹ α =
∑
β∈Iα

Q̃α,βX
β

where Iα = {β : |β| ≤ |α|, d(β) ≥ d(α)} and Q̃α,β are homogeneous
polynomials of homogeneous degree d(β)− d(α).

Let us recall that � has an underlying vector space V to which � may
be identified. In turn, by choosing a basis, V can be identified with Rdim V

and then consider this basis as orthogonal. This endows � with an Euclidean
structure which we consider as fixed throughout this paper. We may then define
Euclidean derivatives ∂i , i = 1, . . . , dim V on � as the standard derivation
operator on Rdim V and the Euclidean Laplace operator is defined in the standard
way as

� =
dim V∑
i=1

∂2
i .

As in (2.1), any Euclidean derivative can be written in terms of left or right
invariant derivatives. We will only need the following in the next section: for
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every M , there exist polynomials ωα , |α| ≤ 2M and left-invariant operators
Xα such that

(2.2) (I −�)M =
∑

|α|≤2M

ωαX
α.

Finally, we will exhibit another link among several of this objects. Let ha
be as in Lemma 2.1 and let f, ϕ be smooth compactly supported functions.
Then

〈(Xαf ) ∗ ha, ϕ〉
= 〈Xαf, ϕ ∗ ȟa〉 = (−1)|α|〈f, X̃α(ϕ ∗ ȟa)〉 = 〈f, ϕ ∗ (Ỹ αha)∨〉

=
∫

�

∫
�

f (ξ)ϕ(ξη)(Ỹ αha)(η)z dλ(η) dλ(ξ)

=
∫

�

∫
�

f (ξ)ϕ(ξη)
∑
β∈Iα

Q̃α,β(η)(X
βha)(η) dλ(η) dλ(ξ)

=
∫

�

∫
�

f (ξ)
∑
β∈Iα

(−1)|β|(X̃β(Q̃α,β(η)ϕ(ξη)))ha(η) dλ(η) dλ(ξ)

=
∫

�

∫
�

f (ξ)
∑
β∈Iα

(−1)|β| ∑
ι≤β

�̃β,ι(X̃
β−ιQ̃α,β)(η)(X̃

ιϕ)(ξη)ha(η) dλ(η) dλ(ξ).

As X̃β−ιQ̃α,β is a homogeneous polynomial, if it is not a constant, then
X̃β−ιQ̃α,β(0) = 0. With Lemma 2.1, it follows that∫

�

(X̃β−ιQ̃α,β)(η)(X̃
ιϕ)(ξη)ha(η) dλ(η) → 0

uniformly with respect to ξ in compact sets, as a → 0. On the other hand, if
X̃β−ιQ̃α,β is a constant,∫

�

(X̃β−ιQ̃α,β)(η)(X̃
ιϕ)(ξη)ha(η) dλ(η)

= (X̃β−ιQ̃α,β)(0)
∫

�

(X̃ιϕ)(ξη)ha(η) dλ(η) → X̃β−ιQ̃α,β(0)X̃
ιϕ(ξ)

as a → 0, uniformly with respect to ξ in compact sets, again with Lemma 2.1.
We thus get that 〈(Xαf ) ∗ ha, ϕ〉 converges to∫

�

f (ξ)
∑
β∈Iα

(−1)|β| ∑
ι≤β

�̃β,ι(X̃
β−ιQ̃α,β)(0)X̃

ιϕ(ξ) dλ(ξ).
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On the other hand (Xαf ) ∗ ha converges uniformly to Xαf on compact sets,
thus 〈(Xαf ) ∗ ha, ϕ〉 → 〈Xαf, ϕ〉 = (−1)|α|〈f, X̃αϕ〉.
As the two forms of the limit are the same for all f, ϕ with compact support,
we thus get that

(2.3) X̃α = (−1)|α| ∑
β∈Iα

(−1)|β| ∑
ι≤β

�̃β,ι(X̃
β−ιQ̃α,β)(0)X̃

ι.

2.4. A decomposition of the Dirac distribution

In Section 3.1, we will need the following result about the existence of a
parametrix:

Lemma 2.3. For every integer m and every compact set K ⊂ � with 0 in
the interior, there exists and integer M , a family of left-invariant differential
operators Xα of order |α| ≤ M and a family of functions {Fα}|α|≤M of class
Cm with support in K such that

(2.4)
∑
α

XαFα = δ0

where δ0 is the Dirac mass at origin.

Proof. Let us start with the Euclidean case, that is, when � is considered
as an Euclidean vector space (see the previous section). Even though this is
classical (see [11]), let us include the proof for sake of completeness.

First, forM big enough, the function F0 defined on Rd by F̂0(ξ) = 1/(1 +
4π2|ξ |2)M (where F̂ is the Fourier transform of F ) is of class Cm and satisfies
(I −�)MF = δ0 where � is the Euclidean Laplace operator.

Now let ϕ be a smooth function supported in K with ϕ = 1 in a neigh-
borhood of 0. Then by Leibniz’s rule, we get that (I − �)M(F0ϕ) is of the
form

ϕ(I −�)MF0 +
∑

cαβ∂
βF0∂

αϕ.

Note that ∂αϕ = 0 in a neighborhood of 0 and that F0 is analytic away from
0 so that, if we set H = ∑

0<|α|≤2M,|β|≤2M cαβ∂
βF0∂

αϕ then H is smooth and
supported inK . Further, as (I−�)MF0ϕ = ϕ(0)δ0 = δ0, we have thus proved
that there exists two functions G and H of class Cm with support in K such
that

(I −�)MG = δ0 +H

which concludes the proof in the Euclidean case.
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To obtain (2.4), let us recall (2.2):

(I −�)M =
∑

|α|≤2M

ωαX
α.

It follows that, for ψ ∈ D ,〈
(I −�)MG,ψ

〉 =
∑

|α|≤2M

〈ωαXαG,ψ〉 =
∑

|α|≤2M

(−1)|α| 〈G,Xα(ωαψ)〉

=
∑

|α|≤2M

(−1)|α| ∑
β≤α

〈G,Xα−βωαXβψ〉

=
∑

|α|≤2M

∑
β≤α

〈Xβ((−1)|α|+|β|GXα−βωα), ψ〉.

We have thus written

(I −�)MG =
∑
α

∑
β≤α

Xβ((−1)|α|+|β|GXα−βωα)

and as δ0 = (I −�)MG−H we get the desired decomposition.

2.5. Laplace operators and Poisson kernels

Definition 2.4. Let P be a smooth function on � and let Pa(η) = a−QP(δa−1η)

and let � be a real non-negative number. We will say that P has property (R�)

if it satisfies the following estimates:

(i) there exists a constant C such that

1

C
ω−Q−� ≤ P ≤ Cω−Q−�;

(ii) for every left-invariant operator Xα , there is a constant Cα such that for
every η ∈ �, |XαP(η)| ≤ Cαω−Q−�−d(α)(η),

(iii) for every k, there is a constant Ck such that for every η ∈ �, and every
a > 0,

|(a∂a)kPa(η)| ≤ Cαa
−Qω−Q−�(δa−1η).

Remark 2.5. Condition (i) implies that P ∈ L1(�). Throughout this paper,
we will further assume that P is normalized so that

∫
� P(η) dλ(η) = 1.

Note that several other important estimates will automatically result from
these estimates.
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(1) First, by homogeneity of the left-invariant operatorXα , there is a constant
Cα such that for every η ∈ �, and every a > 0,

|XαPa(η)| ≤ Cαa
−Q−d(α)ω−Q−�−d(α)(δa−1η).

