
Distributive laws for the

Coinductive Solution of Recursive Equations

Bart Jacobs

Institute for Computing and Information Sciences,

Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Email: B.Jacobs@cs.ru.nl URL: http://www.cs.ru.nl/B.Jacobs

Abstract

This paper illustrates the relevance of distributive laws for the solution of recursive
equations, and shows that one approach for obtaining coinductive solutions of equa-
tions via infinite terms is in fact a special case of a more general approach using an
extended form of coinduction via distributive laws.

1 Introduction

Distribution x(y + z) = xy + xz is common in many equational theories, such
as vector spaces. It may also occur in so-called distributive categories, of the
form X × (Y + Z) ∼= (X × Y) + (X × Z), see e.g. [8], where one direction
of the isomorphism is canonical and always exists. More generally, one can
have distributions GF ⇒ FG between two endofunctors F,G on the same
category, as first studied in [7]. This phenomenon is especially interesting
when the functors F,G form signatures (or interfaces) for certain operations,
either in algebraic or in coalgebraic form.

Turi and Plotkin [25] first investigated such a situation where one functor
G describes the syntax of a programming language and the other functor F
the behaviour of programs (terms) in that language. Having a distributive
law GF ⇒ FG means that the behaviour on terms is well-defined, and leads
to results like: (coalgebraic) bisimilarity is an (algebraic) congruence. Hence
distributive laws capture where “algebra meets coalgebra”.

The theme of this paper is the same, in a slightly different context, namely
recursive equations xi = ti(x1, . . . , xn). The ti are terms from some algebra,
and may contain the recursive variables xj. The solutions of such equations

Preprint submitted to Elsevier Preprint 18th March 2005

are typically infinite, and are thus best described via (final) coalgebras. Hence
also in this situation algebra and coalgebra meet, and appropriate distributive
laws are to be expected.

The finality principle in the theory of coalgebras is usually called coinduc-
tion [15]. It involves the existence and uniqueness of suitable coalgebra homo-
morphisms to final coalgebras. It was realised early on (see [1,6]) that such
coinductively obtained homomorphisms can be understood as solutions to re-
cursive (or corecursive, if you like) equations. The equation itself is incorpo-
rated in the commuting square expressing that there is a homomorphism from
a certain “source” coalgebra to the final coalgebra. Since this diagram arises
from the source coalgebra, this source can also be identified with the recursive
equation (see Section 3 for examples).

A systematic investigation of the solution of such equations first appeared in
[20], followed by [2]. Their coalgebraic approach simplifies results for recursive
equations with infinite terms from [10,11]. More recently, a general and ab-
stract approach is proposed in [5], using distributive laws. It builds on earlier
work [17] and may also be described dually, for algebras, as developed inde-
pendently in [26]. One of the main contributions of this paper is that it shows
how the approach of [2] for infinite terms fits in the general approach of [5]
with distributive laws. This involves the identification of suitable distributive
laws of the monads of terms over the underlying interface functor.

This paper is organised as follows. Section 2 briefly reviews the approach
of [5] based on distributive laws. It is illustrated in the context of languages
and automata in Section 3. Section 4 continues with two distributive laws for
canonical monads F ∗ and F∞ associated with a functor F . The approach of [2]
for solutions of equations with infinite terms is then explained in Section 5.
Finally, Section 6 shows that this approach is an instance of the distribution-
based approach.

An earlier version of this paper appeared as [12]. The present version ex-
tends [12] especially with Section 3 on distributive laws for languages and
automata. This topic is further elaborated in [14].

2 Distributive laws and solutions of equations

Distributive laws found their first serious application in the area of coalgebras
in the work of Turi and Plotkin [25] (see also [24]), providing a joint treatment
of operational and denotational semantics. In that setting a distributive law
provides a suitable form of compatibility between syntax and dynamics. The
claim of [25] that distributive laws correspond to suitable rule formats for

2

operators is further substantiated in [5]. The idea of using a distributive law
in extended forms of coinduction (and hence equation solving) comes from [17],
and is further developed in [5]. In this section we present its essentials.

Distributive laws are natural transformations GF ⇒ FG between two endo-
functors F,G: C → C on a category C. These F and G may have additional
structure (of a point or copoint, or a monad or comonad, see [18]), that must
then be preserved by the distributive law. We shall concentrate on the case of
distribution of a monad over a functor, because it seems to be most common
and natural—see the examples in the next section. We shall recall what this
means.

Definition 1 Let (T, η, µ) be a monad on a category C, and F : C → C be an
arbitrary functor. A distributive law of T over F is a natural transformation

TF +3λ
FT

making for each X ∈ C the following two diagrams commute.

FX

ηFX
��

F (ηX)

))SSSSSSSSSSSSSSSS T 2FX

µFX
��

T (λX)// TFTX
λTX // FT 2X

F (µX)
��

TFX
λX

// FTX TFX
λX

// FTX

Sometimes we shall consider the situation when F is a monad too. When
λ then also preserves the unit and multiplication associated with F—in the
obvious way, like above—we shall say that λ is a distributive law of monads.

The underlying idea is that the monad T describes the terms in some syn-
tax, and that the functor F is the interface for transitions on a state space.
Intuitively, the presence of the distributive law tells us that the terms and be-
haviours interact appropriately. The associated notion of model is a so-called
λ-bialgebra.

Definition 2 Let λ: TF ⇒ FT be a distributive law, like above. A λ-bialgebra
consists of an object X ∈ C with a pair of maps:

TX
a // X

b // FX

where:

• a is an Eilenberg-Moore algebra, meaning that it satisfies two standard equa-
tions, namely: a ◦ ηX = id and a ◦ µX = a ◦ T (a).

• a and b are compatible via λ, which means that the following diagram com-

3

mutes.

TX

T (b)
��

a // X
b // FX

TFX
λX

// FTX

F (a)
OO

A map of λ-bialgebras, from (TX
a

−→ X
b

−→ FX) to (TY
c

−→ Y
d

−→ FY)
is a map f : X → Y in C that is both a map of algebras and of coalgebras:
f ◦ a = c ◦ T (f) and d ◦ f = F (f) ◦ b.

The following result is standard.

Lemma 3 Assume a distributive law λ: TF ⇒ FT , and let ζ: Z
∼=−→ FZ be a

final coalgebra. It carries an Eilenberg-Moore algebra obtained by finality in:

FTZ //________
F (α)

FZ

TFZ

λZ

OO

TZ

T (ζ) ∼=

OO

//_________
α Z

∼= ζ

OO

The resulting pair (TZ
α

−→ Z
ζ

−→ FZ) is then a final λ-bialgebra.

Proof. By the uniqueness part of finality one proves that α is an Eilenberg-
Moore algebra. By construction, α and ζ are compatible via λ. Assume an

arbitrary λ-bialgebra (TX
a

−→ X
b

−→ FX). It induces a unique coalgebra
map f : X → Z with ζ ◦ f = F (f) ◦ b. One then obtains f ◦ a = α ◦ T (f)
by showing that both maps are homomorphisms from the coalgebra λX ◦
T (b): TX → FTX to the final coalgebra ζ. �

We shall consider some simple ways to build distributive laws.

Example 4 Let T : C → C be a monad with unit and multiplication η, µ.

(1) Let a: TA → A be an Eilenberg-Moore algebra. It yields a distributive law
a: TKA ⇒ KAT , where KA: C → C is the functor which is constantly A.

