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abstract: Disturbance is one of the most important factors pro-
moting exotic invasion. However, if disturbance per se is sufficient
to explain exotic success, then “invasion” abroad should not differ
from “colonization” at home. Comparisons of the effects of distur-
bance on organisms in their native and introduced ranges are crucial
to elucidate whether this is the case; however, such comparisons have
not been conducted. We investigated the effects of disturbance on
the success of Eurasian native Centaurea solstitialis in two invaded
regions, California and Argentina, and one native region, Turkey, by
conducting field experiments consisting of simulating different dis-
turbances and adding locally collected C. solstitialis seeds. We also
tested differences among C. solstitialis genotypes in these three regions
and the effects of local soil microbes on C. solstitialis performance
in greenhouse experiments. Disturbance increased C. solstitialis abun-
dance and performance far more in nonnative ranges than in the
native range, but C. solstitialis biomass and fecundity were similar
among populations from all regions grown under common condi-
tions. Eurasian soil microbes suppressed growth of C. solstitialis
plants, while Californian and Argentinean soil biota did not. We
suggest that escape from soil pathogens may contribute to the dis-
proportionately powerful effect of disturbance in introduced regions.
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In contemporary biological invasions, humans assist other
organisms to overcome one of the most limiting of eco-
logical factors, dispersal (Eriksson and Ehrlén 1992; Til-
man 1997; Seabloom et al. 2003). Once dispersed, however,
introduced individuals (exotics) may face different limi-
tations to their abundance and distribution than in their
communities of origin. Understanding these differences
may help to explain the unusual success of some species
as exotics (Darwin 1859; Elton 1958; Blossey and Nötzold
1995; Callaway and Aschehoug 2000). Comparative eco-
logical studies of invasive species where they are native
versus where they are exotic are thus essential to this un-
derstanding. Also, analyzing the relative importance of fac-
tors influencing invasive organisms over large geographical
scales may yield unique insight into ecological and evo-
lutionary theory (Callaway et al. 2005; Hierro et al. 2005;
Sax et al. 2005). Most research on invasion biology, how-
ever, has been conducted only in nonnative ranges and
has not incorporated the biotic and abiotic conditions that
affect exotics at home (Hierro et al. 2005).

Disturbance commonly enhances the abundance and
distribution of exotic plants (Gray 1879; Elton 1958;
D’Antonio et al. 1999). The positive role of disturbance
in some plant invasions appears to help many newcomers
to establish nearly monospecific stands (e.g., Maddox and
Mayfield 1985; Whisenant 1990). However, research on
the role of disturbance in invasions has followed the trend
of research in invasion biology in general. There are many
observational (see D’Antonio et al. 1999 for a compre-
hensive review) and experimental studies (e.g., Hobbs and
Atkins 1988; Burke and Grime 1996; Leishman and Thom-
son 2005) linking disturbance to exotic success in intro-
duced regions, but we know very little about how distur-
bance affects exotics in their native range. Specifically, we
do not know whether disturbance triggers the same spec-
tacular response in the abundance of invaders where they
are natives as where they are exotics.

Given the ruderal life history of many exotic plants, it
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is not surprising that they flourish in disturbed habitats
(Baker 1974; Grime 1974). Proposed general mechanisms
by which disturbance promotes invasions include reduc-
tion of competitive pressure from other plants, stimulation
of germination, and alteration of resource levels
(D’Antonio et al. 1999), all of which favor the ruderal
strategy. If the success of exotics in disturbed places is due
to their ruderal nature and these mechanisms are sufficient
to explain why exotics thrive under such conditions, then
exotics should respond similarly to disturbance where they
are native. In other words, we do not know whether in-
vasion abroad is different from colonization at home (see
Thompson et al. 1995; Davis et al. 2001; Grime 2001).
Invasion may not differ from colonization; alternatively,
disturbance may operate in association with other pro-
posed mechanisms for exotic plant success (i.e., enemy
release, empty niches, evolutionary change, novel weap-
ons) and cause species to attain community dominance
only where they occur as exotics. The effect of disturbance
on invasion is not limited to the direct responses of exotic
species. The success of an invader can also be influenced
by the response of resident native species to disturbance,
which can depend on the familiarity of a community with
a particular disturbance regime (D’Antonio et al. 1999).
Indeed, as early as 1879, Gray speculated that exotics dom-
inate in disturbed areas because they are adapted to dis-
turbances that are novel to the locals.