(2) Let X = X
α1
i1

· · ·Xαkik be a left-invariant differential operator. Set d(X) =
di1α1 + · · · + dikαk its weight, then the commutation rules in � imply
that X = ∑

β:d(β)=d(α) cβXβ . It follows that

|XPa(η)| ≤ Ca−Q−d(X)ω−Q−�−d(X)(δa−1η).

(3) WritingYα = ∑
β∈Iα

Qα,βX
β whereQα,β is a homogeneous polynomial

of degree d(β)− d(α), we get that

|YαPa(η)| ≤ Ca−Q−d(α)ω−Q−�−d(α)(δa−1η).

In particular, in all estimates, Pa can be replaced by P̌a . Also, as for the
previous point, Yα may be replaced by Y = Y

α1
i1

· · ·Yαkik .

(4) The previous remark also shows that in point (ii) we may as well impose
the condition for right invariant differential operators. This would not
change the class of kernels.

Example 2.6. A large class of kernels satisfying property (R�) is asso-
ciated to left-invariant operators on �. Let us detail the following for which
we refer to [3] and the references therein for details. Consider a second order
left-invariant operator on � of the form

L =
m∑
j=1

Z2
j + Z.

We assume the Hörmander condition i.e. that

(2.5) Z1, . . . , Zm generate the Lie algebra of �.

The image of such an operator on R+ under the natural homomorphism (ξ, a)

→ a is, up to a multiplicative constant,

(a∂a)
2 − αa∂a.

If a > 0 then there is a smooth integrable function Pa on � such that the
Poisson integrals

(2.6) f ∗ Pa(η) =
∫

�

f (ξ)Pa(ξ−1η) dλ(ξ)
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of an L∞ function f is L -harmonic and moreover, all bounded L -harmonic
functions are of this form. In particular, Pa(η) is L -harmonic.

The properties (i) and (ii) for P have then been proved in [3] – see the
main theorem there for diagonal action and L satisfying 2.5. (iii) follows
immediately from (i) and the (left-invariant) Harnack inequality applied to the
harmonic function Pa(η) i.e.

|(a∂a)kPa(η)| ≤ CkPa(η).

Our first aim will be to give a meaning to such Poisson integrals for as
general as possible distributionsf so as to still obtain an L -harmonic functions
when the kernel is L -harmonic.

3. Distributions on �

3.1. Basic facts and the space D ′
L1

Distributions on � are defined as on Rn as the dual of the space D := D(�) of
C ∞ functions with compact support, endowed with with the usual inductive
limit topology. We will write the space of distributions D ′ := D ′(�). Notions
such as support, Schwartz class S := S (�), tempered distributions S ′ :=
S ′(�), · · · are defined as for distributions on Rn and the space of compactly
supported distributions will be denoted E ′ := E ′(�). Because of the link
between left invariant derivatives and Euclidean derivatives (similar to the
links between left and right invariant derivatives, see [4]), these spaces are
just the usual spaces of distributions on � seen as V � Rn. In particular, we
will use the fact that every set of distributions that is weakly bounded is also
strongly bounded.

For T ∈ D ′, we define Ť ∈ D ′ by 〈Ť , ϕ〉 = 〈T , ϕ̌〉, while XαT is defined
by 〈XαT , ϕ〉 = (−1)|α|〈T , X̃ϕ〉.

The definition of the convolution of two functions is easily extended to
convolution of a distribution with a smooth function via the following pairings:
for T ∈ D ′ a distribution and ψ, ϕ ∈ D smooth functions

– the right convolution is given by 〈T ∗ ψ, ϕ〉 = 〈T , ϕ ∗ ψ̌〉
– the left convolution is given by 〈ψ ∗ T , ϕ〉 = 〈T , ψ̌ ∗ ϕ〉.

As in the Euclidean case, one may check that T ∗ψ andψ ∗T are both smooth.
We will now introduce the space of integrable distributions D ′

L1 and show
that this is the space of derivatives of L1 functions.

Definition 3.1. Let B := B(�) be the space of smooth functions ϕ :
� → C such that, for every left-invariant differential operator Xα , Xαϕ is
bounded.
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Let Ḃ := Ḃ(�) be the subspace of all ϕ ∈ B(�) such that, for every
left-invariant differential operator Xα , |Xαϕ(u)| → 0 when |u| → ∞.

We equip these spaces with the topology of uniform convergence of all
derivatives.

The space D ′
L1 = D ′

L1(�) is the topological dual of Ḃ(�) endowed with
the strong dual topology.

Note that S and C ∞
0 are dense in Ḃ (but not in B) so that D ′

L1 is a subspace
of S ′. Note also that every compactly supported distribution is in D ′

L1 . Further,
as Ḃ is a Montel space, so is D ′

L1 .
It is also obvious that if T ∈ D ′

L1 , ϕ ∈ B and Xα is left-invariant, then
XαT ∈ D ′

L1 and ϕT ∈ D ′
L1 . We will need the following characterization of

this space:

Theorem 3.2. Let T ∈ D ′(�). The following are equivalent

(i) T ∈ D ′
L1(�);

(ii) T has a representation of the form T = ∑
finite X

αfα where fα ∈ L1(�)
and Xα are left-invariant differential operators;

(iii) for every ϕ ∈ D(�), the regularization T ∗ ϕ ∈ L1(�).

Proof. The proof follows the main steps of the Euclidean case, see [11,
page 131]. Denote by D1 the set of all functions ψ ∈ D such that ‖ψ‖∞ ≤ 1.

(i) ⇒ (iii) Assume that T ∈ D ′
L1 and let ϕ ∈ D . Now, note that

(3.7) 〈T ∗ ϕ,ψ〉 = 〈T ,ψ ∗ ϕ̌〉
so, if ϕ is fixed and ψ runs over D1, the set of numbers on the right of (3.7) is
bounded, thus so is the set of numbers {〈T ∗ ϕ,ψ〉 , ψ ∈ D1}. But T ∗ ϕ is a
(smooth) function so this implies that T ∗ ϕ ∈ L1.

(iii) ⇒ (ii) Assume that, for every ψ ∈ D , T ∗ ψ ∈ L1, thus T ∗ ψ̌ ∈ L1.
Now, for ψ ∈ D fixed, the set of numbers

〈Ť ∗ ϕ, ψ̌〉 = 〈Ť , ψ̌ ∗ ϕ̌〉 = 〈T , ϕ ∗ ψ〉 = 〈T ∗ ψ̌, ϕ〉
stays bounded when ϕ runs over D1. It follows that the set of distributions
{Ť ∗ ϕ, ϕ ∈ D1} is bounded in D ′ since it is a weakly bounded set.

This implies that there exists an integer m and a compact neighborhood K
of 0 such that, for every functionψ of class Cm with support inK , Ť ∗ϕ∗ψ(0)
stays bounded when ϕ varies over D1. Using

Ť ∗ ϕ ∗ ψ(0) = 〈Ť ∗ ϕ, ψ̌〉 = 〈Ť , ψ̌ ∗ ϕ̌〉 = 〈T ∗ ψ, ϕ〉
we get that T ∗ ψ ∈ L1 for every ψ ∈ Cm with support in K .
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Now, according to Lemma 2.3, we may write

∑
finite

XαFα = δ0

where the Fα’s are of class Cm and are supported in K . It follows that

T =
∑
finite

T ∗XαFα =
∑
finite

Xα(T ∗ Fα).