(2) Assume we have an I-indexed collection of functors Fi: C → C with dis-
tributive laws λi: TFi ⇒ FiT . Then, assuming that the product functor
F =

∏

i∈I Fi exists, there is a distributive law λ: TF ⇒ FT given by

λX =
(

T (
∏

i∈I FiX)
〈T (πi)〉i∈I //

∏

i∈I TFiX

∏

i∈I λi // ∏
i∈I FiTX

)

Special cases worth emphasising are:

4

• I = {1, 2}, describing the distributive law T (F1 ×F2) ⇒ F1T ×F2T for
a binary product from [5, Lemma 4.4.5];

• each Fi is equal to G, so that F is the exponent functor GI , with
“strength” distributive law T (GI) ⇒ (GT)I .

(3) Dually, if T preserves coproducts, one can construct a distributive law
T (

∐

i∈I Fi) ⇒ (
∐

i∈I Fi)T from laws TFi ⇒ FiT .
(4) If our category C is Sets, and the functor T preserves weak pullbacks,

then there is a distributive law of monads TP ⇒ PT , where P is the
powerset monad. This construction comes from [13], and is called the
“power law”. Here we sketch the essentials.

We associate the so-called “relation lifting” Rel(T) with T . It is a func-
tor that maps a relation 〈r1, r2〉: R � X × Y to a relation Rel(T)(R) �

T (X) × T (Y) by taking the image of the map 〈T (r1), T (r2)〉: T (R) →
T (X) × T (Y). Applying this relation lifting to the inhabitation relation
∈X� X×P(X) yields Rel(T)(∈X) � TX×TP(X). Then we can define
λX : TP(X) → P(TX) as:

λX(u) = {a ∈ TX | 〈a, u〉 ∈ Rel(T)(∈X)}.

In [13] it is shown that λ preserves the powerset monad structure. But
it also preserves the unit η and multiplication µ of the monad T in case
the natural transformations η, µ are Cartesian. This means that their
naturality squares are pullbacks.

The following notion of equation and solution comes from [5].

Definition 5 Assume a distributive law λ: TF ⇒ FT . A guarded recursive

equation is an FT -coalgebra e: X → FTX. A solution to such an equation

in a λ-bialgebra (TY
a

−→ Y
b

−→ FY) is a map f : X → Y making the following
diagram commute.

FTX
FT (f) // FTY

F (a)��
FY

X

e

OO

f
// Y

b
OO (1)

In ordinary coinduction one obtains solutions for equations X → FX. The
additional expressive power of the above notion of equation X → FTX lies
in the fact that it allows actions on terms. For convenience we shall often
call these equations X → FTX λ-equations—even though their formulation
does not involve a distributive law λ. But their intended use is in a context
with distributive laws. Similarly, we shall say that the above solution f is
defined by λ-coinduction.

5

This notion of solution may seem a bit strange at first, but becomes more
natural in light of the following result (see also [5, Lemma 4.3.4]).

Proposition 6 There exists a bijective correspondence between λ-equations

e: X → FTX and λ-bialgebras (T 2X
µX−→ TX

d
−→ FTX) with free algebra

µX .

Moreover, let (TY
a

−→ Y
b

−→ FY) be a λ-bialgebra. Then there is a bijective
correspondence between solutions f : X → Y as in (1) and bialgebra maps
g: TX → Y —for the associated λ-equations and λ-bialgebras. �

Now we can formulate the main result of this distribution-based approach to
solving equations. It is the dual of [26, Theorem 1].

Theorem 7 Let F : C → C be a functor with a final coalgebra Z
∼=−→ FZ. For

each monad T with distributive law λ: TF ⇒ FT there are unique solutions
to λ-equations in the final λ-bialgebra (TZ → Z → FZ) from Lemma 3.

Proof. For a λ-equation e: X → FTX, a solution in (TZ → Z → FZ) is
by the previous proposition the same thing as a map of λ-bialgebras from the
associated (T 2X → TX → FTX) to (TZ → Z → FZ). Since the latter is
final, there is precisely one such solution. �

In the next section, and also in Example 13, we present illustrations.

3 Kleene algebras and differential equations for languages

This section contains two applications of distributive laws in the context of
languages: first, in order to obtain a “language” monad whose algebras are
Kleene algebras, and second, to describe differential equations for languages
with solutions as in the previous section.

3.1 Kleene algebras

A basic observation and starting point in this subsection is that there is a
“power” distributive law π in:

P(X)? πX //P(X?)

〈u1, . . . , un〉
� // {〈x1, . . . , xn〉 | ∀i ≤ n. xi ∈ ui}

(2)

6

It is obtained from the construction in Example 4 (4), using that the list monad
(−)? is Cartesian. In order to investigate the consequence we use the following
general result about distributive laws between monads. It is standard, and
may be traced back to [7,16,4] or [25].

Proposition 8 Let π: ST ⇒ TS be a distributive law between monads S and
T on a category C. Then:

(1) TS is a monad, with unit and multiplication given as:

η =









S
!)KKKKK

KKKKK ηT S

Id

6>
uuuuu
uuuuu

ηS

 (
II

II
I

II
II

I

ηT

TS

T

5=sssss
sssss TηS









µ =









T 2S
"*MMMMM

MMMMM µT S

TSTS +3TπS
T 2S2

3;ppppp
ppppp

T 2µS

#+NNNNN

NNNNN

µT S

TS

TS2

4<qqqqq
qqqqqTµS









Moreover, there are obvious maps of monads S ⇒ TS and T ⇒ TS given
by units.

(2) There is an induced lifting of T to Eilenberg-Moore algebras of S as in:

Alg(S)

��

T // Alg(S)

��
C

T
// C

given by




SX
��

X



 7−→








STX
π��

TSX
��

TX








This yields a new monad T . It can be shown that there is a bijective
correspondence between such liftings and distributive laws.

(3) There is an isomorphism of categories of algebras:

Alg(TS)
∼= //

��;
;

;
;

;;
;

;
;;

;
Alg(T)

xxrrrrr

Alg(S)

||xxx
xx

C
�

When we apply this result to our power law π: (−)?P ⇒ P(−)? from (2) we
obtain a new monad L = P(−)? which we shall call the language monad.
This name is chosen because the sets L(X) = P(X?) contain languages L ⊆
X∗ with words over the alphabet X.

According to Proposition 8 (1), the unit ηX : X → L(X) is given by

ηX(x) = {〈x〉}.

7

The multiplication µX :L2(X) → L(X) maps a set V ∈ L2(X) = P(P(X?)?)
of sequences of languages to the language:

µX(V) = {〈s1, . . . , sn〉 | ∃〈L1, . . . , Ln〉 ∈ V.∀i ≤ n. si ∈ Li}

where : X?? → X? is (−)?’s “flattening” multiplication

= {s1 · . . . · sn | ∃〈L1, . . . , Ln〉 ∈ V.∀i ≤ n. si ∈ Li}

where · is concatenation of sequences

=
⋃
{L1 · . . . · Ln | 〈L1, . . . , Ln〉 ∈ V }

where · is concatenation for sets of sequences (languages).

The next question is: what are the algebras of the language monad L? Before
answering this question we recall the well-known facts that the algebras of the
(−)∗ monad are monoids, and that the algebras of the powerset monad P are
complete lattices (posets in which each subset has a join). Proposition 8 (3)
tells that L-algebras are algebras of the lifted monad P on the category Mon of
monoids. The functor P maps a monoid (X, ·, 1) to the monoid (P(X), •, {1}),
with composition operation • given on u, v ∈ P(X) as:

u • v = {x · y | x ∈ u ∧ y ∈ v}.

An algebra (P(X), •, {e}) → (X, ·, e) is thus a P-algebra P(X) → X, forming
a join-operation

∨
, which is a homomorphism of monoids:

(
∨

u) · (
∨

v) =
∨

u • v =
∨
{x · y | x ∈ u ∧ y ∈ v}.

This means that the monoid’s operation · preserves joins in both variables
separately. The next (folklore) result summarises the situation so far.