We used an explicitly biogeographic approach to in-
vestigate the response of an annual plant, Centaurea sol-
stitialis L., Asteraceae (yellow starthistle; see app. A in the
online edition of the American Naturalist for a review of
the biology and introduction history of this species), to
disturbance in its native and nonnative range. We pursued
this objective by conducting the same disturbance and seed
addition experiments in one region of origin, southern
Turkey, and two regions in the introduced range of C.
solstitialis that vary considerably in climate and the dom-
inant plant functional group, northern California and cen-
tral Argentina. We also conducted greenhouse experiments
to evaluate regional genotypic differences in C. solstitialis
and the effects of local soil microbes.

In its native range, C. solstitialis is largely confined to
disturbed sites and is considered a typical ruderal species
(Davis 1975; Uygur et al. 2004). In both California and
central Argentina, C. solstitialis is one of the most abundant
invasive exotic species (Pitcairn et al. 1998; J. L. Hierro
and D. Villarreal, unpublished data), and although its oc-
currence is also often associated with disturbed areas
(Maddox et al. 1985; J. L. Hierro and D. Villarreal, un-
published data), the role of disturbance in its invasion
success has received surprisingly little attention (but see
Dukes 2002; Gelbard and Harrison 2005). Here we focus
on four fundamental questions: Does the response of C.

solstitialis to disturbance vary between its native and in-
troduced ranges? Do C. solstitialis populations exhibit ge-
netically based differences in size and fecundity among
studied regions? Does the effect of soil biota on C. solsti-
tialis growth vary among these regions? Is the response to
disturbance consistent for two climatically and ecologically
contrasting regions where C. solstitialis has been intro-
duced?

Material and Methods

Study Sites

Field experiments were conducted in northern Califor-
nia, central Argentina, and southern Turkey (see app. B
in the online edition of the American Naturalist for lo-
cations). Table 1 displays information on climate, soil,
and vegetation at the experimental sites in the three
regions. A 5% HCl test indicated that soils at all sites are
noncalcareous. Vegetation at the California site was dom-
inated by Eurasian annual grasses and herbs, such as
Bromus diandrus, Bromus hordeaceus, Hordeum murinum,
Lolium multiflorum, and Trifolium hirtum. In sharp con-
trast, the site in central Argentina was dominated by
native perennial bunchgrasses, including Pitptochaetium
napostense, Poa ligularis, Stipa clarazii, and Stipa tenuis-
sima, accompanied by subordinate annual and perennial
herbs such as Gnaphalium gaudichaudianum and Bac-
charis sp. In Turkey, the site was grassland dominated by
one native perennial species, Hordeum bulbosum, and less
important annual and perennial species, including Avena
barbata, Bromus squarrous, Trifolium sp., and Cichorium
intybus. Sites in California and central Argentina histor-
ically have been grazed but never plowed. The site in
Turkey has also been grazed and used for wheat and
barley production without the addition of fertilizers.
Cropping ceased 4 years before our study. In northern
California, fire occurred every ∼25 years before European
settlement and every ∼8 years after the arrival of Eu-
ropeans (McCreary 2004). During most of the twentieth
century, fire frequency dramatically decreased as the re-
sult of active fire suppression. Fire is most likely to occur
in summer and early fall in this region. In central Ar-
gentina, Medina et al. (2000) reported mean fire intervals
of ∼13 years for 1787–1879, ∼15 years for 1880–1910,
and ∼7 years for 1911–1993, with summer as the main
fire season. Near our experimental site in Turkey, the fire
frequency interval for the period 1820–1960 has been
estimated at about 9 years, with high-intensity fires oc-
curring every ∼25 years (Neyisci 1985). Summer is also
the main fire season in southern Turkey.
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Table 1: Characteristics of experimental sites in California, Argentina, and Turkey

Characteristics California Central Argentina Turkey

Mean annual precipitation (mm) 749a 686 527b

Mean annual temperature (�C) 17 15 14
Maximum (�C) 24 22 22
Minimum (�C) 10 8 6

Soil texture (%) 50 sand, 12 clay, 38 silt 70 sand, 2 clay, 28 silt 58 sand, 20 clay, 22 silt
Soil total N and C (%) .38 N, 4.56 C .16 N, 1.62 C .20 N, 2.34 C
Soil pH 5.85 7.68 7.29
Soil depth (m) 11.00 11.00 .60
Bare ground (%) 3 1.5 16
Litter (%) 45 14 7
Annual grasses (%) 50 !1 11
Annual herbs (%) 2 12 2
Perennial grasses (%) 0 64 53
Perennial herbs (%) 0 8 11