The first part of the proof shows that the T ∗ Fα’s are in L1 so that we obtain
the desired representation formula.

(ii) ⇒ (i) is obvious so that the proof is complete.

Definition 3.3. Let Bc := Bc(�) be the space B(�) endowed with the
topology for which ϕn → 0 if,

(i) for every left-invariant differential operator Xα , Xαϕn → 0 uniformly
over compact sets,

(ii) for every left-invariant differential operatorXα , theXαϕn’s are uniformly
bounded.

The representation formula of T ∈ D ′
L1 given by the previous theorem

shows that T can be extended to a continuous linear functional on Bc. For
example, if we write T = f0 + ∑

|α|≥1X
αfα , then

〈T , 1〉D ′
L1 ,Bc

= 〈f0, 1〉 =
∫

�

f0(ξ) dλ(ξ).

3.2. The S ′-convoultion

Recall that if G ∈ S ′ and ϕ ∈ S then Ǧ ∗ ϕ ∈ C ∞ so that the following
definition makes sense:

Definition 3.4. Let F,G ∈ S ′(�), we will say that they are S ′-convol-
vable if, for every ϕ ∈ S (�), (ϕ ∗ Ǧ)F ∈ D ′

L1 . If this is the case, we define

〈F ∗G,ϕ〉 = 〈(ϕ ∗ Ǧ)F, 1〉D ′
L1 ,Bc

.

IfF,G ∈ S (�), thenF andG are S ′-convolvable and the above definition
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coincides with the usual one. Indeed, for every ϕ ∈ S (�),

〈F ∗G,ϕ〉 =
∫

�

F ∗G(η)ϕ(η) dλ(η)

=
∫

�

∫
�

F(ξ)G(ξ−1η)ϕ(η) dλ(ξ) dλ(η)

=
∫

�

(∫
�

ϕ(η)Ǧ(η−1ξ)dλ(η)

)
F(ξ).1 dλ(ξ)

= 〈(ϕ ∗ Ǧ)F, 1〉D ′
L1 ,Bc

.

Remark 3.5. There are various ways to define the S ′-convolution that
extend the definition for functions. For S, T ∈ D ′(�), let us cite the following:

(1) S and T are S ′
1-convolvable if, for every ϕ ∈ D(�), Sx ⊗ Tyϕ(xy) ∈

D ′
L1(� ⊗ �). The S ′

1-convolution of S and T is then defined by

〈S ∗1 T , ϕ〉 = 〈Sx ⊗ Tyϕ(xy), 1〉D ′
L1 (�⊗�),Bc(�⊗�).

(2) S and T are S ′
2-convolvable if, for every ϕ ∈ D , S(Ť ∗ ϕ) ∈ D ′

L1(�)

〈S ∗2 T , ϕ〉 = 〈S(Ť ∗ ϕ), 1〉D ′
L1 (�),Bc(�).

(3) S and T are S ′
3-convolvable if, for every ϕ,ψ ∈ S (�), (Š∗ϕ)(T ∗ψ̌) ∈

L1(�). The S ′
3-convolution of S and T is then defined by

〈S ∗3 T , ϕ ∗ ψ〉 =
∫

�

(Š ∗ ϕ)(η)(T ∗ ψ̌)(η) dλ(η).

It turns out that in the Euclidean case, all four definitions are equivalent and
lead to the same convolution [10]. There are various obstructions to prove this
in our situation, mostly stemming from the fact that left and right-invariant
derivatives differ.

Also, one may replace the D ′
L1 space by the similar one defined with the

help of right-invariant derivatives. We will here stick to the choice given in the
definition above as it seems to us that this is the definition that gives the most
satisfactory results.

One difficulty that arises is that the derivative of a convolution is not easily
linked to the convolution of a derivative. Here is an illustration of what may
be done and of the difficulties that arise. We hope that this will convince the
reader that several facts that seem obvious (and are for usual convolutions of
functions) need to be proved, e.g. that T ∗ Pa is harmonic if Pa is.
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Lemma 3.6. Let S, T ∈ D ′(�) and let Y be a right-invariant differential
operator of first order. If S and T are S ′-convolvable, if YS and T are S ′-
convolvable and if, for all ϕ ∈ S (�), Y ((ϕ ∗ Ť )S) ∈ D ′

L1(�), then

Y (S ∗ T ) = (YS) ∗ T .

Proof. As (Yf )g = Y (fg)− f Yg, we get that

〈Y (S ∗ T ), ϕ〉 = − 〈S ∗ T , Yϕ〉 = −〈((Yϕ) ∗ Ť )
S, 1〉

= −〈Y (ϕ ∗ Ť )S, 1〉 = −〈Y ((ϕ ∗ Ť )S), 1〉 + 〈(ϕ ∗ Ť )YS, 1〉
= 0 + 〈(YS) ∗ T , ϕ〉

the next to last equality being justified by the assumptions on F , G.

Using this lemma inductively gives

Yα(S ∗ T ) = (Y αS) ∗ T
provided all intermediate steps satisfy the assumption of the lemma. This is
the case if S is compactly supported.

3.3. Weighted spaces of distributions

We will need the following weighted space of integrable distributions, intro-
duced in the Euclidean setting in [7], [8], [9].

Definition 3.7. Given μ ∈ R we consider

ωμD ′
L1(�) := ωμD ′

L1(�) = {
T ∈ S ′(�) : ω−μT ∈ D ′

L1(�)
}

with the topology induced by the map

ωμD ′
L1(�) → D ′

L1(�)

T �→ ω−μT
.

This space admits an other representation given in the following lemma:

Lemma 3.8. Given μ ∈ R, we have
(3.8)

ωμD ′
L1(�) =

{
T ∈ S ′(�) : T =

∑
finite

Xαgα, where gα ∈ L1(�, ω−μdλ)
}
.
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Proof. Let us temporarily indicate with V the right hand side of (3.8).
Given T ∈ V , we can write T = ∑

finite X
α
(
ωμfα

)
, where fα ∈ L1. But then,

T =
∑
finite

∑
0≤β≤α

�α,βX
α−βωμXβfα

= ωμ
∑
finite

∑
0≤β≤α

�α,βω−μXα−βωμXβfα.

By definition, the distribution Xβfα belongs to D ′
L1 . Moreover, and easy

computation shows that the function ω−μXα−β(ωμ) belongs to the space B.
Since D ′

L1 is closed under multiplication by functions in B, we conclude that
T belongs to ωμD ′

L1 .
Conversely, given T ∈ ωμD ′

L1 we can write, by definition, T =
ωμ

∑
finite X

αfα , where fα ∈ L1 or, T = ωμ
∑

finite X
α(ω−μgα), where gα ∈

L1(ω−μdλ). Now, given ϕ ∈ S , the pairing 〈T , ϕ〉S ′,S can be written as∑
finite

(−1)|α|〈gα, ω−μX̃α(ωμϕ)〉S ′,S

=
∑
finite

∑
0≤β≤α

(−1)|α|�̃α,β〈gα, ω−μ(X̃α−βωμ)X̃βϕ〉S ′,S .

We observe that for each multi-indexes α and β, the function

bα,β = (−1)|α|�̃α,βω−μ(X̃α−βωμ)

belongs to B. Thus,

〈T , ϕ〉S ′,S =
∑
α,β

(−1)|β|〈Xβ((−1)|β|bα,βgα), ϕ〉S ′,S

or,
T =

∑
α,β

(−1)|β|Xβ((−1)|β|bα,βgα).