Theorem 9 The language monad L = P((−)?) induced by the “power” dis-
tributive law (−)?P ⇒ P(−)? from (2) has Kleene algebras as Eilenberg-
Moore algebras. The latter are complete lattices with a monoid structure in
which joins are preserved by the monoid operation, in both variables. �

Often one sees the “finite” version of Kleene algebras with only finite joins 0
and x + y satisfying distribution equations like (x + y) · z = x · z + y · z and
z · (x+y) = z ·x+ z ·y and 0 ·x = 0 = x ·0. In the theorem we obtain algebras
with arbitrary joins, such as used in [9], under the name “standard Kleene
algebras”. The associated iteration operation is obtained as x∗ =

∨

n∈N xn.
Our L-algebras are also known as unital quantales, see [22].

8

The set of languages L(X) carries a free Kleene algebra structure µX :L2(X) →
L(X), with the familiar structure induced by the multiplication µ:

0 = µX(∅) = ∅

1 = µX({〈〉}) = {〈〉}

L1 · L2 = µX({〈L1, L2〉}) = {s1 · s2 | s1 ∈ L1 ∧ s2 ∈ L2}
∨

i∈I Li = µX({〈Li〉 | i ∈ I}) =
⋃

i∈I Li

L∗ = µX({〈L, . . . , L〉
︸ ︷︷ ︸

n times

| n ∈ N}) =
∨

n∈N Ln.

3.2 Differential equations for languages

In the previous subsection we have seen how sets of languages L(A) = P(A∗)
form free Kleene algebras. Here we shall investigate them as (carriers of) final
coalgebras. We shall do so in three stages, where the first one is well-known
(and extensively studied in [23, Section 10]), and the second one comes from [5,
Corollary 4.4.6]. The third one builds on the above language monad L.

3.2.1 Languages and deterministic automata

A deterministic automaton, with alphabet A, is a coalgebra 〈δ, ε〉: X → XA×2.
The transition function δ maps a state together with an input to a new (next)
state, and the output function ε tells of a state x ∈ X whether x is terminal
(ε(x) = 1) or not (ε(x) = 0). We shall write D = (−)A × K2 for the functor
involved. Typical for these deterministic automata is that for each state x and
input letter a ∈ A there is precisely one successor state x′ with x

a
−→ x′,

i.e. with x′ = δ(x)(a).

As is well-known, the final D-coalgebra is given by the set of languages L(A) =
P(A∗) over the alphabet A, with coalgebra structure 〈δ, ε〉:L(A) → L(A)A×2
given by the “derivative” function and “is nullable” predicate (see [9,23]): for
L ∈ L(A) and a ∈ A,

δ(L)(a) = La

= {σ ∈ A? | a · σ ∈ L}

ε(L) = (1 ⊆ L)

= (〈〉 ∈ L).

For an arbitrary D-coalgebra X → XA × 2, the induced homomorphism to

9

this final coalgebra,

XA × 2 //_________ L(A)A × 2

X

OO

//___________ L(A)

∼= 〈δ, ε〉
OO

sends a state x ∈ X to the language accepted in this state, i.e. to the set of
those strings 〈a1, . . . , an〉 ∈ A? leading from x to a terminal state.

The behaviour—or accepted languages—associated with a deterministic au-
tomaton can be described via “differential equations”. For instance, the au-
tomaton:

0 b //a ;; 1

b

EE

a

��
with state 1 terminal

can be described by the equations:

∂L0

∂a
= L0

∂L0

∂b
= L1 〈〉 6∈ L0

∂L1

∂a
= L1

∂L1

∂b
= L1 〈〉 ∈ L1,

where Li is the language accepted in state i, and ∂L
∂x

is a fancy notation for the
derivative Lx, where x ∈ A = {a, b}. The obvious solution of these equations
is L0 = a?b(a?b?)? and L1 = (a?b?)?. It is obtained as map L: 2 → L(A) by
finality, using the above differential equations as description of a coalgebra
2 → 2A × 2.

By combining several clauses from Example 4 we obtain the following result
from [14] describing a sufficient condition for the existence of a distributive
law for deterministic automata, together with the associated final bialgebra.
For the proof we refer to [14].

Theorem 10 An Eilenberg-Moore algebra β: T (2) → 2 for a monad T induces
a distributive law λ: TD ⇒ DT , namely as composite:

T (XA × 2)
〈T (π1), T (π2)〉 // T (XA) × T (2)

st × β // T (X)A × 2

where st: T (XA) → T (X)A is the so-called strength map st(u)(a) = T (λf ∈
XA. f(a))(u).

The Eilenberg-Moore algebra forming the final λ-bialgebra with the final coal-
gebra L(A)

∼=−→ DL(A) like in Lemma 3 is obtained pointwise as:

T (L(A)) = T (2A?

) st // T (2)A? βA?

// 2A?

= L(A). �

10

3.2.2 Languages and non-deterministic automata

A non-deterministic automaton, with alphabet A, is a coalgebra of the form
〈δ, ε〉: X → P(X)A × 2. The transition function δ now maps a state x and an
input a to a set δ(x)(a) ⊆ X of successor states.

As observed in [5], there is a distributive law PD ⇒ DP , where D = (−)A×K2

as defined in Subsection 3.2.1. It is an instance of Theorem 10, because the
set 2 = {0, 1} = P(1) carries a (free) P-monad structure, which is of course
given by union

∨
wrt. the standard order 0 ≤ 1. The resulting distributive

law, say λP , is given explicitly by:

P(XA × 2)
λP

X //P(X)A × 2

U
� // 〈λa ∈ A. {f(a) | ∃b. (f, b) ∈ U}, ∃f. (f, 1) ∈ U〉

It is not hard to see that the (final) λP-bialgebra induced as in Lemma 3 (and
given in Theorem 10) involves the union operation

⋃
:P(L(A)) → L(A) in:

DPL(A) //________
D(

⋃
)

DL(A) = L(A)A × 2

PDL(A)

λP
L(A)

OO

PL(A)

〈δ∪, ε∪〉

44

P(〈δ, ε〉) ∼=

OO

//__________ ⋃ L(A)

∼= 〈δ, ε〉

OO

In fact, this says that the union
⋃

of languages can be defined by coinduction
via the D-coalgebra 〈δ∪, ε∪〉 given by:

ε∪(U) = (〈〉 ∈
⋃

U) and δ∪(U)(a) = {La | L ∈ U}.

One of the nice observations in [5], see its Corollary 4.4.6, is that the
languages associated with a non-deterministic automaton can be defined by
λP-coinduction, i.e. as solution of a λP-equation, namely of the automaton
X → DP(X) = P(X)A × 2 itself, like in:

P(X)A × 2 = DP(X) //________ DPL(A)

D(
⋃

)
��

DL(A) = L(A)A × 2

X

OO

//__________ L(A)

∼=
OO

11

For instance, the non-deterministic automaton

1

b
��

0

a
55kkkkkkkkkkkk

a
))SSSSSSSSSSSS

2b

^^ with state 2 terminal

gives rise to the differential equations

∂L0

∂a
= L1 + L2

∂L0

∂b
= 0

〈〉 6∈ L0

∂L1

∂a
= 0

∂L1

∂b
= L2

〈〉 6∈ L1

∂L2

∂a
= 0

∂L2

∂b
= L0

〈〉 ∈ L2

What is important is that the expressions on the right-hand-side may now
involve a + operation for union. The solution, obtained by λP-coinduction as
a function L: 3 → L(A) can be described explicitly as L0 = (a+ab)(b(a+ab))?,
L1 = b(b(a + ab))? and L2 = (b(a + ab))?.

3.2.3 Languages and language automata

Our next step is to use a new kind of automata, namely of the form 〈δ, ε〉: X →
L(X)A×2. We call them “language automata” because of the occurrence of the
language monad L. Such automata may involve non-deterministic transitions
x

a
−→ 〈x1, . . . , xn〉 to multiple states, for instance in some decomposed form.

