
DISTROY: Detecting Integrated Circuit Trojans

with Compressive Measurements

Youngjune L. Gwon, H. T. Kung and Dario Vlah

Harvard University

{gyj,htk,dario}@eecs.harvard.edu

Abstract

Detecting Trojans in an integrated circuit (IC) is an

important but hard problem. A Trojan is malicious

hardware—it can be extremely small in size and dormant

until triggered by some unknown circuit state. To al-

low wake-up, a Trojan could draw a minimal amount of

power, for example, to run a clock or a state machine, or

to monitor a triggering event. We introduce DISTROY

(Discover Trojan), a new approach that can efficiently

and reliably detect extremely small background power

leakage that a Trojan creates and as a result, we can de-

tect the Trojan. We formulate our method based on com-

pressive sensing, a recent advance in signal processing,

which can recover a signal using the number of measure-

ments approximately proportional to its sparsity rather

than size. We argue that circuit states in which the Tro-

jan background power consumption stands out are rare,

and thus sparse, so that we can apply compressive sens-

ing. We describe how this is done in DISTROY so as

to afford sufficient measurement statistics to detect the

presence of Trojans. Finally, we present our initial sim-

ulation results that validate DISTROY and discuss the

impact of our work in the field of hardware security.

1 Introduction

Many semiconductor companies today are fabless. They

outsource the manufacturing of their integrated circuit

(IC) products to cheaper or more advanced fabrication

facilities. While this go-with-remote-foundries model

provides a compelling option, it makes easier for an at-

tacker to compromise the fabrication process and insert a

Trojan, malicious hardware that not only alters the orig-

inal design but also performs security attacks.

Trojans comprise a subtle addition to an IC. A Tro-

jan can be as small as a single gate, or as large as a

microcontroller capable of launching systematic secu-

rity attacks [12]. Detecting Trojans is challenging partly

because their structure is unknown, which makes it in-

feasible to perform functional tests of the IC to detect

the Trojans based on the circuit functionality. Trojans

are also dormant at times, and in general, there is no a

priori knowledge of their activation mechanism.

The two premises available to a Trojan detector is that

a Trojan will draw some power [1] and alter the physi-

cal structure of the circuit [2]. However, detecting the

latter–circuit alteration–is difficult and often impracti-

cal as it may require costly destructive inspection of the

circuit, performed using expensive equipment. Further-

more, a Trojan designer can anticipate and make sure

that circuit analysis techniques such as path-length mea-

surement will fail to reveal the Trojan. Therefore, we are

left with power usage as the main detection vector.

We assume that a Trojan designer’s only option is to

increase the power consumption of the circuit. We argue

that this is a reasonable assumption based on the follow-

ing two cases:

1. The Trojan designer does not know the circuit de-

sign. In this case, the designer will merely add Tro-

jan gates without modifying the original circuit.

2. The Trojan designer knows the circuit design. In

this case, the designer can first optimize the circuit

to reduce its power consumption, and then insert

the Trojan gates, leaving the power consumption

unchanged. However, we can assume this case is

avoidable by making the original circuit slack-free,

so that no further power reduction is possible.

In this paper we focus on combinatorial circuits, that

is, circuits where the inputs and outputs of each gate are

determined by the inputs to the circuit. Such circuits

may serve as basic blocks of larger, possibly stateful cir-

cuits, and can be gated–selectively powered on–to allow

testing in isolation. In contrast, we don’t restrict the

Trojan circuits to be combinatorial; a Trojan may, for

instance, run a clock, a state machine, or monitor trig-

gering events for its activation.

Logic gates consume orders of magnitude different

amounts of power depending on their inputs. Thus, to

expose the Trojan power consumption, it is important

to discover circuit inputs, or test vectors, which lead to

low circuit power consumption by, for example, putting

as many gates as possible into low power states. This

is generally a hard problem with a number of heuristic

solutions based on solving instances of SAT (satisfiabil-

ity) [10]. We will call such low power consumption-

inducing inputs the revealing test vectors. In signal

processing parlance, we say that with such test vectors

the SNR is high, where the desired signal is the Trojan

power consumption, and the noise the deviation in power

use from expected in the non-Trojan parts of the circuit.

