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Distributive Lattices, Affine Semigroup Rings 

and Algebras with Straightening Laws 

Takayuki Hibi 

Summary. A lattice L is called integral over a field k if there exists a 
homogeneous ASL (algebra with straightening laws) domain on Lover k. 
By virtue of fundamental structure theorem of Birkhoff, we can prove that 
every finite distributive lattice is integral. 

Introduction 

What properties of a finite poset (partially ordered set) H guarantee 

the existence of an ASL domain on Hover a field k? This is an interest
ing question lying between commutative algebra and combinatorics. 

Investigate many concrete examples of ASL which appeared in clas
sical invariant theory, and we may well hope that every ASL which is an 

integral domain should have some good properties. If we will try to 
analyze some ring-theoretical properties of ASL domains, then the above 
question should arise of necessity. 

For example, it is a starting point of recent works [12] and [13], in 
which the final goal is to classify all the three dimensional homogeneous 

Gorenstein ASL domains, to determine all the posets on which there exist 

three dimensional homogeneous Gorenstein ASL domains. 
The main purpose of this paper is first to construct an ASL domain 

Blk[D] (see § 2) on any finite distributive lattice D over a field k, secondly 

to calculate the canonical module of Blk[D] explicitly and give a combina
torial interpretation to the number of minimal generators of this module, 
and thirdly to determine what kind of distributive lattices are Gorenstein. 

This article is divided into four sections. In Section I, we recall 

some fundamental definitions and terminologies on commutative algebra 
and combinatorics. In addition, we shall remark that the tensor product 

&l/l)k Bl2 of two ASL's Bl, and &l2 over a field k is again an ASL in a 
natural way. This result will be used in Section 4. Moreover, for each 
finite poset H, we will associate a positive integer t(H) and show that 

t(H) = I if and only if His pure. This number t(H) will play an essential 

role in Section 3. 
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In Section 2, on any finite distributive lattice D we shall construct an 
ASL domain &l1,[D] over a field k. This construction depends in an 

essential way on a classical fundamental structure theorem (cf. Birkhoff 
[2, p. 59]) of finite distribut_ive lattices. Using Birkhoff's theorem the 
k-algebra &l1,[D] will be expressed as ·an affine semigroup ting. We shall 

also investigate some ring-theoretical properties of &l1,[D] and show that 

&liD] is normal, rational and Cohen-Macaulay. 
By the way, Stanlay [18] obtained the explicit expression of the 

canonical module of a normal affine semigroup ring. In Section 3, using 

Stanley's result, we shall calculate the canonical module of &lk[D] explicitly 
and, to determ.ine when &lk[D] is Gorenstein, we shall compute the number 

of minimal generators of this module. 
In final Section 4, we will try to classify all finite distributive lattices 

from a viewpoint of some Gorenstein properties for a poset proposed in 

[20]. We will see a remarkable gap between Gorenstein posets and weakly 

Gorenstein posets. 
The author wishes to express his hearty thanks to Professor Kei-ichi 

Watanabe for valuable stimulative suggestions and continuous discussions 

on these topics. 

§ 1. Preliminaries from commutative algebra and combinatorics 

We here summarize basic definitions and results on commutative 

algebra and combinatorics. 

a) All posets (partially ordered set) to be coristdered are finite. 

The length of a chain (totally ordered set) Xis #(X)-1, where #(X) 

is the cardinality of X as a set. 

The rank of a poset H, denoted by rank (H), is the supremum of 

lengths of chains contained in H. 

The height (resp. depth) of an element a e H is the supremum of 
lengths of chains descending (resp. ascending) from a, and written 

heightH(a) (resp. depthH(a)). 

A poset ideal in a poset H is a subset I such that a e I, [3 e H and 
[3<a together imply [3 e I. 

A poset is called pure if its all maximal chains have the same length. 
A clutter is a poset in which no two elements are comparable. 

We refer to Birkhoff [2, Chapter I] for the basic definitions and nota
tion in lattice theory. 

b) Let H ce a finite set and N the set of non-negative integers. We 

denote by NH the set of maps from H to N. A monomial .,It .on H is an 
element of NH. The support of a monomial .,It is the set Supp (.,,It)= 

{x e H; .,,lt(x)=;t=O}. A monomial .,I( is called standard if Supp(.,,lt) is a 
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chain. 

If _&l is a commutative ring and an injection <p: H ~&l is given, 
then to each monomial .,It on H we may associate . 