Again by Theorem 10 there is a distributive law λL:LD ⇒ DL. This time
we need an algebra L(2) → 2. It is again obtained by freeness, using that
L(0) = P(0?) = P(1) = 2. The resulting multiplication map µ:L(2) → 2 is
given by µ(V) = 1 iff 〈1, . . . , 1〉 ∈ V for some sequence 〈1, . . . , 1〉 of 1’s only.
Concretely, the resulting distributive law λL

X :P((XA × 2)?) → P(X?)A × 2 is:

λL
X(V)

= 〈λa ∈ A. {〈f1(a), . . . , fn(a)〉 | ∃b1, . . . , bn ∈ 2. 〈(f1, b1), . . . , (fn, bn)〉 ∈ V },

∃f1, . . . , fn ∈ XA. (f1, 1), . . . , (fn, 1) ∈ V 〉

It is not hard to see that the map of monads σ = P(η?):P ⇒ L—see Propo-
sition 8—commutes with the distributive laws λP and λL, in the sense that
the following diagram commutes.

PD

σD
��

λP
// DP

Dσ
��

LD
λL

// DL

12

Like before we get a final λL-bialgebra, with algebra structure
⊔

:L2(A) →
L(A) determined in:

DL2(A) //_________
D(

⊔
)

DL(A) = L(A)A × 2

LDL(A)

λL
L(A)

OO

L2(A)

〈δt, εt〉

44

L(〈δ, ε〉) ∼=

OO

//__________ ⊔ L(A)

∼= 〈δ, ε〉

OO

This means that
⊔

is given on a set V ∈ L2(A) of sequences of languages by:

〈〉 ∈
⊔

V ⇐⇒ εt(V) = 1 ⇐⇒ ∃〈L1, . . . , Ln〉 ∈ V.∀i. 〈〉 ∈ Li

and for a ∈ A,

(
⊔

V)a =
⊔
{〈(L1)a, . . . , (Ln)a〉 | 〈L1, . . . , Ln〉 ∈ V }.

This second equation implies that
⊔

is not the multiplication µ:L2(A) → L(A)
of the monad L. Following the formula in Theorem 10 we can describe it
explicitly as union of intersections:

⊔
V =

⋃
{L1 ∩ · · · ∩ Ln | 〈L1, . . . , Ln〉 ∈ V }.

These language automata X → L(X)A×2 resemble alternating automata [21].
It is at this stage not clear how useful the additional expressive power is for
solving more expressive differential equations (with λL-coinduction).

4 Free monads and their distributive laws

In this section we consider an endofunctor F : C → C with two canonical
associated monads F ∗ and F∞, together with distributive laws λ∗ and λ∞

over F . Propositions 11 and 12 contain standard results about F ∗ which are
not used directly, but provide the setting for similar (new) results about F ∞.
The latter form the basis for our main result in Section 6, namely the link
between two forms of equation solving.

4.1 The free monad on a functor

Let F : C → C be an arbitrary endofunctor on a category C with (binary)
coproducts +. The only assumption we make at this stage is that for each

13

object X ∈ C the functor X + F (−): C → C has an initial algebra. We shall
use the following notation. The carrier of this initial algebra will be written
as F ∗(X) with structure map given as:

X + F (F ∗(X))
αX
∼=

// F ∗(X)

Further, we shall write

ηX = αX ◦ κ1 τX = αX ◦ κ2,

so that αX = [ηX , τX].

The mapping X 7→ F ∗(X) is functorial: for f : X → Y we get:

X + F (F ∗(X))

αX ∼=
��

//_________
id + F (F ∗(f))

X + F (F ∗(Y))

[ηY ◦ f, τY]
��

F ∗(X) //_____________

F ∗(f)
F ∗(Y)

This means that

F ∗(f) ◦ ηX = ηY ◦ f F ∗(f) ◦ τX = τY ◦ F (F ∗(f)),

i.e. that η: id ⇒ F ∗ and τ : FF ∗ ⇒ F ∗ are natural transformations.

Next we establish that F ∗ is a monad. The multiplication µ is obtained in:

F ∗(X) + F (F ∗(F ∗(X)))

αF ∗(X) ∼=
��

//_________
id + F (µX)

F ∗(X) + F (F ∗(X))

[id, τX]
��

F ∗(F ∗(X)) //_______________
µX

F ∗(X)

This yields one of the monad equations, namely µX ◦ ηF ∗(X) = id. The related
equation µX ◦ F ∗(ηX) = id follows from uniqueness of algebra maps αX →
αX :

µX ◦ F ∗(ηX) ◦ αX = µX ◦ [ηF ∗(X) ◦ ηX , τF ∗(X)] ◦ (id + F (F ∗(ηX)))

= [ηX , τX ◦ F (µX)] ◦ (id + F (F ∗(ηX)))

= αX ◦ (id + F (µX ◦ F ∗(ηX))).

Similarly, the other requirements making F ∗ a monad are obtained.

The following standard result sums up the situation.

Proposition 11 Let F : C → C with induced monad (F ∗, η, µ) be as described
above.

14

(1) The mapping X 7→ [F (F ∗(X))
τX−→ F ∗(X)] forms a left adjoint to the

forgetful functor U :Alg(F) → C. The monad induced by this adjunction
is (F ∗, η, µ).

(2) The mapping σX = τX ◦ F (ηX): F (X) → F ∗(X) yields a natural trans-
formation F ⇒ F ∗ that makes F ∗ the free monad on F . �

The next observation shows that the monad F ∗ of (finite) F -terms fits with
the behaviour of F . It follows from a general observation (made for instance
in [5]) that distributive laws F ∗G ⇒ GF ∗ correspond to ordinary natural
transformations FG ⇒ GF ∗. Hence by taking G = F and unit FF ⇒ FF ∗

one gets F ∗F ⇒ FF ∗. But here we shall present the construction explicitly.

Proposition 12 Let F : C → C have free monad F ∗. Then there is a distribu-
tive law λ∗: F ∗F ⇒ FF ∗.

Proof. We define λ∗
X : F ∗(FX) → F (F ∗X) as follows.

F ∗(FX)
α−1

FX
∼=

// FX + F (F ∗(FX))
[F (ηX), F (µX ◦ F ∗(σX))] // F (F ∗X)

where σX = τX ◦ F (ηX): F (X) → F ∗(X) as introduced in Proposition 11 (2).

Example 13 Let Z = R
N be the set of streams of real numbers. It is of

course the final coalgebra of the functor F = R × (−), via the head and tail

operations 〈hd, tl〉: Z
∼=−→ R × Z. It is shown in [23] that on such streams one

can coinductively define binary operators ⊕ for sum and ⊗ for shuffle product
satisfying the recursive equations:

x ⊕ y = (hd(x) + hd(y)) · (tl(x) ⊕ tl(y))

x ⊗ y = (hd(x) × hd(y)) · ((tl(x) ⊗ y) ⊕ (x ⊗ tl(y))),

where · is prefix.

It is easy to see that one defines ⊕ by ordinary coinduction, in:

R × (Z × Z) //______
id ×⊕

R × Z

Z × Z

c⊕
OO

//________
⊕ Z

∼= 〈hd, tl〉

OO

where the coalgebra c⊕ is defined by:

c⊕(x, y) = 〈hd(x) + hd(y), 〈tl(x), tl(y)〉 〉.