We propose DISTROY (Discover Trojan), a new ap-

proach that substantially reduces the I/O requirement in

detecting small power leakage due to Trojans embedded

in ICs. With reduced I/O, the approach still allows off-

chip Trojan detectors to recover the most significant in-

dicators of Trojan-induced power variations. DISTROY

relies on the assumption that revealing test vectors are

rare, or sparse. Compressive sensing [3], a recent tech-

nique developed in signal processing, forms the basis

of DISTROY that enables simple encoding and accurate

reconstruction of the most significant power consump-

tion anomalies among the test vectors applied. We show

that DISTROY can robustly detect the presence of power

leakage resulting from the background power consump-

tion of on-chip Trojans even when the drawn power is

extremely small.

2 Compressive Sensing

Baraniuk [3] and Candès and Wakin [4] provide good tu-

torial introductions of compressive sensing for interested

readers. We provide here some basic results required to

follow the technical details of the paper.

Consider a real-valued, length-N input vector x =
〈x1x2 . . . xN 〉. Suppose the vector has an alternative

representation in a basis Ψ, x = Ψs, where only K ele-

ments of s are non-zero. We will say that such a vector

x is K-sparse. When K ≪ N , we regard x as compress-

ible.

Compressive sensing encodes x by producing mea-

surements y = Φx. Here, the matrix Φ of size M ×N
is called a measurement matrix. We can reconstruct x

by solving the system of equations y = Φx where there

are more unknowns (N) than equations (M). Note that

in compressive sensing, the number of equations is the

number of (compressive) measurements.

Compressive sensing theory states that we can restore

s, the K-sparse form of x, with high probability when

Φ is a random matrix and when M ≥ cK log(N/K)
where c is a small constant. Linear programming solves

for x by minimizing the ℓ1-norm of s:

min
s∈RN

‖s‖ℓ1 subject to y = Φx,x = Ψs. (1)

An interesting property of the ℓ1-minimization is that

the quality of the decoding is a function of M . The larger

M is, the more accurate the reconstruction becomes.

Furthermore, recovery is incremental—using small M
we recover the largest components of s, and if we wish

to recover more components, we grow M accordingly.

Another powerful feature of compressive sensing is

the care-free, low-complexity encoding unlike conven-

tional coding or compression schemes. It is coupled with

Table 1: Leakage current mean and standard deviation of a 2-

input NAND gate (source: Singh et al. [10]).

Input (state) µ (nA) σ (nA)

00 .223 .082

01 or 10 4.578 3.026

11 13.109 16.785

the flexibility of incorporating any Ψ in decoding that

transforms x to a sparse form, which makes compres-

sive sensing potentially a ground-breaking solution for

many security problems such as intrusion detection and

identification of spam and DDoS attacks (or more gener-

ically any form of anomaly).

3 How Trojans May Be Detected

In this section we provide some background on circuit

characterization based on power consumption statistics

and describe a simple, baseline method for Trojan de-

tection.

3.1 Background: Log-normal Leakage

Current Model

ICs typically operate at a fixed voltage. Since power is

a product of voltage and current, we will refer to current

and power interchangeably. When a circuit’s inputs are

held constant, the circuit still consumes a certain amount

of power because logic gates typically pass a small, but

non-zero amount of current. The current consumed in

such a static circuit is referred to as leakage current.

The leakage current of a gate depends on its inputs.

For example, Table 1 shows the leakage current values

for a 2-input NAND gate manufactured in a certain pro-

cess, for 3 different input combinations. We will refer

to each input combination as a gate state. Note that the

leakage currents of different gate states can vary by or-

ders of magnitude! The leakage current varies from gate

to gate, because the physical dimensions of gate features

vary in manufacturing. Since the physical variations are

typically normally distributed, and have an exponential

effect on current, a common way to model leakage cur-

rent is using the log-normal distribution [5].