<p(vlt): = fl <p(x)""<x> e &l. 
xeH 

We will usually identify H with <p(H) and <p(.,/t) e &l is also called a 

monomial if there is no confusion. It will be clear from the context wheth

er an abstract monomial or an element of &l is intended. 

Now let k be a field ·and &l a commutative k-algebra. Suppose that 
H is a finite poset with an injection <p: H ~&l. Then we call &l an 

algebra with straightening laws on H over k if the following conditions are 
satisfied:· 

(ASL-1) The set of standard monomials is a basis of the algebra &l 

as a vector space over k. 
(ASL-2) If a and (3 in Hare incomparable (written as a ,f, (3) and if 

(*) 

where O=t=ri e k and r11 <ri 2< · · ·, is the unique expression for a/3 e &l as 
a linear combination of distinct standard monomials guaranteed by (ASL-1), 

then fi 1 <a, [3 for every i. 
Note that the right-hand side of the relation in (ASL-2) is allowed to 

be the empty sum ( =0), but that, though 1 is a standard monomial, no 

fi 1fi 2 • • -r,P, can.be 1. The relations(*) are called the straightening rela

tions for &l. 

We denote by [a/3] the set of standard monomials which appear in 

the right-hand side of the relation for a/3 with a,f, (3. More generally, for 

a monomial a 1a2 • • • ap, we denote by [a1a 2 • • • ap] the set of standard 
monomials which appear in the standard monomial expression of a 1a 2 • • • 

It is well known that the dimension of &l as a k-algebra coincides 

with rank (H)+ 1 (see [4]). 
c) An ASL &l on a poset H is called graded if there is a grading 

&l = EBn:2:o &ln such that &l0 =k and each element of H is homogeneous of 
positive degree. 

When Hc&l 1, we say that &l is homogeneous. 

For a graded ASL &l we denote by 9' e,(8) the Poincare series 

~n;,,o ( dimk &ln}On • 

d) Let &l (resp. &l') be an ASL on a poset H (resp. H') over a field 

k. The tensor product &l®k &l' will turn out to be an ASL in the follow
ing way. We make H(:P;ll': =HUH' (disjoint union) a poset by preserving 

the order of H and H', and by setting a<a' for all a e H and a' e H', 
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for example, 

V 
Figure 1 Figure 2 Figure 3 

We inject H(s)H' into fJi@,.f!l' by sending a e H (resp. a' e H') to 
a®l (resp. l®a). Now it is easily checked that fJi®,.fJi' is an ASL on 

H(s)H' over k. 
e) Given a poset H, we will write H for the poset obtained by 

adjoining a new element, written - oo, to H such that - oo <a for all 
a e H. We use the covension that - oo is never an element of H. 

A map 1,1: H-N is called order reversing if x<y in H implies v(x)> 

v(y). Moreover, a map 1,1: H-N is called strictly order reversing if 
(i) v(x)=fo:0 for all x e Hand (ii) x<y in H implies v(x)>v(y). We denote 
by §'(H) the set of strictly order reversing maps from H to N. 

Now we shall define a partial order in 9"'(H). Let 1,1, v' e 9"'(H). 

We will write v>v' if the following conditions are satisfied: 
(i) v(x)>v'(x) for all x e H. 
(ii) The map 1,1-1,1' defined by (1,1-1,1')(x): =v(x)-v'(x) is order revers

ing map from H to N. 

We denote by .ro(H) the set of minimal elements of §'(H) with 
respect to the above partial order. Define t(H)=#(§'o(H)), and we have 

Lemma. t(H) = 1 if and only if His pure. 

Proof Defined e 9"'o(H) by 

d(x) = 1 + depth11(x) (x e H). 

First, we shall show that "if" part. If H is pure, then the above 
map d is a unique minimal element in §'(H). In fact, for any map 1,1 e 
§'(H), we have v(x)>d(x) for all x e H by the definition of depth. More
over, if x<y in Hand 

X=z 0 <z 1<z 2< · · · <zn=Y 

is one of the unrefinable chains combining x with y, then, since His pure, 

d(zt)+ 1 =d(zi-1), hence 

v(zt)-d(zt)<{v(zt_ 1)-1}-d(zt) 

={1,1(Zt-1)-l}-{d(zt-1)- l} 

=v(z,_ 1)-d(zt-1). 
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So, we have 

v(y)-d(y)<v(x)-d(x), 

and v>d in Y(H). 