To conclude that the distribution T belongs to V we only need to observe that
L1(ω−μdλ) is closed under multiplication by functions in B. This completes
the proof of Lemma 3.8.

As an immediate corollary, we get that

Corollary 3.9. The space ωμD ′
L1(�) is closed under the action of left-

invariant differential operators Xα and under multiplication by functions in
B.
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4. Distributions that are S ′-convolvable with the Poisson kernel

4.1. Extensions of distributions with the Poisson kernel

We are now in position to prove the following:

Theorem 4.1. Let T ∈ S ′ and P be kernel satisfying property (R�) with
� > 0. Then the following are equivalent:

(i) T ∈ ωQ+�D ′
L1 ,

(ii) T is S ′-convolvable with Pa for some a > 0,

(iii) T is S ′-convolvable with Pa for each a > 0.

Proof. It is of course enough to prove equivalence between (i) and (ii), the
equivalence with (iii) will then automatically follow.

Let us assume that T ∈ ωQ+�D ′
L1 . We want to show that, if ϕ ∈ S ,

(ϕ ∗ P̌a)T ∈ D ′
L1 . It is enough to show that (ϕ ∗ P̌a)ωQ+� ∈ B. But, for a

left-invariant derivative Xα and β ≤ α,

Xα−β(ϕ ∗ P̌a)(η) = ϕ ∗ (Xα−β P̌a)(η) =
∫

�

Xα−β P̌a(ηξ−1)ϕ(ξ) dλ(ξ).

Therefore

|Xα−β(ϕ ∗ P̌a)(η)|
≤ C

∫
�

1

(1 + |ξ−1η|)Q+�+d(α)−d(β) ϕ(ξ) dλ(ξ)

≤ Cω−Q−�−d(α)+d(β)(η)
∫

�

(1 + |ξ |)Q+�+d(α)−d(β)ϕ(ξ) dλ(ξ)

by Petree’s inequality. As |XβωQ+�| ≤ CβωQ+�−d(β), it follows from Leibnitz’
Rule that (ϕ ∗ P̌a)ωQ+� ∈ B. The first part of the proof is thus complete.

Conversely, let us assume that T is S ′-convolvable with Pa and fix ϕ ∈ S ,
a non-negative function supported in B(0, 2) and such that ϕ = 1 on B(0, 1).
Then

ϕ ∗ P̌a(η) =
∫

�

ϕ(ξ)Pa(η−1ξ) dλ(ξ)

≥ C(a)

∫
B(0,1)

1

(1 + |η−1ξ |)Q+� dλ(ξ).

But, for ξ ∈ B(0, 1), |η−1ξ | ≤ (|η| + |ξ |) ≤ (1 + |η|). It follows that,

ϕ ∗ P̌a(η) ≥ C(a)

(1 + |η|)Q+� ≥ C(a)ω−Q−�(η).
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As we have already shown that ωQ+�ϕ ∗ P̌a(η) ∈ B, we get that 1
ωQ+�ϕ∗P̌a(η)

∈
B. Finally, writing

T = ωQ+�
1

ωQ+�ϕ ∗ P̌a(η)
(ϕ ∗ P̌a)(η)T

gives the desired representation since, by hypothesis, (ϕ ∗ P̌a)T ∈ D ′
L1 .

4.2. Regularity of the S ′-convolution of a distribution and the Poisson
kernel

We may now prove the following lemma, which allows us to represent T ∗Pa
as a function:

Lemma 4.2. Let T ∈ ωQ+�D ′
L1(�) and P be a kernel having property (R�)

with � > 0. Then, the S ′-convolution of T with the kernel Pa is the function
given by

(4.9) η �→ 〈
ω−Q−�(·)T , ωQ+�(·)P̌a(η−1·)〉

D ′
L1 ,Bc

Proof. First note that ξ �→ ωQ+�(ξ)P̌a(η−1ξ) is in B and ω−Q−�(·)T ∈
D ′
L1 so that (4.9) makes sense.
We want to prove that, if T = ∑

finite ωQ+�Xαfα with fα ∈ L1, and if
ϕ ∈ S , then 〈T ∗ Pa, ϕ〉 := 〈(ϕ ∗ P̌a)T , 1〉 is equal to

〈〈
ω−Q−�(·)T , ωQ+�(·)P̌a(η−1·)〉

D ′
L1 ,Bc

, ϕ(η)
〉
.

By linearity, it is enough to consider only one term in the sum, T = ωQ+�Xαf
with f ∈ L1(�). But then

〈
ωQ+�(ϕ ∗ P̌a)Xαf, 1

〉
= (−1)|α|〈f, X̃α(ωQ+�(ϕ ∗ P̌a)

)〉
= (−1)|α| ∑

β≤α
�̃α,β

∫
�

f (ξ)X̃α−βωQ+�(ξ)X̃β(ϕ ∗ P̌a)(ξ) dλ(ξ).

Further, we have

X̃β(ϕ ∗ P̌a) = ϕ ∗ (X̃β P̌a)(ξ) =
∫

�

ϕ(η)(X̃β P̌a)(η−1ξ) dλ(η).
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It follows that〈
ωQ+�(ϕ ∗ P̌a)Xαfα, 1

〉
= (−1)|α| ∑

β≤α
�̃α,β

∫
�

∫
�

f (ξ)X̃α−βωQ+�(ξ)(X̃β P̌a)(η−1ξ)(4.10)

dλ(ξ) ϕ(η) dλ(η)

= (−1)|α|
∫

�

(∫
�

f (ξ)X̃α
(
ωQ+�(·)P̌a(η−1·))(ξ) dλ(ξ)

)
ϕ(η) dλ(η)

using (X̃β P̌a)(η−1ξ) = X̃
β

ξ P̌a(η−1ξ) and Leibnitz’ Rule. Thus

〈
ωQ+�(ϕ ∗ P̌a)Xαf, 1

〉 =
∫

�

〈
Xαf (ξ), ωQ+�(ξ)P̌a(η−1ξ)

〉
ϕ(η) dλ(η)

as claimed.
All inversions of integrals are easily justified by the fact that ωQ+�P̌a ∈ B.

Corollary 4.3. Let T ∈ ωQ+�D ′
L1 and P be a kernel satisfying property

(R�) with � > 0. Then the function T ∗ Pa is smooth. Moreover, for any left-
invariant derivative Xα , T is S ′-convolvable with XαPa and Xα(T ∗ Pa) =
T ∗ (XαPa) and for any k ∈ N, T is S ′-convolvable with (a∂a)kPa and
(a∂a)

k(T ∗ Pa) = T ∗ (
(a∂a)

kPa
)
. In particular, T ∗ Pa is harmonic if P is.

Proof. As the proof of the implication (i) ⇒ (ii) of Theorem 4.1 only
depends on the estimates of the Poisson kernel from Section 2.5, we get with
the same proof that if T ∈ ωQ+�D ′

L1 then T is S ′-convolvable withXαPa and
(a∂a)

kPa .
For the other assertions, we may again assume that T = ωQ+�Xαf . As

T ∗ Pa is a function, from (4.10) in the proof of the previous lemma, we get
that

T ∗ Pa(η) = (−1)|α| ∑
β≤α

�̃α,β

∫
�

f (ξ)X̃α−βωQ+�(ξ)X̃
β

ξ

(
P̌a(η−1ξ)

)
dλ(ξ).

It then remains to differentiate with respect to η under the integral to complete
the proof.