To predict the total power consumption of a circuit,

we must know the inputs to each gate, which, for a

combinatorial circuit, can be derived from the circuit in-

puts. For example, consider a circuit depicted in Fig-

ure 1. There will be 3 · 3 = 9 possible combinations

of gate states and 23 = 8 test vectors (over input bits

X , Y , and Z). Note that circuits often have some gate

states that are physically unrealizable. We can then ob-

tain the leakage current distribution for each test vector

as the distribution of a sum of log-normal random vari-

ables, each corresponding to one gate in a specific state.

For example, consider applying test vector 〈0, 0, 0〉 to

Figure 1’s circuit, that is, X = 0, Y = 0, Z = 0.

It follows that gate A will have inputs 〈0, 0〉 and gate

B inputs 〈1, 0〉, and so we can expect that these gates

will draw log-normally distributed amounts of current

with parameters from the first two rows in Table 1, re-

spectively. We can see that the total current consumed

by the circuit in this example will be the random vari-

able ITOTAL = LN(0.223, 0.082)+LN(4.578, 3.026)
where LN(µ, σ) denotes a log-normally distributed ran-

dom variable with the given parameters.

At present, no closed-form is known for the probabil-

ity distribution of ITOTAL. However, there are many ap-

proximation methods which work well in practice, such

as that by Fernandes and Vemuri [5], which we adopted

for this paper.

3.2 Baseline Approach

Figure 2 depicts a baseline approach for detecting Tro-

jans. We apply N test vectors v1, v2, . . . , vN to the CUT,

obtaining N power measurements x1, x2, . . . , xN , one

for each vector. For the same N test vectors, we com-

pute, as outlined in the previous subsection, the expected

values of the leakage current distribution for each test

vector, xG = 〈g1, g2, . . . , gN 〉. Note that these ground-

truth values can be obtained offline.

Next, we compare the power measurements xi with

the expected power measurements to decide whether or

not Trojans are present in the CUT. When there are no

Trojans present, any deviation from the expected mea-

surement consists of only one source—the chip fabrica-

tion variations, which is accounted for by the gate mod-

els. However, when there are Trojans present, the gates

comprising the Trojan draw additional leakage current

and thus shift the probability distribution of total cir-

cuit current as depicted schematically in Figure 3. We

choose a rejection threshold α such that if the total cur-

rent is above α then we declare that the circuit contains

Trojans.

There always exists some likelihood of error. Refer-

ring to Figure 3, we can see errors could occur either

1) when there is no Trojan, but total leakage current is

larger than the rejection threshold–an event called a false

positive, or 2) when there is a Trojan but the total leakage

current falls below the threshold, an event called a false

negative. We can reduce the likelihood of both of these

events by testing groups of multiple chips as described

in the following subsection.

X

Y

Z
Out

A

B

Figure 1: Example circuit with 2 NAND gates.

Circuit

Under

Test

(CUT)

N test vectors

v1v
N

v2 x1x
N

x2

N corresponding power

measurements on

N test vectors

Simulator
xG

Corresponding N

reference

measurements

Compare
Result

N test vectors

Done offline

v1v
N

v2

Database of gate characteristics

specific to the manufacturing process

Figure 2: Baseline approach.

3.2.1 Testing Multiple Chips from the

Same Process to Improve Detection

Reliability

We can improve the detection reliability by testing mul-

tiple chips manufactured with the same fabrication pro-

cess. We consider the following two ways to use mul-

tiple chips, which reduce the false positive and negative

rates, respectively:

1) Reducing False Positives. To reduce false posi-

tives, we can test groups of P chips, for some P greater

than one, and require that for all of them, the total leak-

age current exceeds the rejection threshold before we

can declare a Trojan. The larger P is, the fewer false

positives are expected. Note that increasing P also in-

creases the false negative rate; this can be mitigated by

the following method.