Note: Data on soil particle size distribution and chemistry are means of five soil samples collected from the top 10 cm. Soil depths are

also means of five measures. Percent cover of bare ground, litter, and plants are means of 15 -m plots, obtained in fall 2002 in California1 # 1

and Argentina and fall 2003 in Turkey.
a October to May, Mediterranean.
b October to June, Mediterranean.

Disturbance and Seed Addition Experiments

Experiment 1. In January 2002 in central Argentina, August
2002 in California, and July 2003 in Turkey, we selected
a representative natural grassland that had no Centaurea
solstitialis but, based on the abundance of the weed nearby,
would apparently be ideal for C. solstitialis if it dispersed
there. We selected sites located in open and flat fields, so
that light availability and slope were as comparable as
possible across regions. Selected sites were isolated by at
least 5 km from other populations of this plant and main
roads to minimize potential influences of the seed bank.
Study sites in all regions were fenced to prevent damage
from domestic animals. Logistic constraints related to car-
rying out field experiments at such global scale and con-
cerns about spreading a noxious weed into uninvaded
grasslands limited our ability to replicate sites within each
region. We took care to follow the same protocol in all
three regions. In March 2002 in Argentina, October 2002
in California, and September 2003 in Turkey, we marked
60 -m experimental plots that were separated from1 # 1
each other by 0.50 m. Vegetation in the space between
plots was mowed at the beginning of the experiment and
periodically throughout the study.

At each site, plots were randomly selected to form four
groups of 15, and each group received one of the fol-
lowing four treatments: soil turnover, to represent plow-
ing; fire; clipping, to represent haying or vertebrate her-
bivory; and no disturbance. Soil turnover was performed
with a shovel to a depth of 0.30 m, mixing vegetation
and litter. For the fire treatment, a fire was started in a
corner of the plot and allowed to burn inside a metal

frame m m tall; in all cases, fire com-1 # 1 wide # 0.30
pletely burned the material present in the plots. For the
clipping treatment, vegetation was clipped once to a
height of 1 cm and removed from plots. In the 15 un-
disturbed plots, we recorded percent cover of plant spe-
cies, bare ground, and litter to estimate initial conditions
at each study site (table 1). Once treatments were estab-
lished, and before the arrival of autumn rains in Cali-
fornia and Turkey, we added 200 locally collected pappus
achenes (hereafter referred to as seeds) of C. solstitialis
to the -m area in the center of each experi-0.50 # 0.50
mental plot, which allowed for a buffer zone. We used
only seeds that looked healthy and filled with an embryo
(see Gerlach and Rice 2003 for details on the protocol
we followed). To keep seeds from being moved out of
the plots, we placed m m tall0.50 # 0.50 wide # 0.15
wood frames around the seeded center of plots. Frames
were removed shortly after the first rains, which occurred
2, 16, and 26 days after adding seeds in Argentina, Cal-
ifornia, and Turkey, respectively. At the end of each sea-
son, we counted the number of C. solstitialis individuals
present in the 180 experimental plots, with the exception
of the late fall census in 2002 in California. Centaurea
solstitialis densities were calculated per square meter. At
the peak of flowering, during the summer following the
addition of seeds (January 2003, August 2003, and Au-
gust 2004 in Argentina, California, and Turkey, respec-
tively), we determined levels of invasion/colonization in
all plots as proportion of plant establishment (number
of plants present in plots in the summer divided by the
number of seeds added to plots in the fall), height, and
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number of flower heads of C. solstitialis. To estimate plant
fecundity, we counted the number of inflorescences of
five randomly selected individuals in each experimental
plot and took the mean of these plants as the number
of flower heads per plant in each plot. When the number
of plants was less than five, we counted inflorescences of
all individuals present in the plot and average them to
obtain the number of inflorescences per plant. In addi-
tion, we estimated the percent cover of plant species, bare
ground, and litter in all experimental plots.