We will need the space DL1(ωμ) of all functions ϕ ∈ C ∞ such that, for every
left-invariant partial differential operatorXα ,Xαϕ ∈ L1(ωμdλ) endowed with
the topology given by the family of semi-norms

‖ϕ‖α,μ =
∑
β≤α

‖Xβϕ‖L1(ωμdλ).
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We may get a more precise estimate of the Poisson integrals at fixed level.

Proposition 4.4. Let T ∈ ωQ+�D ′
L1(�) and P be a kernel having property

(R�) with � > 0. For each a > 0, the S ′-convolution T ∗ Pa belongs to
DL1(ω−Q−�dλ).

Proof. By linearity, it is enough to prove that, if T = ωQ+�Xαf for some
f ∈ L1(�), thenXι(T ∗ Pa) = T ∗XιPa ∈ ωQ+�DL1 . But, from (4.9), we get
that

T ∗XιPa(η)
= (−1)|α|〈f, X̃α(ωQ+�(·)XιP̌a(η−1·))〉
= (−1)|α| ∑

β≤α
�̃α,β

∫
�

f (ξ)X̃α−βωQ+�(ξ)X̃βXιP̌a(η−1ξ) dλ(ξ)(4.11)

using Leibnitz’ Formula and the facts that f ∈ L1 and ωQ+�(·)XιPa(η−1·) ∈
B. Using the estimates

|X̃α−βωQ+�(ξ)| ≤ C(α, β)ωQ+�−d(α)+d(β)(ξ)

and

|X̃βξ Xιξ P̌a(η−1ξ)| ≤ C(α, β, a)ω−Q−�−d(β)−d(ι)(η−1ξ)

we see that the L1(ω−Q−�dλ)-norm of each term of the sum in (4.11) is
bounded by

C

∫
�

ω−Q−�(η)
∫

�

|f (ξ)|ωQ+�−d(α)+d(β)(ξ)ω−Q−�−d(β)−d(ι)(η−1ξ) dλ(ξ) dλ(η)

= C

∫
�

|f (ξ)|ωQ+�−d(α)+d(β)(ξ)∫
�

ω−Q−�(η)ω−Q−�−d(β)−d(ι)(η−1ξ) dλ(η) dλ(ξ)

≤ C

∫
�

|f (ξ)|ω−d(α)+d(β)(ξ) dλ(ξ)

with Lemma 2.2. As d(β) ≤ d(α) we get the desired result.
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4.3. The Dirichlet problem in ωQ+�D ′
L1

We will now prove that T is the boundary value of T ∗ Pa in the ωQ+�D ′
L1

sense.

Theorem 4.5. Let T ∈ ωQ+�D ′
L1 and P be a kernel satisfying property

(R�)with� > 0, normalized so that
∫

� P(η) dλ(η) = 1. Then the convolution
T ∗ Pa converges to T in ωQ+�D ′

L1 when a → 0+.

Proof. We want to prove that, for ϕ ∈ Ḃ,

(4.12)
〈
ω−Q−�(T ∗ Pa), ϕ

〉
D ′
L1 ,Ḃ

→ 〈
ω−Q−�T , ϕ

〉
D ′
L1 ,Ḃ

when a → 0. It is of course enough to consider T = ωQ+�Xαf with f ∈ L1.
Write ϕ−Q−� = ω−Q−�ϕ and ξϕ−Q−�(η) = ϕ−Q−�(ξη). Then

〈
ω−Q−�(T ∗ Pa), ϕ

〉
D ′
L1 ,Ḃ

= (−1)|α|
∫

�

∫
�

f (ξ)X̃αξ
(
ωQ+�(ξ)P̌a(η−1ξ)

)
ϕ−Q−�(η) dλ(η) dλ(ξ)

= (−1)|α|
∫

�

∫
�

f (ξ)
∑
β≤α

�̃α,β(X̃
α−βωQ+�)(ξ)

X̃
β

ξ

(
P̌a(η−1ξ)

)
ϕ−Q−�(η) dλ(η) dλ(ξ)

= (−1)|α|
∫

�

∫
�

f (ξ)
∑
β≤α

�̃α,β(X̃
α−βωQ+�)(ξ)

(X̃β P̌a)(η−1)ϕ−Q−�(ξη) dλ(η) dλ(ξ)

= (−1)|α|
∫

�

∫
�

f (ξ)
∑
β≤α

�̃α,β(X̃
α−βωQ+�)(ξ)

(−1)|β|Ỹ βPa(η)ξϕ−Q−�(η) dλ(η) dλ(ξ).

Now let ψ be a smooth cut-off function such that ψ(η) = 1 if |η| ≤ 1 and
ψ(η) = 0 if |η| ≥ 2 and write ψ̃ = 1 − ψ . Then

〈
ω−Q−�(T ∗ Pa), ϕ

〉
D ′
L1 ,Ḃ

=
S1 + S2 where S1 is

(−1)|α|
∫

�

∫
�

f (ξ)
∑
β≤α

�̃α,β(X̃
α−βωQ+�)(ξ)

(−1)|β|Ỹ βPa(η)ξϕ−Q−�(η)ψ(η) dλ(η) dλ(ξ)
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while S2 = (−1)|α| ∑
β≤α �̃α,βS

β

2 with

S
β

2 =
∫

�

∫
�

f (ξ)(X̃α−βωQ+�)(ξ)

(−1)|β|Ỹ βPa(η)ξϕ−Q−�(η)ψ̃(η) dλ(η) dλ(ξ).

Let us first show that each Sβ2 → 0 so that S2 → 0. As, for |η| ≥ 1,

(1 + |η|/a)−Q−�−d(β) ≤ aQ+�+d(β)|η|−Q−�−d(β)

≤ CaQ+�+d(β)(1 + |η|)−Q−�−d(β),

thus, using the estimates of derivatives of Pa and ωQ+� , we get

|Sβ2 | ≤ C

∫
�

|f (ξ)|(1 + |ξ |)Q+�−d(α)+d(β)

×
∫

|η|≥1
aQ+d(β)(1 + |η|/a)−Q−�−d(β)(1 + |ξη|)−Q−� dλ(η) dλ(ξ)

≤ Ca�
∫

�

|f (ξ)|(1 + |ξ |)Q+�−d(α)+d(β)

×
∫

|η|≥1
(1 + |η|)−Q−�−d(β)(1 + |ξη|)−Q−� dλ(η) dλ(ξ)

≤ Ca� ‖f ‖L1

with Lemma 2.2. It follows that S2 → 0.
Let us now turn to S1. First, from (2.1),

S1 = (−1)|α|
∫

�

∫
�

f (ξ)
∑
β≤α

�̃α,β(X̃
α−βωQ+�)(ξ)

× (−1)|β| ∑
ι∈Iβ

Q̃β,ι(η)X
ιPa(η) ξϕ−Q−�(η)ψ(η) dλ(η) dλ(ξ)

= (−1)|α|
∫

�

∫
�

f (ξ)
∑
β≤α

�̃α,β(X̃
α−βωQ+�)(ξ)

× (−1)|β|Pa(η)
∑
ι∈Iβ

(−1)|ι|X̃ι
(
Q̃β,ι ξ ϕ−Q−�ψ

)
(η) dλ(η) dλ(ξ)

= (−1)|α|
∫

�

∫
�

f (ξ)
∑
β≤α

�̃α,β(X̃
α−βωQ+�)(ξ)

× (−1)|β|Pa(η)
∑
ι∈Iβ

(−1)|ι|
∑
ι′≤ι

�̃ι,ι′

X̃ι−ι
′(

Q̃β,ι ξ ϕ−Q−�
)
(η)X̃ι

′
ψ(η) dλ(η) dλ(ξ).(4.13)
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Assume first that ι′ 
= 0. Then X̃ι
′
ψ is supported in 1 ≤ |η| ≤ 2. Further,

from Leibnitz’ Rule, ϕ ∈ B and Peetre’s inequality we get that

X̃ι−ι
′
(Q̃β,ι ξ ϕ−Q−�)(η)

is bounded by Cω−Q−�(ξ) with C independent from η. It follows that∣∣∣∣
∫

�

Pa(η)X̃ι−ι
′(

Q̃β,ι ξ ϕ−Q−�
)
(η)X̃ι

′
ψ(η) dλ(η)

∣∣∣∣
≤ Cω−Q−�(ξ)

∫
1≤|η|≤2

Pa(η) dλ(η).