2) Reducing False Negatives. To reduce the chance

of false negatives, we can declare a Trojan if at least P
out of Q chips exhibit leakage current past the rejection

threshold, where P is defined earlier in 1) and Q > P .

For a given P , the larger Q is, the fewer false negatives

are expected.

A detailed analysis of tuning the parameters α, P and

Q is beyond the scope of this paper, but a simple strat-

egy may consist of the following four steps. 1) Choose

α which gives approximately equal rates of both types

of error. 2) Increase P until the desired false positive

rate is reached. This may result in increased false neg-

ative rates. 3) Increase Q until the false negative rate is

low enough. This may increase the false positive rate

Leakage
current

µ
CLEAN

µ
TROJAN

Rejection
threshold,

α

False
positives

False
negatives

PDF

Figure 3: Diagram of probability distributions of total circuit

leakage current for a clean and Trojan-infected circuit. The

probability mass is shifted to the right by the magnitude of the

added Trojan current.

Circuit

Under

Test

(CUT)

N test vectors

v1vN v2

y1 = 1jxj

y2 = 2jxj

yM = Mjxj

x1xN x2

Compressive sensing

M measurements

(M << N)

Corresponding

leakage current

measurements

for N test vectors

Figure 4: The DISTROY front-end applies N randomly cho-

sen test vectors to a CUT, measures corresponding leakage cur-

rents, and compresses to M linear combinations.

again. 4) Repeat steps 2 and 3 until both error rates are

at acceptable levels.

4 DISTROY

DISTROY consists of the front-end scanner and back-

end analyzer. In this section we describe these compo-

nents of DISTROY in detail.

4.1 The Front-end

Figure 4 depicts the DISTROY front-end. The front-

end applies N test vectors v1, v2, . . . , vN to a CUT,

obtaining corresponding leakage current measurements

x1, x2, . . . , xN . We next use the compressive sensing

matrix Φ to reduce the measurements xi down to M lin-

ear combinations yj . Thus, instead of outputting N mea-

surements from the chip, we now output only M mea-

surements, with M << N . Unlike a typical data pro-

cessing (e.g., compression) scheme that performs a sig-

nificant amount of processing at acquisition, DISTROY

handles the incoming data in a relatively light-weight

manner by simply multiplying with Φ.

4.2 The Back-end

The back-end performs the decoding of compressive

measurements yi using the minimization of Equa-

tion (1). However, as noted in Section 2, to make de-

coding work with high probability, the variables under

optimization must be K-sparse. But neither the ex-

pected measurements nor those of the CUT are sparse

by themselves; how can we recover them using com-

pressive sensing decoding?

Note that we are interested in finding the measure-

ments which significantly deviate from the expected

ones. Let us define a new set of variables, d1, d2, . . . , dN
describing these deviations; more specifically, di =
xi − gi. We can see that the deviations are going to

be relatively more sparse; for example, in the ideal case

without process variations, we would expect di = 0 un-

less a Trojan circuit is present. Normalizing by the stan-

dard deviation σ of leakage current, we can decode di

i0

i1

i2

i3

i4

i8

i9

i10

i11

i12

i5

i6

i13

i14

i7

i15

o0

o1

o2

o3

Figure 5: double-c17 combines two ISCAS-85 c17s.

Double-C17

Double-C17

Double-C17

Double-C17

Double-C17

16

I

[0:15]

2 2

2

o0

o1

o2

o3

o4

o5

o6

o7

2

Figure 6: 100-NAND gate double-c17x5 benchmark cir-

cuit used for evaluation.

using Equation (1)’s minimization as follows:

min
∑

∣

∣

∣

∣

di
σi

∣

∣

∣

∣

subj. y = Φ

g1 + d1

g2 + d2

. . .

gN + dN

(2)

The normalization is needed because of the “largest-

first” decoding property of compressive sensing. With-

out the 1/σi factor in the objective function, the largest

values we decoded might not be Trojan power consump-

tion outliers, but merely largest power consumptions oc-

curing in test vectors with high variance.