Next we shall show "only if" part. Suppose that H is not pure. 

Then there exist two elements a, f3 e H such that (i) a covers /3, namely, 

[3<a and no element of His properly between a and /3, and (ii) depthu(/3) 
>depthu(a)+ 1. (Note that H does not necessarily have this property, 

for example, 

Figure 4 

It is essential that H has a unique minimal element - co.) Define de 
Y(H) by 

_ {d(x) if x=/3 or x,f,a or x>a 
d(x)= 

l+d(x) if x<a and X=/=/3. 

Then d(x)?::.d(x) for all x e H, however, though [3<a, we have (d-d)(/3) 

=0 and (d-d)(a)=l. Hence d and dare imcomparable, so Yo(H) must 

contain an element other than d. Thus t(H)>2. Q.E.D. 

Example. Let H be the following poset 

M 
Figure 5 

Then Yo(H) consists of 

Figure 6 Figure 7 Figure 8 
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so t(H)=3. 

§ 2. Construction of PA\[D] 

a) To begin with, we shall construct an ASL domain Bl\[D] on any 

distributive lattice D over a field k. 

Recall that a classical fundamental structure theorem of Birkhoff [2, p. 

59] states that there exists a unique poset P such that D=J(P), where 
J(P) is the set of poset ideals of P, ordered by inclusion. 

LetP={Pi,P 2, ···,Pn}, where n=rank(D). WewillembedDinto 
the polynomial ring k[T, X1, X2, • • ·, Xn] by the injective map 

(I) 

I 

(I) 

TD Xi, 
p;El 

where I is a poset ideal of P. We denote by Bf!k[D] the subring of k[T, X 1, 

X2, • • ·, Xn] which is generated by {sa(l)hEn, namely, 

Note that 

(2.1) sa( I)sa( J) = sa( In J)sa( I u J) 

for all /, J e D. 

Now we shall show that Bf!k[D] is an ASL on D over k. To prove 

the linear independence of the set of standard monomials, we have only 
to see that if JI and JV are distinct standard monomials on D then 

sa(Jt) =;t=sa(JV) in Bl!,[D], because So(Jt) and sa(.!V) are monomials (with 

coefficients 1) in k[T, X 1, X2, • • ·, Xn] in usual sence. 
For a standard monomial Jt on D we express 

n 

sa(Jt)=TH.,/1) D Xf<<-"l. 
i=l 

Then a poset ideal I ( =;t: rp) of P is contained in Supp (Jt) if and only if 

.;;(Jt)>.;iJt) for all i,j such that Pie I, p 1 $ I. In fact, the "only if" 
part is almost obvious. To see the "if" part, assume that I$ Supp (Jt). 

If {I} U Supp (Jt) is a chain of D, then .;;{Jt)=.;/Jt) for all i,j such that 

Pie I,p 1 $ land 
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is a chain of D. If {I} U Supp (.4) is not a chain of D, then there exists 

J e Supp (.A') with Irt_J and Jct.I. We have $;{.4)<$l.4) for all i,j such 

that P; E l, Pt €p. J, p J €p. l, P J E J. 

This fact means that s,,(.4):;i=s,,(JV) if Supp (.4):;i=Supp (JV). While 

in the case of Supp (.A') =Supp (JV), it is easy to see that .A' :;i=JV implies 

s,,(.4):;i=s,,(JV), because in the vector space Qn+i, where Q is the field of 

rational numbers, the vectors e0 =(1, 0, 0, · · ·, 0), e1 =(l, 1, 0, · · ·, 0), · · ·, 

en =(I, 1, 1, · · ·, 1) are linearly independent. 

Thanks to (2.1), ~k[D] satisfies the axiom (ASL-2). Hence by virtue 

of [4, Proposition 1.1], ~k[D] is an ASL on D over k and we have 

(2.2) 

where k[Xa; a e D] is the polynomial ring in ~(D)-variables over k and 

Example. Let D=J(P) be the distributive lattice of Figure 10. 