Consequently, since this integral goes to 0, we have∫
�

∫
�

f (ξ)(X̃α−βωQ+�)(ξ)Pa(η)

X̃ι−ι
′(

Q̃β,ι ξ ϕ−Q−�
)
(η)X̃ι

′
ψ(η) dλ(η) dλ(ξ) → 0.

It follows that, when passing to the limit in (4.13), only the term ι′ = 0 remains.
Thus S1 has same limit as

S ′
1 := (−1)|α|

∫
�

∫
�

f (ξ)
∑
β≤α

�̃α,β(X̃
α−βωQ+�)(ξ)

× (−1)|β|Pa(η)
∑
ι∈Iβ

(−1)|ι|X̃ι
(
Q̃β,ι ξ ϕ−Q−�

)
(η)ψ(η) dλ(η) dλ(ξ)

= (−1)|α|
∫

�

∫
�

f (ξ)
∑
β≤α

�̃α,β(X̃
α−βωQ+�)(ξ)

× (−1)|β|Pa(η)
∑
ι∈Iβ

(−1)|ι|
∑
ι′≤ι

�̃ι,ι′X̃
ι−ι′Q̃β,ι(η)

X̃ιξϕ−Q−�(η)ψ(η) dλ(η) dλ(ξ).

Now, if X̃ι−ι′Q̃β,ι is not a constant polynomial, then X̃ι−ι′Q̃β,ι(0) = 0 so that

(4.14)
∫

�

Pa(η)X̃ι−ι
′
Q̃β,ι(η)X̃

ι
ξϕ−Q−�(η)ψ(η) dλ(η)

goes to 0 when a → 0, while if X̃ι−ι′Q̃β,ι is constant, then, as ψ(0) = 1, this
integral goes to

X̃ι−ι
′
Q̃β,ι(0)X̃

ι
ξϕ−Q−�(0).
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Moreover, as (4.14) stays bounded by Cω−Q−�(ξ), from the dominated con-
vergence theorem, we get that

S ′
1 → (−1)|α|

∫
�

f (ξ)
∑
β≤α

�̃α,β(X̃
α−βωQ+�)(ξ)

× (−1)|β| ∑
ι∈Iβ

(−1)|ι|
∑
ι′≤ι

�̃ι,ι′X̃
ι−ι′Q̃β,ι(0)X̃

ι
ξϕ−Q−�(0) dλ(ξ)

= (−1)|α|
∫

�

f (ξ)
∑
β≤α

�̃α,β(X̃
α−βωQ+�)(ξ)X̃βξϕ−Q−�(0) dλ(ξ)

where we have used Identity (2.3) in the last equality. But X̃βξϕ−Q−�(0) =
X̃βϕ−Q−�(ξ) so that Leibnitz’ Formula implies that this limit is

(−1)|α|
∫

�

f (ξ)X̃α(ωQ+�ϕ−Q−�)(ξ) dλ(ξ) = (−1)|α|
∫

�

f (ξ)X̃αϕ(ξ) dλ(ξ)

= 〈Xαf, ϕ〉
as claimed.

Remark 4.6. Assume as in Example 2.6 that Pa is harmonic for some left-
invariant differential operator L on �. The above result imply that given for
a distribution T ∈ ωQ+�D ′

L1 , the function u = T ∗ Pa is a solution of the
Dirichlet problem {

L u = 0 in �
u|a=0 = T

where the boundary condition is now interpreted in the sense of convergence
in ωQ+�D ′

L1 as a → 0+.

5. Global estimates for Poisson integrals of distributions in ωQ+�D ′
L1

In this section, we will prove that the Poisson integrals of measures inωQ+�D ′
L1

satisfy some global smallness property measured by a weak-L1 type norm.
Further, they also have a decrease at infinity.

Notation 5.1. For a Borel set F ⊂ �, we denote by |F | its measure with
respect to dλ da. A function on � is said to be in L1,∞(dλ da) if there exists
a constant C such that, for all α > 0,

∣∣{(η, a) ∈ � : |f (η, a)| > α}∣∣ ≤ C

α
.
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For � ≥ 1, let 
�(η, a) = a�

(a+|η|)Q+� and note that
1

a

� ∈ L1,∞(dλ da).

Indeed∣∣∣∣
{
(η, a) :

1

a

�(η, a) > α

}∣∣∣∣ =
∫ α−1/(Q+1)

0

∣∣B(0, a(�−1)/(Q+�)α−1/(Q+�) − a)
∣∣ da

=
∫ α−1/(Q+1)

0

(
(a(�−1)/(Q+�)α−1/(Q+�) − a

)Q
da

= 1

α

∫ 1

0

(
t (�−1)/(Q+�) − t

)Q
dt

by changing variable t = aα1/(Q+1). It should also be noted that 
� /∈
L1,∞ (

dλ da
a

)
.

We will denote by M� the set of complex measures μ on � such that∫
�

(1 + |ξ |)−(Q+�) d|μ|(ξ) < +∞.

For μ ∈ M� and η ∈ �, let us denote by μη the left translate of μ by η, that
is the measure defined by∫

�

ϕ(ξ) dμη(ξ) =
∫

�

ϕ(ηξ) dμ(ξ)

for all continuous functions ϕ with compact support on �. From Petree’s
inequality, we get that μη ∈ M� . Further note that, if μ ∈ M� , then

|μ|(B(0, r)) ≤ (1 + r)Q+�
∫

|ξ |<r
(1 + |ξ |)−(Q+�) d|μ|(ξ) ≤ C(1 + r)Q+�.

We are now in position to prove the following:

Theorem 5.2. Let � ≥ 1 and let P be a kernel having property (R�) with
� > 0. If μ ∈ M� then

(5.15)
1

a
(1 + a + |η|)−Q−�μ ∗ Pa(η) ∈ L1,∞(dλ da).

Moreover, for every a0 > 0,

(5.16) (1 + a + |η|)−Q−�a−�μ ∗ Pa(η)χ{(η,a)∈� :a>a0}(η, a) ∈ L∞(dλ da).

Remark 5.3. At this stage, we have been unable to prove a converse, that
is, if T is S ′-convolvable with Pa and if T ∗ Pa satisfies the above estimates,
then T ∈ M� .
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Proof. Without loss of generality we may assume that μ is a positive
measure.