Having obtained the deviations di, we can now use the

same types of statistical tests as in the baseline case of

Section 3.

5 Evaluation

Our evaluation features a benchmark circuit that con-

tains 100 NAND gates. We performed a logic simula-

tion of the circuit and applied the Fernandes and Vemuri

method [5] to model log-normal leakage current distri-

butions. This section explains our evaluation methodol-

ogy and discusses empirical results.

5.1 Benchmark Circuit and Trojans

The original c17 circuit from the ISCAS-85 benchmark

suite [6] consists of 6 NAND gates; we combine two

c17 blocks to create double-c17, which contains 20

NAND gates as depicted in Figure 5. Lastly, we use

five double-c17 blocks to produce double-c17x5

shown in Figure 6.

The double-c17x5 circuit takes a 16-bit input,

which yields a test vector space size of 216. Since this

is a relatively small set, our simulation uses all possi-

ble test vectors and obtains corresponding gate states of

the circuit for each vector. Furthermore, we compute the

distribution of the sum of leakage currents through all

gates in the circuit as described in Section 3.1.

Inserting Trojans. We prepared five unmodified

double-c17x5s and placed one to five NAND

gates at random locations to create trojan-1, . . . ,

trojan-5. (That is, the smallest Trojan circuit is a

single NAND gate.) We then ran logic simulations for

the Trojan circuits and again used approximation to de-

termine their leakage current distributions.

5.2 Performance Metrics

Achieved compression gain N/M . Enabled by com-

pressive sensing, DISTROY can detect Trojans with M
measurements for off-chip analysis that are several times

fewer than the original N .

False positive rate. False positives occur when DIS-

TROY pronounces a clean circuit Trojan-infected.

False negative rate. False negatives occur when DIS-

TROY fails to detect a Trojan-infected circuit.

5.3 Trojan Detection Decision

We adopt the baseline detection method described in

Section 3.2 and extend it to take advantage of multiple

test vectors per chip, as well as multiple chips. First, for

a single test vector, similar to Section 3.2, we declare the

test vector a Trojan witness if its leakage current exceeds

the mean by more than some threshold value 2σ.

Let us define an equivalence class of test vectors to

be a set of test vectors that result in equal gate state

counts. For example, if the test vectors v3 and v7
produce the state counts 〈C0 = 32, C1 = 50, C2 = 18〉
where C0 represents the total number of 2-NAND gates

with input 00, C1 with input 01 or 10, and C2 with input

11, then the two test vectors are members of the same

equivalence class.

We use equivalence classes as a convenient, easy to

precompute tool to jointly reason about the statistics of

multiple test vectors. Specifically, we apply the follow-

ing criteria. We first divide the N test vectors used in a

test into their equivalence classes. Then, we throw out

all equivalence classes that have less than some number

NReq of member test vectors. Lastly, if we find that at

least L% of test vectors in one of the remaining equiva-

lence classes are Trojan witnesses, we declare the CUT

Trojan-infected.

5.4 Discussion

DISTROY measures leakage currents induced by test

vectors and compresses normalized deviations from the

100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

M (number of measurements)

R
a

te

(a) Trojan size = 1 gate

100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

M (number of measurements)

R
a

te

(b) Trojan size = 5 gates

False positive for N = 1000 random test vectors

False positive for N = 1000 optimal test vectors

False negative for N = 1000 random test vectors

False negative for N = 1000 optimal test vectors

False positive for N=1000 random test vectors

False positive for N=1000 optimal test vectors

False negative for N=1000 random test vectors

False negative for N=1000 optimal test vectors

Figure 7: False positive and negative rates obtained from cir-

cuits containing Trojans of size 1 and 5 gates.

ideal values. We run N = 1, 000 random test vectors

on a clean, Trojan-free double-c17x5 and Trojan-

infected double-c17x5s of five Trojan sizes, com-

press the current leakages with varying number of mea-

surements (M), and count the number of Trojan wit-

nesses.