Experiment 2. This experiment was conducted for a sec-
ond time in the nonnative regions from autumn 2003 to
summer 2004. Experimental plots were located 5 m away
from the first year’s plots. The experimental protocol was
identical to that in experiment 1 (see app. C in the online
edition of the American Naturalist).

Common Garden Experiment

Because we used local seed sources in our field experi-
ments, we assessed the potential for differences in genotype
among C. solstitialis populations in California, Argentina,
and the native range to explain our biogeographic com-
parisons by conducting a common garden experiment in
a greenhouse on the University of Montana campus. We
used seeds from six C. solstitialis populations in California,
six populations in central Argentina, five populations in
Turkey, and five populations in Georgia, near Turkey, and
also within the native range of this plant (see app. D in
the online edition of the American Naturalist for loca-
tions). Seeds were collected in January 2002 in Argentina,
August 2002 in California, and August 2004 in Turkey and
Georgia. For each population, we planted five seeds in
each of five 2,500-cm3 plastic pots. Seedlings in pots were
then thinned to one individual and watered periodically
to field capacity throughout the experiment. Pots were
filled with a mixture of 2 parts sand and 1 part soil. Soil
was collected from a grassland site located near Missoula,
Montana. The sand was 20/30 grit, corresponding to mean
diameters of 0.85 mm and 0.60 mm, respectively. At se-
nescence (∼8 months of growth), we counted the number
of flower heads produced by each individual, harvested
plants, dried them at 60�C until constant weight, and de-
termined total biomass.

Soil Biota Experiment

We also examined whether soil microbes in native and
introduced regions had differential effects on C. solstitialis
growth. We collected soils from two sites in California,
three sites in Argentina, and five sites in Eurasia (see app.
B for locations). After collection, soils were immediately
subjected to slow air-drying to mimic drying conditions

that would occur during natural drought. One-half of the
soils were then treated by triple autoclaving on three suc-
cessive days to kill soil microbes. Pure sterile and nonsterile
soils were used to plant three C. solstitialis seeds, collected
from a single population in Turkey (population 13 in app.
D), in each of two to 10 250-mL pots per site-soil treatment
combination. Seedlings in pots were soon thinned to one
individual. Single C. solstitialis plants were grown for 53
days while being fertilized once every 2 weeks with 10 mL
0.34 g/L solution of Miracle Grow Professional (15N-2P-
20K) fertilizer and watered to field capacity every 2–3 days.
Fertilization was intended to neutralize potential differ-
ences in nutrient flushes among sites caused by the ster-
ilization of soil. At the end of the experiment, plants were
harvested, dried at 60�C, and weighed for total biomass.

Plant Density in Naturally Occurring Populations

We measured plant density in naturally occurring popu-
lations of C. solstitialis in three disturbed sites in summer
2003 and 2004 in each of the three regions to evaluate
whether levels of invasion and colonization in experimen-
tal plots matched general abundances in the regions where
we worked and to compensate for the lack of replicated
experiments within a region. At each site, plant density
was determined in five -m plots. Sites in all three1 # 1
regions have a long history of natural and prescribed fire
and domestic grazing. In Turkey, two of the sites had been
used for agricultural purposes in the past. In all cases, sites
were located within the general region where disturbance
and seed addition experiments were conducted (see app.
B for locations). Two sites in Turkey (sites 1 and 2 in app.
B) were destroyed by vandals and flooding in the winter
of 2004; thus, density in summer 2004 was measured only
at one site.

Precipitation during the Study

Total rainfall in the 2002–2003 season in California (785
mm) and in 2002 in central Argentina (748 mm) was
slightly above the annual mean for both regions (749 and
686 mm, respectively). In contrast, 2003–2004 was drier
than average in California (658 mm), but more impor-
tantly, 99% of the rainfall occurred between October and
March, resulting in considerable drought during the late
spring and summer. Similarly, rainfall in 2003 in Argentina
was only 378 mm, the fifth driest year since 1911. Pre-
cipitation in the 2002–2003 season in Turkey (550 mm)
was close to the mean value (527 mm), but in 2003–2004,
precipitation was almost twice the average (926 mm).
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Statistical Analyses