{x,y, z, w} 

z w {x,y, z} 

P= N {y, w} 

X y 

Figure 9 Figure 10 

Then ~k[D] is a subring of k[t, x, y, z, w] which is generated lbY all mono

mials written in Figure 11. 

txy= 

tyw 

tx 

Figure 11 

b) Next we shall investigate some ring-theoretical properties of ~k[D]. 
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Normality. A monomial (in usual sense) re O f=1 Xf' in k[T, X,, X 2, 

... , X,.] is contained in 9l,.[D] if and only if, for some order preserving 
bijection 

(2.4) 

we have 

(2.5) 

where PteJ> =a-'(j). 

u: P~[n]={l, 2, · · ·, n}, 

Hence 9l1c[D] is normal by the Hochster's criterion [14, p. 320]. Note 
that some combinatorial aspects of above maps (2.4) are investigated in 
Stanley [17]. Also, refer to Garsia [6] and [23]. 

Rationality. The k-algebra 9l,.[D] is rational over k, that is, the 
quotient field of 9l,.[D] is a purely transcendental extension of the base field 

k. In fact, 9l,.[D] contains TXrni· · ·Xte,i for all s=O, 1, · · ·,n, where 
PHJ> =u-'(j) and a is one of the above order preserving bijections. Thus 
the quotient field of 9l,.[D] is just k(T, X,, · · ·, Xn). 

Cohen-Macaulayness. It is well known that distributive lattices are 
Cohen-Macaulay over an arbitrary field (see, for example, [I] or [3]). 

Combining this result with the fundamental theorem on ASL (cf. [4, Co
rollary 7.21), we can conclude that 9l,.[D] is Cohen-Macaulay. 

On the other hand, apart from the above argument, the Cohen
Macaulayness of 9l,.[D] is also deduced from the main result of Hochster 
[14], which says that every normal subring (of a polynomial ring over a 
field) generated by a finite number of monomials is always Cohen-Macau
lay. 

c) We summarize the discussions in a) and b) in the following 

Theorem. Let k be a field and L a finite lattice. We denote by Bl,.[L] 
the k-algebra 

k[Xa; a e L]/(XaXp-XaAPX«vp; a,f,[3). 

Then the foil owing conditions are equivalent: 

( i) Bl,.[L] is an ASL on L over k. 

(ii) Bl1:[L] is an integral domain. 

(iii) L is a distributive lattice. 

Moreover, if these conditions are satisfied, then Blk[L] is Cohen-Macau

lay, normal and rational. 

Proof We have only to show that (i) implies (iii) and that (ii) 

implies (iii). 
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First, assume that Blk{L] is an ASL on Lover k. Let a, f3 and r be 
any elements of L. We will calculate the standard monomial expression 
of a 2{3r in two ways. Namely, 

a 2{3r =(af3)(ar) 

={(a/\/3)(aV {3)}{(a/\r)(aVr)} 

={(a/\/3)(a/\r)}{(aV /3)(aVr)} 

=(a/\/3/\r){(a/\/3)V(a/\r)}{(aV /3)/\(aVr)}(aV /3Vr) 

a2 {3r = a2([3r) 

= a2(/3 I\ r)(/3 V r) 

= { a(/3 I\ r) }{ a(/3 V r)} 

=(a /\[3/\r){a /\(f3Vr)}{aV (/3/\r)}(aV /3Vr). 

So, thanks to (ASL-1), we have 

a/\(f3Vr)=(a/\/3)V(a/\r) 

aV(/3/\r}=(aV /3)/\(aVr), 

for all a, {3, r e L. Here L is distributive. 
Secondly, assume that L is not distributive. Then L must contain 

one of the following two lattices 

a 

Figure 12 Figure 13 

as a sublattice (cf. [2, Chapter II]). In both cases, we have 

af3=(a/\[3)(aV {3)=(a/\r)(aVr)=ar. 

So, Blk[L] cannot be an integral domain. 

/3 

r 

Q.E.D. 

d) A finite lattice L is called integral over a field k if there exists a 
homogeneous ASL domain on L over k. The above theorem in c) states 
that every finite distributive lattice is integral over an arbitrary field k. 
We will propose two reasonable conjectures concerning integral lattices. 
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Conjecture. 1) Every modular lattice is integral over some field. 

2) Every integral lattice is Cohen-Macaulay. 

But the situation is still very obscure. 

Example. 1) The following lattice L 1 is a non-modular integral 

lattice, while L2 is a non-integral Cohen-Macaulay (in fact, Gorenstein) 

lattice ( cf. [12]). 