Figure 7 depicts the false positive and false negative

rates for our smallest and largest Trojan circuits. We

used parameters NReq = 20 and L = 50%. We have an-

alyzed the leakage current distribution of all equivalence

classes (using Fernandes and Vemuri [5]), ranked them,

and selected test vectors from the lowest-power inducing

equivalence classes to force the effect of additional gates

from Trojan circuits more pronounced. We note that us-

ing some optimal set of test vectors we can reduce false

positive and false negative rates.

We find that DISTROY can achieve up to 5- or 4-to-1

compression ratio, which justifies the use of compres-

sive sensing for Trojan detection. We can think of com-

pression as a speedup in the Trojan detection time by

reducing the chip’s output bandwidth requirement.

In Section 3.2.1, we discussed the use of multiple

chips fabricated under the same process to improve relia-

bility of the test. Figure 8 exhibits such an improvement.

We consider the case for M = 200 (i.e., the compres-

sion gain of 5). We ran 100 test cases using P = 1 to 10

chips from the same process and recorded the reduction

of false positive rate. Using either random or optimal

test vectors, we were able to achieve no false positives.

The similar result holds true for false negative rate. Fix-

ing P = 2 and varying Q from 2 to 10, we were able to

eliminate false negatives starting with Q = 6.

6 Related Work

Agrawal et al. [1] introduced IC fingerprinting, a sig-

nal processing technique using side-channel power anal-

ysis to detect the presence of additional circuits. IC fin-

gerprinting assumes a gold circuit fabricated physically

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

P (# of chips fabricated under same process for testing)

R
a
te

False positive rate over P (Trojan size = 1 gate)

2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

Q (# of chips from which P=2 chips are chosen for testing)

R
a
te

False negative rate over Q (Trojan size = 1 gate)

False positive for N=1000 random test vectors with M=200

False positive for N=1000 optimal test vectors with M=200

False negative for N=1000 random test vectors with M=200

False negative for N=1000 optimal test vectors with M=200

Figure 8: Using multiple chips fabricated under the same pro-

cess improves false positive and negative rates.

to extract the reference fingerprint used in testing that

serves decision criteria. The compressive sensing based

approach offers a possible implementation direction for

fingerprinting methods. Nelson et al. [9] presented gate-

level characterization (GLC) techniques to model power

and delay characteristics more precisely. GLC relies on

statistical methods, singular value decomposition (SVD)

in particular, to solve for a characterization vector used

to detect a Trojan circuit. The compressive sensing ap-

proach of this paper can benefit from using such methods

in selecting Trojan-revealing test vectors.

More recently, Trojan detection in ICs has attracted

considerable research efforts at the IEEE Symposium on

Security & Privacy (Oakland). They include Huffmire et

al. [8], an isolation primitive for hardware components

to run on FPGAs that can help interconnect traceability

among others but provides little protection against po-

tentially malicious central component such as a Trojan-

infected microcontroller chip. Hicks et al. [7] proposed

Unused Circuit Identification (UCI) to detect malicious

hardware hidden in circuits at design time by identifying

pairs of dependent signals replaceable by a wire without

affecting any test vector outcome. Sturton et al. [11]

demonstrated a valid attack against UCI by showing that

it is possible to build malicious circuits exhibiting hid-

den behavior upon receiving a special trigger and by-

passing the UCI detection successfully.

All these approaches are orthogonal to the compres-

sive sensing-based approach of this paper, which has the

goal of reducing I/O requirements without compromis-

ing important information for detecting Trojans.