Let El = {(η, a) ∈ � |η| ≤ 1 and a ≤ 1} and Eg = � \El and let η0 ∈ �
be such that |η0| ≥ 2. Assume that we have proved that for every E ⊂ Eg

1

a
(1 + a + |η|)−Q−�μ ∗ Pa(η)χE ∈ L1,∞(dλ da)

for every measure μ ∈ M� . Applying this to E = η−1
0 El and to the left-

translate μ0 ∈ M� of μ by η−1
0 we get that

(1 + a + |η|)−Q−�a−1μ ∗ Pa(η)χEl (η, a)

= (1 + a + |η|)−Q−�a−1μ0 ∗ Pa(η−1
0 η)χη−1

0 El
(η−1

0 η, a)

≤ C(1 + a + |η−1
0 η|)−Q−�a−1μ0 ∗ Pa(η−1

0 η)χη−1
0 El

(η−1
0 η, a)

∈ L1,∞(dλda).

It is thus enough to prove that

(5.17)
1

a
(1 + a + |η|)−Q−�μ ∗ Pa(η)χEg ∈ L1,∞(dλda).

Note that if P has property (R�) then (1 + a + |η|)−Q−�a−1μ ∗ Pa(η) is
bounded by

C
a(�−1)

(1 + a + |η|)Q+�

∫
�

dμ(ξ)

(a + |η−1ξ |)Q+�

= C
a(�−1)

(1 + a + |η|)Q+�

(∫
|ξ |≤ 1

2 |η|
+

∫
1
2 |η|≤|ξ |≤2|η|

+
∫

2|η|≤|ξ |

)
dμ(ξ)

(a + |η−1ξ |)Q+�

= I + II + III.

Let us first estimate I . Note that, if |ξ | ≤ 1
2 |η|, then

a + |η−1ξ | ≥ a + |η| − |ξ | ≥ a + 1

2
|η| ≥ C(a + |η|) ≥ (1 + |η|)/2

since we only consider (η, a) ∈ Eg . It follows that

IχEg ≤ C
a(�−1)

(1 + a + |η|)Q+�

∫
|ξ |≤ 1

2 |η|
dμ(ξ)(1 + |η|)−Q−�χEg

≤ C
1

a

a�

(1 + a + |η|)Q+� ∈ L1,∞(dλda).



distributions that are convolvable with generalized . . . 59

Moreover, this computation also shows that a−�+1I ∈ L∞(dλda).
Let us now estimate III . Note that, if |ξ | ≥ 2|η|, then

(5.18) a + |η−1ξ | ≥ a + |ξ | − |η| ≥ a + 1

2
|ξ | ≥ C(a + |ξ |).

Further, as (η, a) ∈ Eg then either a ≥ 1 or |η| ≥ 1 in which case |ξ | ≥ 2.
Therefore a + |η−1ξ | ≥ C(1 + |ξ |). It follows that

IIIχEg ≤ C
a(�−1)

(1 + a + |η|)Q+�

∫
�

(1 + |ξ |)−Q−�dμ(ξ)

≤ C
1

a

a�

(1 + a + |η|)Q+� ∈ L1,∞(dλda).

Again, the same computation shows that a−�+1III ∈ L∞(dλda).
We will now prove the result for II . To do so, notice first that, if a ≥ a0 then

a−�+1II = C

(1 + a + |η|)Q+�

∫
1
2 |η|≤|ξ |≤2|η|

dμ(ξ)

(a + |η−1ξ |)Q+�

≤ C

aQ+�(1 + |η|)Q+�

∫
|ξ |≤2|η|

dμ(ξ) ≤ Ca−Q−�

thus a−�+1IIχa>a0 ∈ L∞(dλda).
It now remains to prove that II ∈ L1,∞(dλ da).
Note first that, if 1

2 |η| ≤ |ξ | ≤ 2|η|, then (1 + a + |η|)−Q−� ≤ C(1 +
|ξ |)−Q−� , thus

II ≤ C
1

a

∫
1
2 |η|≤|ξ |≤2|η|


�(η
−1ξ, a)(1 + |ξ |)−Q−�dμ(ξ)

= C
1

a

∫
1
2 |η|≤|ξ |≤2|η|


�(η
−1ξ, a)dν(ξ)

where ν is a finite measure on �. Thus II is estimated with the help of the
following proposition:

Proposition 5.4. For every finite positive measure ν on �, the functionUν
defined on � by

Uν(η, a) =
∫

�

a�−1

(a + |η−1ξ |)Q+� dν(ξ)

belongs to L1,∞(dλ da).
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The proof will follow a simplified version of that of Theorem 1 in [12]
which deals with the Euclidean case, for more general measures.

Notation 5.5. On � we denote by D∞ the distance given by D∞
(
(η, a),

(η′, a′)
) = max

(|η−1η′|, |a − a′|).

Proof of Proposition 5.4. We want to prove thatUν ∈ L1,∞(dλ da), that
is, that there exists a constant C ≥ 0 such that for all α > 0,

∣∣{(η, a) ∈ � : Uν(η, a) > α}∣∣ ≤ C

α
.

For i0 a non-negative integer, let

K0 = B(0, 2i0)× ]0, 2i0 ].

It is enough to prove that there is a constant C ≥ 0, independent of i0 such
that, for all α > 0

∣∣{(η, a) ∈ � : Uν(η, a) > α} ∩K0

∣∣ ≤ C

α
.

To do so, we will show that there is a constant C such that, for each α > 0, we
may construct a set S ⊂ � which satisfies the following properties:

(i) |{(η, a) : Uν > α} ∩K0| ≤ C|S|;
(ii) Uν(η, a) >

α
C

for all (η, a) ∈ S;

(iii) for all η ∈ �,

US(η) :=
∫
S

a�−1

(a + |η−1ξ |)Q+� dλ(ξ) da

satisfies US(η) ≤ C.

Once this is done, we can conclude as follows∣∣{(η, a) ∈ � : Uν(η, a) > α
} ∩K0

∣∣
≤ C|S| ≤ C2

α

∫
S

Uν(η, a) dλ(η) da = C2

α

∫
�

US(η) dν(η) ≤ C3

α
‖ν‖

where we have respectively used Property (i), (ii), Fubini’s Theorem and Prop-
erty (iii).

Construction of the set S.

We will use a dyadic covering of K0:

– Set Qi = B(0, 2i0)× [2i0−i−1, 2i0−i], i = 0, 1, . . .
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– cover each Qi by sets of the form

Qi,j = B(ηi,j , 2i0−i−3)× [2i0−i−1, 2i0−i]

in such a way that each element ofQi belongs to at most κ setsQi,j where
κ is a number that depends only on the group �. This is possible thanks to
a covering lemma that may be found e.g. in [4, Section 1.F].

We will order the Qi,j ’s by lexicographic order and define inductively the
authorized piecesAi,j and the associated set of forbidden piecesFi,j as follows:

– Ai,j = Qi,j if

(a) |Qi,j ∩ {(η, a) ∈ K0 : Uν(η, a) > α}| > 0,

(b) and Qi,j /∈
⋃

(l,k)<(i,j)

Fl,k .

Else, we set Ai,j = ∅.

– if Ai,j 
= ∅ we define the set of forbidden pieces as

Fi,j = {
Ql,k : (l, k) > (i, j) and D∞(Ql,k,Qi,j ) < 2i0−i+

l−i
Q+�+1}

.

Else we set Fi,j = ∅.

Note that the authorized pieces are disjoint and that, if Ai,j 
= ∅, then Fi,j has
the following property:

(5.19)

∣∣∣∣ ⋃
Q∈Fi,j

Q

∣∣∣∣ ≤ C|Ai,j |.