Figure 14 Figure 15 

2) Let n be an arbitrary positive integer, k an infinite field and La 

modular lattice 

l= 

Figure 16 

Then we can construct a homogeneous ASL domain !!II, on L over k by 

means of 

T=xy2, A=x 2y, B=yz2, X=xz2, S=w3, 

Pi=y 2z 2/(x-piy) (i=l, 2, · · ·, n), 

where O:;t: Pi e k, Pi :;t: p j if i :;t: j, and x, y, z, w are indeterminates over k. 
The straightening relations of !!II, are 

AB=TX, 

PiA = T(B + piPi), PiX =B(B + Pi Pi), 

PiP;=B(Pi-P)/(Pi-Pi) (i:;t:j). 
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Thanks to a criterion [13, Lemma 10), it can be checked that f!ll is, in 

fact, an ASL on L over k. Also, by [13, Proposition 3), we see that f!ll is 

normal. 
Note that if k is a finite field and n is sufficiently large then L is not 

integral over k. 
e) Now we shall consider the argument discussed in c) in a more 

general situation. 
Let .f!ll be a homogeneous ASL (not necessarily a domain) on a lattice 

L over a field k. Assume that f!ll satisfies the following condition: 

(#) For each incomparable pair a and fi, [afi]=;t:¢ (see§ 1, b) for 

the definition of [afi]) and in the straightening relation afi= I; riri1rt2 
(O=;t=ri e k) we have rt1~a/\fi, aV p~ri2· 

If this condition (#) is satisfied, then L must be distributive. To 
prove this, suppose that a, p and r are any elements of L with a I\ r = 
fi/\r, aVr=pvr and that ar=I;sioi10i2 (O=;t=siek), W=I;th1ej2 
(O=;t=t1 e k) are the standard monomial expressions of ar and pr. Note 
that, for example, if a and r are comparable then we may consider ar = 
(a/\r)(aVr). Then we have 

Since all monomials oi1fioi2, si1as12 are standard, a must coincide with fi 
by (ASL-I). Hence Lis distributive. 

Some interesting examples of ASL which appeared in classical invar
iant theory, such as coordinate rings of Grassmann varieties (cf. [4, III, 11)), 

satisfy the condition(#). So analyzing above examples assures us that the 

following question is worthy to investigate. 

Question. Assume that f!ll is a homogeneous ASL domain on a 

distributive lattice D over a field k and that f!ll satisfies the condition (#). 

Then is f!ll normal? 

Note that there exists a family of three dimensional homogeneous 

Gorenstein ASL domains which are not normal, see [12, Example g)]. 

§ 3. When is f!llk[D] Gorenstein? 

In this section we shall calculate the canonical module of f!llk[D] and 
determine when f!llk[D] is Gorenstein. 

a) Let k be a field, .'/cNr (r>O) an affine semigroup, that is,.'/ is 
a finitely generated additive semigroup with identity, and k[T] =k[T 1, T2 , 

· · ·, Tr] the polynomial ring in r-variables over k. We denote by k[.'/] 
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the affine semigroup ring 

k[Tw; w E 9"] (ck[T]) 

of 9" over k, where rw =T'f'T'f'· · -T't if w=(w 1, w2, • • ·, w,). 
We say that 9" is a normal affine semigroup if k[9"] is normal. Note 

that this condition does not depend on the field k, see Hochster [14, 
Proposition 1]. As was used in Section 2, b), Hochster's criterion [14, 

p. 320] says that 9" is normal if and only if the following condition is 

satisfied: If n is a positive integer and if a, (3, re 9" satisfy na=n{3+r, 

then T=nT' for some 7' e 9". 

If 9" is normal, define 

(3.1) K..,={a e 9"; for all /3 e 9" there is an integer n>O and 

an element T e 9" such that na = f3 + T}. 

By virtue of Stanley [18, p. 82] if 9" is normal and ~=k[9"] then the 

canonical module K .. of~ coincides with k[K..,]. 

b) Now we shall compute the canonical module of ~k[D]. ,. 

Let D=J(P), P={Pi,P 2, • • ·,Pn}, be a distributive lattice and 9"(D) 

cNn+i (n=rank (D)) an affine semigroup 

(3.2) 9"(D)={(w 0, W1, • • ·, Wn) E Nn+t; w0 >wi for all i>O and 

wi>w 1 if Pi~P 1 in P}. 