We compared seasonal changes in C. solstitialis densities
through the year among regions for individual treatments
with repeated-measures ANOVA and Tukey post hoc
comparisons. Due to the lack of data for late fall census
in California, analyses were conducted with data from
late winter, late spring, and summer. Data were trans-
formed with the square root function to meet assump-
tions of this statistical test. Data for C. solstitialis’s pro-
portional establishment, patch height, and number of
inflorescences per plant in the summers following seed
additions were analyzed using a randomized complete
block design, where regions were treated as blocks. In
this design, both region and disturbance treatments were
considered fixed factors. Pairwise comparisons between
disturbance treatments within a single region and those
between regions for a single disturbance treatment were
performed using Tukey’s method. We used a square root
transformation for proportional establishment and patch
height data and a logarithmic transformation for fecun-
dity data to meet ANOVA assumptions and improve the
distribution of residuals. Percent cover of C. solstitialis
versus that of all other plant species present in plots in
the summer following seed additions were analyzed using
paired-sample t-tests. Data from the common garden ex-
periment were analyzed with two-way ANOVA with re-
gion of origin as fixed factor and population nested
within region. Centaurea solstitialis biomass in the soil
biota experiment was analyzed with three-way ANOVA,
where soil origin and soil treatment were treated as fixed
factors and site was nested within soil origin. We trans-
formed data with the square root function to meet
ANOVA assumptions and improve the distribution of
residuals. Finally, we assessed differences in plant density
of naturally occurring populations of C. solstitialis among
all three regions using nested ANOVA, where site was
nested within region, with post hoc comparisons again
performed using Tukey tests.

Results

Disturbance and Seed Addition Experiments

As expected, disturbance enhanced the abundance and
performance of Centaurea solstitialis plants in all three
regions, but the effects of disturbance were greater in the
nonnative ranges than in the native range. Soil turnover
and fire in California and soil turnover in Argentina were
the treatments where the weed experienced its greatest
success (figs. 1–3).

Seasonal changes in plant density during the year. In plots
with soil disturbance, the density of C. solstitialis was con-
sistently more than one order of magnitude higher in the

nonnative sites than in the native site (fig. 1). Interestingly,
C. solstitialis density continued to increase through the
spring months in both invaded regions, indicating ex-
tended germination, but this did not occur in Turkey,
where plant density remained almost unchanged during
the experimental period. Density in the fire treatment was
higher in California than in the other regions. As in the
soil turnover treatment, we observed a second wave of
germination in this treatment in the spring in the non-
native regions, but it was much stronger in California than
in Argentina. Differences in plant density among regions
were smaller in the clipping and control treatments than
those in the other two treatments; however, C. solstitialis
density was still higher in introduced than in native
regions.

Plant proportional establishment. The proportion of C.
solstitialis seeds that established plants in the summer in
the soil disturbance treatment was about 20 times greater
in nonnative than in native regions (fig. 2A). Plant estab-
lishment in the fire treatment was much higher in Cali-
fornia than in the other two regions, but in the clipping
and control treatments, establishment was greater in the
other introduced region, Argentina, than in California and
Turkey. Relative to the control, all three disturbance treat-
ments significantly increased C. solstitialis establishment
in California; in contrast, only soil turnover in Argentina
and fire in Turkey had such effects.

Patch height. Centaurea solstitialis plants in soil turnover
and fire treatments were much taller in introduced than
in native sites (fig. 2B). In the clipping treatment, plants
were taller only in Argentina than at home, and height
was similar in all three regions in plots without distur-
bance. Plants in California and Argentina were signifi-
cantly taller in plots with soil disturbance and fire than in
control plots, but in Turkey, disturbance had no effect on
plant height.

Plant fecundity. Fire was the only disturbance treat-
ment where C. solstitialis produced significantly more
flowers abroad than at home (fig. 2C). In the controls,
flower production was higher only in Argentina than at
home.

Plant cover. By the summer following the initiation of
experiment 1, C. solstitialis had formed virtual monocul-
tures only in introduced regions (fig. 3). In the soil dis-
turbance treatment, the cover of C. solstitialis was more
than 80% in California and Argentina, but at home, the
cover of this plant did not differ from the cover of all
other plant species combined. California was the only non-
native region where fire promoted the establishment of
near monocultures of C. solstitialis; in sharp contrast, in
Turkey, the cover of other species in this treatment was
significantly higher than the cover of our target species.
In the clipping and control treatments, the percent cover
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Figure 1: Seasonal changes in Centaurea solstitialis density during the year for each treatment in its introduced (California and central Argentina) and
native (Turkey) ranges in disturbance and seed addition experiment 1. Data are SE. Data from late fall census in California were not available;means � 1
for this reason, repeated-measures ANOVAs were conducted with data from late winter, late spring, and summer (soil turnover: ,F p 200.70region