Once we have ⊕: Z × Z → Z we show how to obtain x ⊗ y as a solution of
a λ-equation. We start from the signature functor Σ(X) = X × X. There

15

is an obvious natural transformation ΣF ⇒ FΣ∗ given by (〈r, x〉, 〈s, y〉) 7−→
〈r+s, (x, y)〉. By [5, Lemma 3.4.24] it lifts to a distributive law λ: Σ∗F ⇒ FΣ∗

involving the associated free monad Σ∗. The algebra ⊕: Σ(Z) → Z yields an
Eilenberg-Moore algebra [[−]]: Σ∗(Z) → Z, which is by the same result of [5]
a λ-bialgebra. Now we obtain ⊗ as solution in:

R × Σ∗(Z × Z) //_________
id × Σ∗(⊗)

R × Σ∗(Z)

id × [[−]]
��

R × Z

Z × Z

d⊗

OO

//_____________
⊗ Z

∼= 〈hd, tl〉
OO

in which the λ-equation d⊗ is defined by:

d⊗(x, y) = 〈hd(x) × hd(y), (tl(x), y)⊕(x, tl(y))〉,

where ⊕ is a symbol for sum in the language of terms on pairs from Z × Z.
Here we exploit the expressive power of the λ-approach, because we can now
write terms as second component.

Clearly, the above diagram says:

hd(x ⊗ y) = hd(x) × hd(y).

And also, as required:

tl(x ⊗ y) = ([[−]] ◦ Σ∗(⊗) ◦ π2 ◦ d⊗)(x, y)

= ([[−]] ◦ Σ∗(⊗))((tl(x), y)⊕(x, tl(y)))

= [[(tl(x) ⊗ y)⊕(x ⊗ tl(y))]]

= (tl(x) ⊗ y) ⊕ (x ⊗ tl(y)).

4.2 The free iterative monad on a functor

Let, like in the previous section, F : C → C be an arbitrary endofunctor on a
category C with (binary) coproducts +. The assumption we now make is that
for each object X ∈ C the functor X + F (−): C → C has a final coalgebra—
instead of an initial algebra. We shall use the following notation. The carrier
of this final calgebra will be written as F∞(X) with structure map given as:

F∞(X)
ζX
∼=

// X + F (F∞(X))

16

The sets F ∗(X) in the previous section are understood as the set of finite
terms of type F with free variables from X. Here we understand F∞(X) as
the set of both finite and infinite terms (or trees) with free variables in X.

Like before, we shall write:

ηX = ζ−1
X ◦ κ1 τX = ζ−1

X ◦ κ2.

Functoriality of F∞ is obtained as follows. For f : X → Y in C we get:

Y + F (F∞(X)) //________
id + F (F∞(f))

Y + F (F∞(Y))

F∞(X)

(f + id) ◦ ζX

OO

//_____________

F∞(f)
F∞(Y)

ζY
∼=

OO

This means that

F∞(f) ◦ ηX = ηY ◦ f F∞(f) ◦ τX = τY ◦ F (F∞(f)),

i.e. that η: id ⇒ F∞ and τ : FF∞ ⇒ F∞ are natural transformations.

It is shown in [3,19] that F∞ is a monad 1 . The multiplication operation
µ is rather complicated, and can best be introduced via substitution t[s/x].
What we mean is replacing all occurrences (if any) of the variable x in the
term t by the term s, but now for possibly infinite terms. In most gen-
eral form, this substitution t[−→s /−→x] replaces all occurrences of all variables
x ∈ X simultaneously. In this way, substitution may be described as an oper-
ation which tells how an X-indexed collection (sx)x∈X of terms sx ∈ F∞(Y)
acts on a term t ∈ F∞(X). More precisely, substitution becomes an oper-
ation subst(s): F∞(X) → F∞(Y), for a function s: X → F∞(Y). As usual,
such a substitution operation should respect the term structure—i.e. be a
homomorphism—and be trivial on variables. Standardly, substitution is de-
fined by induction on the structure of (finite) terms. But since we are dealing
here with possibly infinite terms, we have to use coinduction. This makes the
substitution more challenging. In general, it is done as follows.

Lemma 14 Let X,Y be arbitrary sets. Each function s: X → F∞(Y) gives
rise to a coalgebraic substitution operator subst(s): F∞(X) → F∞(Y),

1 Similar results appeared earlier in [20], but for the functor Y 7→ F (X + Y).

17

namely the unique homomorphism of F -algebras:

F (F∞(X))

τX

��

F (subst(s))// F (F∞(Y))

τY

��

X

ηX

��

s

&&MMMMMMMMMMMMMMMMM

with

F∞(X)
subst(s)

// F∞(Y) F∞(X)
subst(s)

// F∞(Y)

Proof. We begin by defining a coalgebra structure on the coproduct F∞(Y)+
F∞(X) of terms, namely as the vertical composite on the left below. This coal-
gebra on F∞(Y) + F∞(X) simply unravels on F∞(Y) on the left component
of +, and it applies s to the variables in the right component.

Y + F (F∞(Y) + F∞(X)) //_________
idY + F (f)

Y + F (F∞(Y))

F∞(Y) + F (F∞(X))

[(idY + F (κ1)) ◦ ζY , κ2 ◦ F (κ2)]

OO

F∞(Y) + (X + F (F∞(X)))

[κ1, s + id]

OO

F∞(Y) + F∞(X)

idY + ζX

OO

//_____________

f
F∞(Y)

∼= ζY

OO

One first proves that f ◦ κ1 is the identity, using uniqueness of coalgebra maps
ζY → ζY . Then, f ◦ κ2 is the required map subst(s). �

In the remainder of this paper we shall make frequent use of this substitution
operator subst(−). Computations with substitution are made much easier with
the following elementary results. Proofs are obtained via the uniqueness prop-
erty of substitution.

Lemma 15 For s: X → F∞(Y) we have:

(1) subst(ηX) = idF (X).
(2) subst(s) ◦ F∞(f) = subst(s ◦ f), for f : Z → X.
(3) subst(r) ◦ subst(s) = subst(subst(r) ◦ s), for r: Y → F∞(Z).
(4) F∞(f) = subst(ηZ ◦ f), for f : Y → Z, and hence subst(F∞(f) ◦ s) =

F∞(f) ◦ subst(s).
(5) subst(s) = [s, τY ◦ F (subst(s))] ◦ ζX . �

Proposition 16 The map µX = subst(idF∞(X)): F
∞(F∞(X)) → F∞(X) makes

the triple (F∞, η, µ) a monad.

18

This monad F∞ is called the iterative monad on F , via the natural transfor-
mation σ = τ ◦ Fη: F ⇒ F∞.

In [2] it is shown that F∞ is in fact a free iterative monad, in a suitable sense.
This freeness is not relevant here.

Proof. We check the monad equations, using Lemma 15.

µX ◦ ηF∞X = subst(idF∞(X)) ◦ ηF∞X

= idF∞(X).

µX ◦ F∞(ηX) = subst(idF∞(X)) ◦ F∞(ηX)

= subst(idF∞(X) ◦ ηX)

= idF∞(X).

µX ◦ F∞(µX) = subst(idF∞(X)) ◦ F∞(µX)

= subst(µX)

= subst(subst(idF∞(X)) ◦ idF∞(F∞(X)))

= subst(idF∞(X)) ◦ subst(idF∞(F∞(X)))

= µX ◦ µF∞(X). �

The following is less standard.

Proposition 17 Consider F : C → C with its iterative monad F∞.

(1) There is a distributive law λ∞: F∞F ⇒ FF∞.
(2) The induced mediating map of monads F ∗ ⇒ F∞ commutes with the

distributive laws, in the sense that the following diagram commutes.