7 Conclusion

Trojans are a hard problem and serious security threat for

today’s fabless IC business model. We have presented

DISTROY, a novel and unconventional use of compres-

sive sensing to address the Trojan detection problem.

Because of the largest-first decoding property, compres-

sive sensing decodes the largest abnormal power con-

sumption values first. From the decoded values, we can

detect the Trojans reliably and accurately.

We have used a reasonable benchmark circuit for our

evaluation and also for illustrative purposes. In the near

future, we plan to validate DISTROY in implementation,

applying it to real circuits.

Acknowledgments
This material is based on research sponsored by Air Force Re-

search Laboratory under agreement numbers FA8750-10-2-0115 and

FA8750-10-2-0180. The U.S. Government is authorized to repro-

duce and distribute reprints for Governmental purposes notwithstand-

ing any copyright notation thereon. The views and conclusions con-

tained herein are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements, either

expressed or implied, of Air Force Research Laboratory or the U.S.

Government. The authors would like to thank the Office of the Secre-

tary of Defense (OSD/ASD(R&E)/RD/IS&CS) for their guidance and

support of this research. In addition, we’d like to thank our HotSec’11

reviewers for their helpful comments.

References
[1] AGRAWAL, D., BAKTIR, S., KARAKOYUNLU, D., ROHATGI,

P., AND SUNAR, B. Trojan Detection Using IC Fingerprinting.

In IEEE Symposium on Security and Privacy (2007).

[2] ALKABANI, Y., AND KOUSHANFAR, F. Consistency-based

characterization for IC Trojan detection. In Proc. of ICCAD

(2009).

[3] BARANIUK, R. G. Compressive Sensing. Lecture Notes in IEEE

Signal Processing Magazine vol. 24, no. 4 (Jul. 2007).

[4] CANDÉS, E. J., AND WAKIN, M. B. An Introduction To Com-

pressive Sampling. IEEE Sig. Proc. Mag. 25, 2 (2008), 21–30.

[5] FERNANDES, R., AND VEMURI, R. Accurate estimation of vec-

tor dependent leakage power in the presence of process varia-

tions. In Proc. of ICCD (2009).

[6] HANSEN, M. C., YALCIN, H., AND HAYES, J. P. Unveiling the

ISCAS-85 Benchmarks: A Case Study in Reverse Engineering.

IEEE Design & Test 16 (July 1999), 72–80.

[7] HICKS, M., FINNICUM, M., KING, S. T., MARTIN, M. M. K.,

AND SMITH, J. M. Overcoming an Untrusted Computing Base:

Detecting and Removing Malicious Hardware Automatically. In

IEEE Symposium on Security and Privacy (Oakland) (2010).

[8] HUFFMIRE, T., BROTHERTON, B., WANG, G., SHERWOOD,

T., KASTNER, R., LEVIN, T. E., NGUYEN, T. D., AND

IRVINE, C. E. Moats and Drawbridges: An Isolation Primitive

for Reconfigurable Hardware Based Systems. In IEEE Sympo-

sium on Security and Privacy (Oakland) (2007).

[9] NELSON, M., NAHAPETIAN, A., KOUSHANFAR, F., AND

POTKONJAK, M. SVD-Based Ghost Circuitry Detection.

Springer-Verlag, Berlin, Heidelberg, 2009, pp. 221–234.

[10] SINGH, A., GULATI, K., AND KHATRI, S. Minimum Leakage

Vector Computation Using Weighted Partial MaxSAT. In IEEE

Midwest Symposium on Circuits and Systems (2010).

[11] STURTON, C., HICKS, M., WAGNER, D., AND KING, S. T.

Defeating UCI: Building Stealthy and Malicious Hardware. In

IEEE Symposium on Security and Privacy (Oakland) (2011).

[12] WAKSMAN, A., AND SETHUMADHAVAN, S. Silencing Hard-

ware Backdoors. In IEEE Symposium on Security and Privacy

(Oakland) (2011).