, ; , , ; , , ; fire: , , ;df p 2, 42 P ! .001 F p 55.38 df p 2, 41 P ! .001 F p 12.30 df p 4, 82 P ! .001 F p 19.76 df p 2, 42 P ! .001season region#season region

, , ; , , ; clipping: , , ; ,F p 19.57 df p 2, 41 P ! .001 F p 21.71 df p 4, 82 P ! .001 F p 7.98 df p 2, 42 P ! .001 F p 33.11 df pseason region#season region season

, ; , , ; no disturbance: , , ; , , ;2, 41 P ! .001 F p 5.73 df p 4, 82 P ! .001 F p 21.00 df p 2, 42 P ! .001 F p 19.12 df p 2, 41 P ! .001region#season region season

, , ). Different letters indicate significant differences ( ) between regions, as determined by Tukey tests.F p 6.41 df p 4, 82 P ! .001 P ! .05region#season

of other species was higher than the cover of C. solstitialis
in all three regions, with the exception of clipping in Ar-
gentina. Results from experiment 2 confirmed in general
the effects of disturbance on C. solstitialis in invaded
regions (see app. C).

Common Garden Experiment

Total C. solstitialis biomass and inflorescence number did
not differ ( , , , and ,F p 1.26 df p 2, 19 P p .31 F p 2.91

, , respectively) among populationsdf p 2, 19 P p .08



Figure 2: Proportional establishment (A), size (B), and fecundity (C) of Centaurea solstitialis in its introduced (California and central Argentina)
and native (Turkey) ranges, at the end of disturbance and seed addition experiment 1 (proportional establishment: , ,F p 90.84 df p 2, 168region

; , , ; , , ; patch height: , ,P ! .001 F p 73.33 df p 3, 168 P ! .001 F p 19.20 df p 6, 168 P ! .001 F p 79.04 df p 2, 136disturbance treatment region#treatment region

; , , ; , , ; fecundity: , ,P ! .001 F p 28.57 df p 3, 136 P ! .001 F p 6.34 df p 6, 136 P ! .001 F p 43.19 df p 2, 136 P !disturbance treatment region#treatment region

; , , ; , , ). Data are SE. Bars with different uppercase.001 F p 38.52 df p 3, 136 P ! .001 F p 5.84 df p 6, 136 P ! .001 means � 1disturbance treatment region#treatment

letters indicate significant differences ( ) between regions for a single disturbance treatment, and those with different lowercase letters indicateP ! .05
significant differences between disturbance treatments within a single region, according to Tukey tests.
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Figure 3: Cover of Centaurea solstitialis in experimental plots in introduced (California and central Argentina) and native (Turkey) ranges at the
end of disturbance and seed addition experiment 1. Data are SE. Asterisks above bars indicate significant differences ( ) betweenmeans � 1 P ! .05
the cover of C. solstitialis and that of all other plant species combined as indicated by paired-sample t-tests (soil turnover: , ,t p �12.50 df p 14

; , , ; and , , ; fire: , , ; , , ; andP ! .001 t p �35.70 df p 14 P ! .001 t p 0.33 df p 14 P p .75 t p �9.20 df p 14 P ! .001 t p �1.04 df p 14 P p .32
, , ; clipping: , , ; , , ; and , , ; no disturbance:t p 9.41 df p 14 P ! .001 t p 4.68 df p 14 P ! .001 t p 1.11 df p 14 P p .29 t p 17.57 df p 14 P ! .001

, , ; , , ; and , , for California, Argentina, and Turkey, respectively).t p 24.06 df p 14 P ! .001 t p 4.88 df p 14 P ! .001 t p 77.67 df p 14 P ! .001
Higher cover of C. solstitialis than of all other species is indicated by a plus sign in parentheses; a minus sign indicates the inverse relationship
between these groups.

from California (biomass, g; flower heads,1.23 � 0.07
), central Argentina (biomass, g;7.67 � 0.53 1.28 � 0.09

flower heads, ), and Eurasia (biomass,8.07 � 0.40
g; flower heads, ).1.04 � 0.07 6.32 � 0.29

Soil Biota Experiment

Sterilization of native Eurasian soils caused a 75% increase
in the total biomass of C. solstitialis. In contrast, sterili-
zation had no significant effects on individuals growing in
Californian and Argentinean soils (fig. 4).