F ∗F

λ∗

��

// F∞F

λ∞

��
FF ∗ // FF∞

Proof. Like for λ∗ we define λ∞
X : F∞(FX) → F (F∞X) as follows:

F∞(FX)
ζFX
∼=

// FX + F (F∞(FX))
[F (ηX), F (µX ◦ F∞(σX))] // F (F∞X)

where σX = τX ◦ F (ηX): F (X) → F∞(X) as introduced in Proposition 16. It
satisfies, like in the proof of Proposition 12,

µX ◦ σF∞X = subst(idF∞X) ◦ τF∞X ◦ F (ηF∞X)

= τX ◦ F (subst(idF∞X)) ◦ F (ηF∞X)

= τX ◦ F (idF∞X)

= τX .

(3)

19

Then:

λ∞
X ◦ ηFX = [F (ηX), F (µX ◦ F∞(σX))] ◦ ζFX ◦ ηFX

= [F (ηX), F (µX ◦ F∞(σX))] ◦ κ1

= F (ηX).

We shall use the following two auxiliary results:

µX ◦ σF∞X ◦ λ∞
X = µX ◦ F∞(σX)

F (τX) ◦ F (λ∞
X) = λ∞

X ◦ τFX .
(4)

We first prove the first equation, and use it immediately to prove the second
one.

µX ◦ σF∞X ◦ λ∞
X

= [µX ◦ σF∞X ◦ F (ηX), µX ◦ σF∞X ◦ F (µX ◦ F∞(σX))] ◦ ζFX

by definition of λ

= [µX ◦ F∞(ηX) ◦ σX , µX ◦ F∞(µX ◦ F∞(σX)) ◦ σF∞FX] ◦ ζFX

by naturality

= [µX ◦ ηF∞X ◦ σX , µX ◦ µF∞X ◦ F∞F∞(σX) ◦ σF∞FX] ◦ ζFX

by the monad laws

= [µX ◦ F∞(σX) ◦ ηFX , µX ◦ F∞(σX) ◦ µFX ◦ σF∞FX] ◦ ζFX

by naturality

= µX ◦ F∞(σX) ◦ [ηFX , τFX] ◦ ζFX

by (3)

= µX ◦ F∞(σX)

by definition of η, τ .

F (τX) ◦ F (λ∞
X)

= F (µX ◦ σF∞X ◦ λ∞
X)

by (3)

= F (µX ◦ F∞(σX))

as we have just shown

= [F (ηX), F (µX ◦ F∞(σX))] ◦ κ2

obviously

= λ∞
X ◦ τFX

by definition of τ.

20

Now we are ready to prove that λ∞ commutes with multiplications.

λ∞
X ◦ µFX

= λ∞
X ◦ [id, τFX ◦ F (µFX)] ◦ ζF∞FX by Lemma 15 (5)

= [λ∞
X , λ∞

X ◦ τFX ◦ F (µFX)] ◦ ζF∞FX

(4)
= [λ∞

X , F (τX ◦ λ∞
X ◦ µFX)] ◦ ζF∞FX

(3)
= [λ∞

X , F (µX ◦ σF∞X ◦ λ∞
X ◦ µFX)] ◦ ζF∞FX

(4)
= [λ∞

X , F (µX ◦ F∞(σX) ◦ µFX)] ◦ ζF∞FX

= [λ∞
X , F (µX ◦ µF∞X ◦ F∞F∞(σX))] ◦ ζF∞FX

= [λ∞
X , F (µX ◦ F∞(µX ◦ F∞(σX)))] ◦ ζF∞FX

(4)
= [λ∞

X , F (µX ◦ F∞(µX ◦ σF∞X ◦ λ∞
X))] ◦ ζF∞FX

= [id, F (µX ◦ µF∞X ◦ F∞(σF∞X))] ◦ (λ∞
X + F (F∞λ∞

X)) ◦ ζF∞FX

= F (µX) ◦ [F (ηF∞X), F (µF∞X ◦ F∞(σF∞X))] ◦ ζFF∞X ◦ F∞(λ∞
X)

by definition of F∞ on morphisms

= F (µX) ◦ λ∞
F∞X ◦ F∞(λ∞

X).

In order to prove the second point of the proposition we have to disambiguate
the notation. Let’s write the monad F ∗ as (F ∗, η∗, µ∗) with associated τ ∗ and
σ∗, and F∞ as (F∞, η∞, µ∞) with τ∞ and σ∞. The induced mediating map
σ∞: F ∗ ⇒ F∞ is then given by:

X + F (F ∗X)

αX ∼=
��

//_________
id + F (σ∞

X)
X + F (F∞X)

F ∗X //_____________

σ∞
X

F∞X

ζX
∼=

OO

We already know (from Proposition 11) that σ∞ is a homomorphism of monads
satisfying σ∞ ◦ σ∗ = σ∞. Hence σ∞ commutes with the distributive laws:

λ∞
X ◦ σ∞

FX = [F (η∞
X), F (µ∞

X ◦ F∞(σ∞
X))] ◦ ζFX ◦ σ∞

FX

= [F (η∞
X), F (µ∞

X ◦ F∞(σ∞
X))] ◦ (id + F (σ∞

FX)) ◦ α−1
FX

= [F (η∞
X), F (µ∞

X ◦ F∞(σ∞
X) ◦ σ∞

FX)] ◦ α−1
FX

= [F (η∞
X), F (µ∞

X ◦ σ∞
F∞X ◦ F ∗(σ∞

X))] ◦ α−1
FX

= [F (η∞
X), F (µ∞

X ◦ σ∞
F∞X ◦ F ∗(σ∞

X ◦ σ∗
X))] ◦ α−1

FX

= [F (σ∞
X ◦ η∗

X), F (σ∞
X ◦ µ∗

X ◦ F ∗(σ∗
X))] ◦ α−1

FX

= F (σ∞
X) ◦ [F (η∗

X), F (µ∗
X ◦ F ∗(σ∗

X))] ◦ α−1
FX

= F (σ∞
X) ◦ λ∗

X . �

21

5 Iteration and solutions of equations

The material in this section comes (again) from [2]. In Definition 5 we have
seen an abstract notion of λ-equation and solution. A bit more concretely,
for a functor F , a set of recursive equations—often simply called a recursive
equation—consists first of all of a set X of recursive variables. For each variable
x ∈ X we have a corresponding term t in an equation x = t. We shall allow
this term to be infinite. The term t may involve both variables from an already
given set Y , and from our new set of recursive variables X. Hence t ∈ F∞(Y +
X). Summarising, a recursive equation is a map e: X → F∞(Y + X).
We shall often call such an e a ∞-equation, in contrast to a λ-equation
X → FTX—as in Definition 5.

Definition 18 Let F : C → C be a functor, with for X ∈ C a final coalgebra
F∞(X)

∼=−→ X + F (F∞(X)).

A solution for an ∞-equation e: X → F∞(Y + X) is a map sol(e): X →
F∞(Y) that produces an appropriate term sol(e)(x) for each recursive variable
x ∈ X. This means that substituting the cotuple [ηY , sol(e)]: Y + X → F∞(Y)
in e yields the solution sol(e), i.e.

sol(e)

= subst([ηY , sol(e)]) ◦ e
in

X
e //

sol(e) ((QQQQQQQQQQQQQQQ F∞(Y + X)

subst([ηY , sol(e)])
��

F∞(Y)

This shows that the solution is a fixed point of subst([ηY ,−]) ◦ e.

Like for λ-equations, we are interested in unique solutions for ∞-equations.
Do they always exist? Not in trivial equations, like x = x, where any term is a
solution. Such equations are standardly excluded by requiring that the terms
of the recursive equation are ‘guarded’, i.e. that its terms are not variables
from X. This notion can also be formulated in a general categorical setting: an
∞-equation e: X → F∞(Y +X) is called guarded if it factors (in a necessarily
unique way, assuming that coprojections κi are monos) as:

Y + F (F∞(Y + X))

κ1 + id
��

(Y + X) + F (F∞(Y + X))

∼= ζ−1
Y +X

��
X e

//

g
33

~
{

y
w

u
s

q
o

m
l

j i

F∞(Y + X)

(5)

22

This says that if we decompose the terms of e using the final coalgebra map,
then we do not get variables from X.