Proof of (5.19). Assume that Ql,k ∈ Fi,j and let (η, a) ∈ Ql,k . Then

d(η, ηi,j ) ≤ d
(
η,� \ B(η, 2i0−l−3)

)
+D∞

(
Ql,k,Qi,j

) + d
(
ηi,j ,� \ B(ηi,j , 2i0−i−3)

)
< 2i0−l−3 + 2i0−i+

l−i
Q+�+1 + 2i0−i−3 ≤ 2i0−i+

l−i
Q+�+2

.

It follows that

Ql,k ⊂ B
(
ηi,j , C2i0−i+

l−i
Q+�

) × [
2i0−l−1, 2i0−l

]
.

Now, as pieces of different order are disjoint,∣∣∣∣ ⋃
Q∈Fi,j

Q

∣∣∣∣ =
+∞∑
m=0

∣∣∣∣ ⋃
Qi+m,k∈Fi,j

Qi+m,k
∣∣∣∣
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and as those of a given order overlap at most κ times, this is

≤ κ

+∞∑
m=0

∣∣B(
ηi,j , C22i0−i+

m
Q+�+1) × [

2i0−i−m−1, 2i0−i−m
]∣∣

≤ C

+∞∑
m=0

2(i0−i+
m

Q+� )Q2i0−i−m = C2(i0−i)(Q+1)
+∞∑
m=0

2− �
Q+� m = C|Ai,j |

which establishes (5.19).

Finally, we set S =
⋃
(i,j)

Ai,j .

Proof of Property (i).

By construction, the authorized and the forbidden pieces cover {Uν > λ}∩K0

and as these overlap at most κ times, we obtain

∣∣{(η, a) ∈ K0 : Uν(η, a) > α}∣∣ ≤
∑
(i,j)

(
|Ai,j | +

∑
Q∈Fi,j

|Q|
)

≤ (C + 1)
∑
(i,j)

|Ai,j | = (C + 1)|S|

where C is the consant in (5.19).

Proof of Property (ii).

If (η, a) ∈ S, that is if (η, a) ∈ Ai,j for some (i, j), then there exists (η′, a′) ∈
Ai,j such that Uν(η′, a′) > α. But then |η−1η′| ≤ 2i0−i−2 ≤ a′

2 so that, for
ξ ∈ �,

a′ + |ξ−1η′| ≥ a′ − |η−1η′| + |ξ−1η| ≥ a′

2
+ |ξ−1η| ≥ 1

4
(a + |ξ−1η|).

From this, we immediately get that

α < Uν(η
′, a′) ≤ CUν(η, a).

Proof of Property (iii).

Set Si = ⋃
j Ai,j the set of authorized pieces of order i and write

Si = Ti × [2i0−i−1, 2i0−i].

Set
Ui(η) =

∫
Si

a�−1

(a + |ξ−1η|)Q+� dλ(ξ) da
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for the part of US issued from pieces of order i.

Lemma 5.6. There exists a constant C2 such that, for all η ∈ � and
all i ≥ 0, Ui(η) ≤ C2. Moreover, if p ≥ −i and d(η, Ti) > 2i0+p, then
Ui(η) ≤ C22−(p+i)� .

Proof of Lemma 5.6. By definition

(5.20) Ui(η) =
∫ 2i0−i

2i0−i−1
a�−1

∫
Ti

dλ(ξ)

(a + |ξ−1η|)Q+� da

Thus

Ui(η) =
∫ 2i0−i

2i0−i−1

1

aQ+1

∫
Ti

dλ(ξ)

(1 + |ξ−1η|/a)Q+� da

=
∫ 2i0−i

2i0−i−1

1

a

∫
Ti/a

dλ(ζ )

(1 + |ζ−1 · (η/a)|)Q+� da,

changing variable ζ = ξ/a. By translation invariance of dλ we thus get that

Ui(η) ≤
∫ 2i0−i

2i0−i−1

1

a

∫
�

dλ(ζ )

(1 + |ζ |)Q+� da ≤ C2.

Further, if d(η, Ti) > 2i0+p then, for ξ ∈ Ti , |ξ−1η| ≥ 2i0+p so that, from
(5.20), we deduce that

Ui(η) ≤ 2(i0−i)�
∫
Ti

dλ(ξ)

(2i0−i−1 + |ξ−1η|)Q+� ≤ 2(i0−i)�
∫

|ξ−1η|≥2i0+p

dλ(ξ)

|ξ−1η|Q+�

≤ 2(i0−i)�
∫

|ζ |>2i0+p

dλ(ζ )

|ζ |Q+� = C2−(i+p)�

when integrating in polar coordinates. The proof is thus completed.

Now, for every η ∈ �, there exists an m ≥ 0 such that

(5.21) C22−m−1 < Uj(η) ≤ C22−m

(where C2 is the constant of Lemma 5.6). From Lemma 5.6, we get that
d(η, Tj ) < 2i0+(m+1)/�−j .

On the other hand, by construction, if i ≤ j then

d(Ti, Tj ) > 2i0−i+
j−i
Q+�+1

so that

d(η, Ti) > d(Ti, Tj )− d(η, Tj ) > 2i0−i+
j−i
Q+�+1 − 2i0+(m+1)/�−j .
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It follows that d(η, Ti) > 2.2i0−i+
j−i
Q+� − 2i0+(m+1)/�−j . Further, if i0 + (m +

1)/� − j < i0 − i + j−i
Q+� , in particular, if j − i ≥ (m+ 1)/�, then

d(η, Ti) > 2i0−i+
j−i
Q+� .

From Lemma 5.6 we then get that

(5.22) Ui(η) ≤ C22− �
Q+� (j−i)

for i ≤ j −m.

We will now prove by induction on j that there exists a constant C2 for
which, for every η > 0 and every j ≥ 0, there exists a permutation σ = σj,η

of {0, . . . , j} such that, for each i ∈ {0, . . . , j}, Ui(η) ≤ C22− �
Q+� σ(i).

It then immediatly follows that
∑
Ui is convergent and uniformly bounded

as desired.

For j = 0, this is just Lemma 5.6. Assume now the hypothesis is true up to
order j − 1.

Let η ∈ � and let m be such that C22−m−1 ≤ Uj(η) ≤ C22−m.

– If m ≥ j , then Uj(η) ≤ C22− �
Q+� j . Further, by induction hypothesis, there

exists a permutationσj−1,η of {0, . . . , j−1} such that, for i ∈ {0, . . . , j−1},
Ui ≤ 2− �

Q+� σj−1,η(i). It is then enough to extend σj−1,η by setting σj,η(i) =
σj−1,η(i) if i < j and σj,η(j) = j .

– Otherwise, m < j and the (5.22) shows that, for i = 0, . . . , j − m − 1,
Ui(η) ≤ C22− �

Q+� (j−i).

By the induction hypothesis,Uj−m(η), . . . , Uj−1(η) are bounded bym−1 dif-

ferent elements of
{
C2, C22− �

Q+� , . . . , C22− �
Q+� (j−1)}. But these are decreas-

ing, so we may as well assume that they are bounded by the m − 1 first
elements of the family. In other words, there exists a one-to-one mapping σ1

from {j−m, . . . , j−1} to {0, . . . , m−1} such that, for i = j−m, . . . , j−1,
Ui(η) ≤ C22− �

Q+� σ1(i).
Finally, as Uj(η) ≤ C22− �

Q+� m, if we set

σj,η(i) =
⎧⎨
⎩
j − i if i = 0, . . . , j −m− 1

σ1(i) if i = j −m, . . . , j − 1

m if i = j

.

the proof of the induction is completed.

We have thus established (5.15) which completes the proof of the Theorem.
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