Plant Density in Naturally Occurring Populations

The density of C. solstitialis in naturally occurring pop-
ulations in summer 2003 was around four to five times
higher in the invaded regions than in the native region
(fig. 5). After the dry spring of 2004 in California and the
exceptionally dry year of 2003 in Argentina, C. solstitialis
densities were similar among all regions. Importantly, den-
sities in the summer following the very wet year in Turkey
(2003–2004) were still three to four times less than those
following a normal rainfall year in California (2002–2003)
and Argentina (2002).

Discussion

Does the Response of Centaurea solstitialis to Disturbance
Vary between Its Native and Introduced Ranges?

Perhaps the most accepted truism in invasion biology is
that disturbance promotes exotic invasion (Gray 1879; El-
ton 1958; D’Antonio et al. 1999). Our results support this
perspective but indicate that disturbance may have stron-
ger effects in the nonnative ranges of C. solstitialis than in
its native range (figs. 1, 2). This finding questions the
assumption that disturbance per se is sufficient to explain
the remarkable success of invasive plant species (and spe-
cifically C. solstitialis) in disturbed conditions in their non-
native ranges. If our findings are general, then the common
and powerful effects of disturbance must act in concert
with other factors, allowing certain species to attain com-
munity dominance only where they occur as exotics (fig.
3). Of the factors investigated here, escape from soil path-
ogens may contribute to this pattern (fig. 4).

Our experiments were not conducted at many sites
within each region; therefore, our results must be in-
terpreted with caution until they are confirmed or re-
jected by spatially replicated experiments within
regions. However, our experimental field evidence was
corroborated by our descriptive measures of C. solsti-
tialis density (fig. 5) and our general field observations
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Figure 4: Total biomass of Centaurea solstitialis grown in sterilized and nonsterilized soils collected from two introduced regions, California and
central Argentina, and the native range, Eurasia ( , , ; , , ;F p 0.74 df p 2, 7 P p .51 F p 2.12 df p 1, 107 P p .15soil origin sterilization treatment

, , ). Data are SE. Different letters indicate significant differences ( ) between sterilizationF p 6.76 df p 2, 107 P p .002 means � 1 P ! .05origin#treatment

treatments for each region, as indicated by Tukey tests.

in disturbed areas in California, Argentina, and Turkey.
In many disturbed areas in California and Argentina,
we have observed near monocultures of C. solstitialis,
but we have never seen monocultures in Turkey or the
Georgian Caucasus, also within the native range of the
weed.

Do C. solstitialis Populations Exhibit Genetically Based
Differences in Size and Fecundity

among Studied Regions?

Plants grown from seeds collected from many populations
in the three study regions and under common conditions
were not different in size or fecundity. Therefore, we found
no evidence that the contrasting responses of C. solstitialis
to disturbance at home and abroad were due to genetic
differences in these traits between native and introduced
populations (see Blossey and Nötzold 1995; Lee 2002;
Maron et al. 2004; Bossdorf et al. 2005).

Does the Effect of Soil Biota on C. solstitialis Growth
Vary among Studied Regions?

Recent studies have demonstrated the importance of be-
lowground pathogens in exotic plant invasions (Klirono-
mos 2002; Callaway et al. 2004; Reinhart and Callaway
2004, forthcoming). Stronger suppressive effects of Eur-

asian soil biota on C. solstitialis growth (fig. 4) provide an
initial indication that this plant may have escaped soil
pathogens at home. As in other studies, however, our work
examined the effects of soil microbes on individual plant
performance; we do not know whether they can affect
population dynamics and generate the contrasting nu-
merical abundances between native and nonnative regions
that we document here. Moreover, in an experiment in-
vestigating feedback interactions between C. solstitialis and
the microbial community that develops around its roots
(J. L. Hierro and R. M. Callaway, unpublished data), we
found no biogeographical differences in feedback loops as
demonstrated for another exotic Centaurea (Callaway et
al. 2004). In addition, it is unclear whether soil microbes
would affect C. solstitialis in the way detected in our green-
house study in the presence of other plant species. In sum,
our results are far from being conclusive, and potential
biogeographic differences in the effects of soil biota on C.
solstitialis need further exploration.