Theorem 19 ([2]) Each guarded ∞-equation has a unique solution.

Proof. Assume that a guarded ∞-equation e: X → F∞(Y + X) factors as
ζ−1
Y +X ◦ (κ1+id) ◦ g, for a map g: X → Y +F (F∞(Y +X)) like in (5). In order

to find a solution one first defines, like in the proof of Lemma 14, an auxiliary
map h: F∞(Y + X) + F∞(Y) → F∞(Y) by coinduction, via an appropriate
structure map on the left-hand-side below. Like in the proof of Lemma 14, on
one of the +-components (the second) this structure map only unravels, while
on the other it applies the guard g to the recursive variables from X.

Y + F (F∞(Y + X) + F∞(Y)) //__________
idY + F (h)

Y + F (F∞(Y))

(Y + F (F∞(Y + X))) + F∞(Y)

[id + F (κ1), (id + F (κ2)) ◦ ζY]

OO

((Y + X) + F (F∞(Y + X))) + F∞(Y)

[[κ1, g], κ2] + id

OO

F∞(Y + X) + F∞(Y)

ζY +X + id

OO

//______________

h
F∞(Y)

∼= ζY

OO

The proof proceeds by showing that h ◦ κ2 is the identity. The unique solution
is then obtained as sol(e) = h ◦ κ1 ◦ η ◦ κ2: X → Y + X → F∞(Y + X) →
F∞(Y + X) + F∞(Y) → F∞(Y). �

6 ∞-equations and solutions as λ-equations and solutions

In this section we put previous results together. We start by fixing an object
Y ∈ C, and defining the associated functors GY , T Y : C → C given by

GY (X) = Y + F (X) T Y (X) = F∞(Y + X).

Why do we choose these functors? Well, a guard X → Y + F (F∞(Y + X))
like in (5) is now simply a GY T Y -coalgebra. We like to understand it as a λ-
equation, in order to fit the ∞-equations in the framework of λ-equations. The
first requirement is thus to establish the appropriate monad and distribution
structure for GY and T Y .

It is not hard to see that T Y is again a monad—formally, via a general dis-

23

tributive law monads—with unit and multiplication:

ηY
X = η∞

Y +X ◦ κ2 : X −→ Y + X −→ F∞(Y + X)

µY
X = subst([η∞

Y +X ◦ κ1, id]) : F∞(Y + F∞(Y + X)) −→ F∞(Y + X).

For convenience we shall drop the superscript Y whenever confusion is unlikely.

Next we note that T Y is isomorphic to (GY)∞, since each (GY)∞(X) forms
by construction the final coalgebra for the mapping:

X + GY (−) = X + (Y + F (−)) ∼= (Y + X) + F (−).

Hence (GY)∞(X) ∼= F∞(Y + X) = T Y (X). Proposition 17 then yields the
required distributive law. The next lemma describes it concretely.

Lemma 20 In the above situation Proposition 17 yields a distributive law

T Y GY +3λY

GY T Y

for each Y ∈ C. Ommitting the superscript Y , its components are maps of the
form:

F∞(Y + (Y + F (X)))
λX // Y + F (F∞(Y + X))

Via the two obvious natural transformations κ2: F ⇒ GY and F∞(κ2): F
∞ ⇒

T Y we get a commuting diagram of distributive laws:

F∞F

λ∞

��

// T Y GY

λ
��

FF∞ // GY T Y

Proof. The distributive law can be described as composite:

T Y GY ∼= (GY)∞GY Proposition 17 // GY (GY)∞ ∼= GY T Y

We shall construct this λX explicitly. By first applying the final coalgebra map
we get:

F∞(Y + (Y + FX))
ζ
∼=

// (Y + (Y + FX)) + FF∞(Y + (Y + FX))

The component on the left of the main + on the right-hand-side readily gives
a map to the required target, namely:

Y + (Y + FX)
[κ1, id + F (η∞

X+Y ◦ κ2)] // Y + F (F∞(Y + X))

24

For the component on the right we have to do more work. We are done if
we can find a map F∞(Y + (Y + FX)) → F∞(Y + X). Such a map can be
obtained via substitution from:

Y + (Y + FX)
[η∞

Y +X ◦ κ1, [η
∞
Y +X ◦ κ1, σ

∞
Y +X ◦ F (κ2)]] // F∞(Y + X)

Putting the decomposition via ζ and the two parts of a cotuple together, we
obtain the following complicated expression for the resulting distributive law
F∞(Y + (Y + F (X))) → Y + F (F∞(Y + X)).

λX = [[κ1, id + F (η∞
X+Y ◦ κ2)],

κ2 ◦ F (subst([η∞
Y +X ◦ κ1, [η

∞
Y +X ◦ κ1, σ

∞
Y +X ◦ F (κ2)]]))] ◦ ζY +(Y +FX).

It is not hard to check that the distributive laws are preserved, as claimed at
the end of the lemma. �

Lemma 21 For each Y ∈ C, the object F∞(Y) carries a final λY -bialgebra
structure:

T Y (F∞(Y))
ξY // F∞(Y)

ζY
∼=

// GY (F∞(Y))

F∞(Y + F∞(Y)) Y + F (F∞(Y))

where ξY = subst([η∞
Y , id]).

Proof. By Lemma 3 there is on F∞(Y) a unique Eilenberg-Moore algebra
structure T Y (F∞(Y)) → F∞(Y) forming a final λY -bialgebra. We establish
that it is of the form ξY = subst([η∞

Y , id]) by checking that this ξY satisfies the

25

defining equation in Lemma 3. We shall drop superscripts as usual.

G(ξY) ◦ λF∞Y ◦ T (ζY)

= G(ξY) ◦ [,] ◦ ζY +(Y +FF∞Y) ◦ F∞(id + ζY)

by definition of λ and of T

= G(ξY) ◦ [,] ◦ ((id + ζY) + FF∞(id + ζY)) ◦ ζY +F∞Y

by definition of F∞ on morphisms

= (id + F (ξY)) ◦ [[κ1, id + F (η∞
Y +F∞Y ◦ κ2)] ◦ (id + ζY),

κ2 ◦ F (subst()) ◦ FF∞(id + ζY)] ◦ ζY +F∞Y

by further expansion of the definition of λ

= [[κ1, (id + F (ξY ◦ η∞
Y +F∞Y ◦ κ2)) ◦ ζY],

κ2 ◦ F (ξY ◦ subst() ◦ F∞(id + ζY))] ◦ ζY +F∞Y

by a simple calculation with cotuples

= [[κ1, (id + F (id)) ◦ ζY],

κ2 ◦ F (subst(ξY ◦ ◦ (id + ζY)))] ◦ ζY +F∞Y

by definition of ξ and Lemma 15
(∗)
= [[κ1, ζY],

κ2 ◦ F (subst([η∞
Y , [η∞

Y , τ∞
Y]] ◦ (id + ζY)))] ◦ ζY +F∞Y

see below

= [[κ1, ζY],

κ2 ◦ F (subst([η∞
Y , id])] ◦ ζY +F∞Y

by definition of η, τ

= [ζY ◦ [η∞
Y , id],

ζY ◦ τ∞
Y ◦ F (ξY)] ◦ ζY +F∞Y

again by definition of η, τ and also of ξ

= ζY ◦ [[η∞
Y , id], τ∞

Y ◦ F (ξY)] ◦ ζY +F∞Y

= ζY ◦ ξY

by Lemma 15 (5).

The marked step (∗) in this calculation is explained as follows.