Then 9"(D) is normal and ~k[D] is naturally isomorphic to k[9"(D)]. By 

the definition (3.1 ), it is easily seen that 

(3.3) K..,w> ={(w 0, W1, • • ·, wn) E 9"(D); w0 >wt>O for all i>O 

and wt>w 1 if Pt<P 1 in P}. 

c) A subset U of an affine semigroup 9" is called a 9"-ideal if 9" + 
Uc U. In this case k[ VJ is a (ring-theoretical) ideal of an affine semigroup 
ring k[9"]. A 9"-ideal U is always finitely generated in the sense that U 

can be expressed as UL 1 (ui+9") for some u1, u2, • • ·, uq e U and the 
minimal generating system for U is uniquely determined. We denote by 
µ( U) the number of minimal generators. 

If 9" is a normal affine semigroup then K.., is a 9"-ideal. We are 

interested in µ(K..,). In our case of ~k[DJ, D=J(P), µ(K..,wl) coincides 
with the combinatorial number t(P) treated in Section 1, e). Namely, 

Theorem. µ(K..,w)=t(P). 

Proof Let P={Pt,P 2, • • ·,Pn} and P=PU{p 0} (p 0 =-oo). For 
each 1.1 e .:T(P), we define 
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wM =(JJ(Po), JJ(Pi), · · ·, JJ(Pn)) e Kv<D>· 

This definition gives a one-to-one correspondence between !T(P) and 

Kvw>· 
We shall show that w<-> is contained in the minimal generating system 

for Kvcn> if and only if JJ e !To(P). In fact, w<•'> is not a member of the 
minimal generating system for Kv<n> if and only if 

(3.4) w<•'> = w<•> + w 

for some wM e Kvcn> and some w=(w 0, w1, • • ·, wn) e Y'(D) with w::;f: 
(0, 0, · · ·, 0). By (3.2), w1>w 1 provided Pi<p 1• Hence (3.4) implies 
JJ'>JJ in !T(P) (see § 1, e) for the definition of the partial order of !T(P)), 
so JJ' IF !To(P), and conversely. Q.E.D. 

d) Now, £?4\[D] is Gorenstein if and only if µ(Kvcn>)= 1. Thus, 
combining the above theorem in c) with the Lemma in Section 1, e), we 
have a main result in this section. 

Corollary. 9'\[D], D=J(P), is Gorenstein if and only if Pis pure. 

e) By the way, in [18] Stanley has obtained the necessary and 
sufficient condition for a Cohen-Macaulay graded domain Ei=EBn;;,o&ln to 
be a Gorenstein ring in terms of the Poincare series of El. On the other 

hand, the Poincare series of an graded ASL El= EBn;;,o &in on a poset H is 
completely determined by deg (a), a e H, because its free basis over k is 
the set of standard monomials. 

Hence, thanks to Corollary in d), we immediately get the following 
result of Stanley and Buchweitz, which is contained in [4, II, 9)]. 

Corollary. Let D =J(P) be a distributive lattice and El= EBn;;,o &in a 
graded ASL domain on D over a field k. Assume that 

deg (a)+ deg ([3) = deg (a A [3) + deg (a V [3) 

for all a, [3 e D. Then El is Gorenstein if and only if Pis pure. 

Using "[3-invariant" defined in Stanley [17], it is possible to calculate 
the Poincare series of a homogeneous ASL domain Ei=EBn;;,o&l,. on a 
distributive lattice D=J(P). Refer to a survay [3] for more details. 

§ 4. Classification of distributive lattices from a viewpoint of Gorenstein 

properties for a poset 

In this final section we shall classify all finite distributive lattices 
from a viewpoint of some "Gorenstein" properties for a poset proposed 
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in Watanabe [20, § 4]. 

a) Let us first state some definitions from [20]. 

A weighted poset (H, (I)) is a couple of a poset Hand a map (I) from 

H to N-{0}, called a weight on H. 

We will call a graded ASL /Ji= EBn-,o /Jin on H over a field k a 

graded ASL on (H, (I)) if a e /Ji.,<«> for every a e H. 

A Poincare series f!J<H,.»C0) of a weighted poset (H, (I)) is defined to 

be the Poincare series fJJ 111((}) of any graded ASL /Ji on (H, (I)). 

Definition. Let (H, (I)) be a weighted poset. We say that 

(i) (H, (I)) is weakly Gorenstein over a field kif His Cohen-Macaulay 

over k and there exists a graded ASL /Ji on (H, (I)) over k which is a 

Gorenstein ring. 

(ii) (H, (I)) is numerically Gorenstein over kif His Cohen-Macaulay 

over k and the Ponicare series f!J<H,.,>(0) satisfies 

f!J(H,o,)(1/(})=(- 1)'1•(Jlf!J(H,wi((}) 

for some integer i and d=l+rank(H). 