ξY ◦ σ∞
Y +F∞Y ◦ F (κ2)

= subst([η∞
Y , id]) ◦ τ∞

Y +F∞Y ◦ F (η∞
Y +F∞Y) ◦ F (κ2) by definition of ξ, σ

= τ∞
Y ◦ F (subst([η∞

Y , id])) ◦ F (η∞
Y +F∞Y) ◦ F (κ2) by Lemma 14

= τ∞
Y ◦ F ([η∞

Y , id]) ◦ F (κ2)

= τ∞
Y . �

26

We are finally in a position to see that ∞-equations and solutions are a special
case of λ-equations and solutions. This is our main result.

Theorem 22 Let F : C → C be a functor with final coalgebra F∞(X)
∼=−→

X + F (F∞(X)). Then:

(1) A guard g: X → Y +F (F∞(Y +X)) for an ∞-equation e: X → F∞(Y +
X) is a λY -equation, for the distributive law λY from Lemma 20.

(2) A solution sol(e): X → F∞(Y) of a guarded ∞-equation e is the same
thing as a solution of its guard g—as a λY -equation—in the final λY -
bialgebra of Lemma 21.

Proof. The first point is obvious, so we concentrate on the second one. We
assume that we can write the guarded ∞-equation e: X → F∞(Y + X) as
e = ζ−1

Y +X ◦ (κ1 + id) ◦ g, like in (5), where g: X → Y + F (F∞(Y + X)) is the
guard (or λ-equation) and ζ is as usual the final coalgebra. We observe for a
map f : X → F∞(Y),

f is a solution of the λ-equation g (see Definition 5)

⇐⇒ ζY ◦ f = G(ξY) ◦ GT (f) ◦ g

⇐⇒ f = ζ−1
Y ◦ G(ξY) ◦ GT (f) ◦ g

= [η∞
Y , τ∞

Y] ◦ (id + F (ξY)) ◦ (id + FF∞(id + f)) ◦ g

by definition of η, τ and of G, T

= [η∞
Y , τ∞

Y ◦ F (ξY) ◦ FF∞(id + f)] ◦ g

= [η∞
Y , τ∞

Y ◦ F (subst([η∞
Y , id]) ◦ F∞(id + f))] ◦ g

by definition of ξ

= [η∞
Y , τ∞

Y ◦ F (subst([η∞
Y , id] ◦ (id + f)))] ◦ g

by Lemma 15 (2)

= [η∞
Y , subst([η∞

Y , f]) ◦ τ∞
Y +X] ◦ g

by Lemma 14

= subst([η∞
Y , f]) ◦ [η∞

Y +X ◦ κ1, τ
∞
Y +X] ◦ g

= subst([η∞
Y , f]) ◦ ζ−1

Y +X ◦ (κ1 + id) ◦ g

by definition of η, τ

= subst([η∞
Y , f]) ◦ e

⇐⇒ f is a solution of the ∞-equation e (see Definition 18). �

27

7 Conclusion

We have illustrated the use of distributive laws in recursive equations (es-
pecially for languages) and have unified the area by showing that one no-
tion developed in [2] (following [20]) is an instance of a more general notion
from [5,17,26] based on distributive laws.

Acknowledgments

Thanks to the anonymous referees, both of the current and of the earlier
version [12] of this paper, for suggesting many improvements, and also to
Ichiro Hasuo for his comments.

References

[1] P. Aczel. Non-well-founded sets. CSLI Lecture Notes 14, Stanford, 1988.

[2] P. Aczel, J. Adámek, S. Milius, and J. Velebil. Infinite trees and completely
iterative theories: a coalgebraic view. Theor. Comp. Sci., 300 (1-3):1–45, 2003.

[3] P. Aczel, J. Adámek, and J. Velebil. A coalgebraic view of infinite trees and
iteration. In A. Corradini, M. Lenisa, and U. Montanari, editors, Coalgebraic

Methods in Computer Science, number 44 in Elect. Notes in Theor. Comp. Sci.
Elsevier, Amsterdam, 2001.

[4] M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985.
Revised and corrected version available from URL:
www.cwru.edu/artsci/math/wells/pub/ttt.html.

[5] F. Bartels. On generalised coinduction and probabilistic specification formats.

Distributive laws in coalgebraic modelling. PhD thesis, Free Univ. Amsterdam,
2004.

[6] J. Barwise and L.S. Moss. Vicious Circles: On the Mathematics of Non-

wellfounded Phenomena. CSLI Lecture Notes 60, Stanford, 1996.

[7] J. Beck. Distributive laws. In B. Eckman, editor, Seminar on Triples and

Categorical Homolgy Theory, number 80 in Lect. Notes Math., pages 119–140.
Springer, Berlin, 1969.

[8] J.R.B. Cockett. Introduction to distributive categories. Math. Struct. in Comp.

Sci., 3:277–307, 1993.

[9] J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

28

[10] C.C. Elgot. Monadic computation and iterative algebraic theories. In H.E. Rose
and J.C. Shepherson, editors, Logic Colloquium ’73, pages 175–230, Amsterdam,
1975. North-Holland.

[11] C.C. Elgot, S.L. Bloom, and R. Tindell. The algebraic structure of rooted trees.
Journ. Comp. Syst. Sci, 16:361–399, 1978.

[12] B. Jacobs. Relating two approaches to coinductive solution of recursive
equations. In J. Adámek and S. Milius, editors, Coalgebraic Methods in

Computer Science, number 106 in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2004.

[13] B. Jacobs. Trace semantics for coalgebras. In J. Adámek and S. Milius, editors,
Coalgebraic Methods in Computer Science, number 106 in Elect. Notes in Theor.
Comp. Sci. Elsevier, Amsterdam, 2004.

[14] B. Jacobs. A bialgebraic review of regular expressions, deterministic automata
and languages. Techn. Rep. ICIS-R05003, Inst. for Computing and Information
Sciences, Radboud Univ. Nijmegen, 2005.

[15] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS

Bulletin, 62:222–259, 1997.

[16] P.T. Johnstone. Adjoint lifting theorems for categories of algebras. Bull. London

Math. Soc., 7:294–297, 1975.

[17] M. Lenisa. From set-theoretic coinduction to coalgebraic coinduction: some
results, some problems. In B. Jacobs and J. Rutten, editors, Coalgebraic

Methods in Computer Science, number 19 in Elect. Notes in Theor. Comp.
Sci. Elsevier, Amsterdam, 1999.

[18] M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors, pointed
and co-pointed endofunctors, monads and comonads. In H. Reichel, editor,
Coalgebraic Methods in Computer Science, number 33 in Elect. Notes in Theor.
Comp. Sci. Elsevier, Amsterdam, 2000.

[19] S. Milius. On iterable endofunctors. In R. Blute and P. Selinger, editors,
Category Theory and Computer Science 2002, number 69 in Elect. Notes in
Theor. Comp. Sci. Elsevier, Amsterdam, 2003.

[20] L.S. Moss. Parametric corecursion. Theor. Comp. Sci., 260(1-2):139–163, 2001.

[21] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theor.

Comp. Sci., 54(2/3):267–276, 1987.

[22] K.I. Rosenthal. Quantales and their applications. Number 234 in Pitman
Research Notes in Math. Longman Scientific & Technical, 1990.

[23] J. Rutten. Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Theor. Comp. Sci., 308:1–53, 2003.

[24] D. Turi. Functorial operational semantics and its denotational dual. PhD thesis,
Free Univ. Amsterdam, 1996.

29

[25] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In
Logic in Computer Science, pages 280–291. IEEE, Computer Science Press,
1997.

[26] T. Uustalu, V. Vene, and A. Pardo. Recursion schemes from comonads. Nordic

Journ. Comput., 8(3):366–390, 2001.

30