Consult [20] for further informations. 

b) In the following we fix the base field k and omit the word "over 

k". 

By [18], if (H, (I)) is weakly Gorenstein, then (H, (I)) is numerically 

Gorenstein. Also, if (H, (I)) is numerically Gorenstein and if there exists 

a graded ASL domain /Ji on (H, (I)), then (H, (I)) is weakly Gorenstein. 

Example. Let D be a distributive lattice 

s 

D= 
A 

T 

Figure 17 

Let w, (i = 1, 2) be weights on D defined by 

y 

a,i(a)=G 
if a=A, B 

if a*A, B, 
{
2 if a=X, Y 

wla)= 1 if a* X, Y. 

Then we have 
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for i = l, 2. So, both (D, "' 1) and (D, "'2) are numerically Gorenstein. 
On the other hand, (D, "' 1) is weakly Gorenstein, however (D, "'z) is 

not weakly Gorenstein. In fact, let E!li (i = l, 2) be a graded ASL on 
(D, "'i) over a field k and suppose that we have 

XY =rB (resp. XY =Bf(B, X, Y)) 

in E!l1/(T, S) (resp. E!l2/(T, S)), where r e k and f = f(x, y, z), deg (f) = 3, is 
a homogeneous polynomial in 3-variables x, y, zwith deg(x)=l, deg(y)= 
deg(z)=2. Now, T, A+B, X + Y, Sare a regular sequence on E!li and 
we have 

E!l1/(T, A+B, X + Y, S)=::k[e, r;]/(rl, er;, e2-rr;) 

(resp. E!l2/(T, A+B, X + Y, S)=::k[e, r;]/(e!, er;, r;2-ef(-e, r;, -r;)) 

=::k[e, r;J/W, er;, r;'>), 

where e and r; are indeterminates over k with deg(~)= 1, deg (r;) =2. 
Hence, E!l1 is Gorenstein if and only if r ::;t:O, and E!l2 cannot be Gorenstein. 

Note that there exists a graded ASL domain on (D, "' 1). For 
example, let x, y, t, s be indeterminates over k and put T=t, A=t 2x/y, 

B=xy, X =x, Y =y, S=s. Then we get a graded ASL domain E!l on 
(D, "'1) whose straightening relations are AB=T 2X 2, AY=T2X, XY=B. 

c) Now we will state our final result in this paper. 

Theorem. Let D=J(P) be a distributive lattice. 

1) D is Gorenstein if and only if Pis of the form 

(4.1) 

where each Ci is a clutter and s=rank (P). 
2) Assume that a weight "' on D satisfies 

"'(a)+"'(.S)="'(a/\J,)+"'(aV J,) 

for all a, J, e D. Then the following conditions are equivalent: 

( i) (D, "') is weakly Gorenstein. 

(ii) (D, "') is numerically Gorenstein. 

(iii) P is pure. 

Proof I) To begin with, suppose that the poset Pis of the form 
(4.1). Let Bi=J(Ci) be a Boolean lattice and J,1 its unique minimal 
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element. We denote by :?lli (resp. :?ll;) the Stanley-Reisner ring on Bi 

(resp. Bi-{f3i}). Since Boolean lattices are Gorenstein (cf. [3, P. 615]), 

:?lli is a Gorenstein ring, hence :?ll; is also Gorenstein. Now, the Stanley

Reisner ring :?ll on D=J(P) is of the form 

hence :?ll is Gorenstein by [21]. 
Conversely, assume that the poset Pis not of the form (4.1). Then, 

there exist two elements a, /3 E P with a,f, /3, and heightp(a) = 1 + heightp(m. 
We will choose re P with heightp(r)=heightp(/3), and r<a. Define six 

poset ideals of P as follows. 

l, = {x E P; heightp(X)~heightp(/3), X=i= /3, r} 

l 2 =l 1 U {/3} 

l 3 =l,U{r} 

l4=l, U {/3, r} 

l5=l, U{a, r} 

16=1, U {a, /3, r}. 

Then, in D, the open interval {a ED; l 1 <a<l 6} is-of the form 

/4N/5 
12 /3 

Figure 18 

hence Dis not Gorenstein by [15, (5.5), (5.6)]. 

2) This result follows from Section 3, d) and e). Q.E.D. 

A somewhat surprising generalization of the obove result 2) can be 

found in [23]. 
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