Other Mechanisms

Several other mechanisms not investigated here may in-
teract with disturbance to drive greater success in intro-
duced ranges, including the release in nonnative regions
from aboveground specialist herbivores and pathogens and
soil microfauna that control plant population growth in
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Figure 5: Density of Centaurea solstitialis in naturally occurring populations in summer in introduced (California and central Argentina) and native
(Turkey) ranges (2003: , , ; 2004: , , ). Data are SE. Different letters indicate significantF p 9.90 df p 2,6 P p .01 F p 1.10 df p 2,4 P p .42 means � 1
differences ( ) among regions for each year, as indicated by Tukey tests.P ! .05

native locales (see Elton 1958; DeWalt et al. 2004). The
fact that our experiment assessed invasion/colonization
levels after the addition of the same number of seeds in
each region and throughout a single annual cycle rules
out the possibility that capitula seed predators, the most
commonly selected insects for biological control, are re-
sponsible for invasion success. If the absence of natural
enemies is the comechanism, then enemies that attack
seeds in the soil, seedlings, or rosettes must be involved.
In fact, Uygur (2004; see also app. A) reported the presence
of root-boring weevils (Ceratapion spp.) in seedlings and
rosettes of C. solstitialis in southern Turkey. Late fall seed-
ling densities in fire and clipped treatments that were
higher in Turkey than in central Argentina (late fall census
is not available for California; fig. 1), however, suggest that
seed and seedling mortality was not greater at home than
abroad. Marked declines during the rosette stage (winter
months; fig. 1) in these treatments in Turkey, on the other
hand, may have been due to the effect of consumers. We
saw no evidence of aboveground herbivory in the field.
Similarly, we did not observe signs of seed, seedling, or
rosette consumption or obvious aboveground infections
in the soil disturbance treatment in Turkey, where re-
cruitment was exceedingly low and almost indistinguish-
able from that in plots without disturbance throughout
the duration of the experiment (fig. 1). Additionally, it is

unclear why enemies would have stronger negative effects
on plants in the soil disturbance treatment than in any
other disturbance treatment at home. The decline in plant
density observed in our experiments in Turkey corre-
sponds with general declines observed during the rosette
and flowering stages reported by Uygur and colleagues
(2004) in other regions of Turkey. However, they also did
not know the causes of the decline. If the natural enemies
hypothesis applies at all to the invasion success of C. sol-
stitialis, an important implication of our work is that en-
emies must have their effects very early in plant
development.

Variation in the response of resident vegetation to dis-
turbance is another factor that could have caused the
greater success of C. solstitialis in introduced ranges than
in its native range. Perhaps other members of the plant
communities in Turkey, in particular those of the ruderal
community, are able to colonize disturbed areas more rap-
idly than members of the ruderal community in the in-
troduced regions, creating conditions of greater compe-
tition in native than in invaded communities. In fact, in
the late fall sampling in Turkey (fig. 1), it was difficult to
identify C. solstitialis seedlings because of the presence of
a dense cover of other members of the Asteraceae family
that looked similar to juvenile individuals of our target
species in a number of disturbed plots. Additionally, the
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cover of other plant species in Turkey was significantly
higher than the cover of C. solstitialis in all treatments in
the summer with the exception of soil disturbance, where
percent cover of these two groups was similar (fig. 3). In
contrast, C. solstitialis formed near-monocultures in soil-
disturbance plots in both recipient communities and in
burned plots in California (fig. 3). In combination, these
results support to some extent the idea that differences in
the resilience of the plant community could have affected
the response of C. solstitialis to disturbance in each of the
studied regions. Similarly, the remarkable success of C.
solstitialis, primarily in terms of density and percent cover
(figs. 2A, 3, C2A), in burned plots in California relative
to the other two regions, could be related to variation in
the response to fire of the vegetation present in each lo-
cality. That is, given the widespread dominance of annual
species in California, fire in autumn can kill seeds and
individuals, creating favorable conditions for invasion that
could last longer than in Turkey and Argentina, where
dominant perennial grasses (table 1) can resprout and rap-
idly resume competition against newcomers. Additionally,
percent cover of litter was greater in the Californian site
than in the Argentinean and Turkish sites (table 1), which
could have resulted in higher fire intensity in our treatment
in California.

A hypothesis similar to that described in the previous
paragraph was proposed by Asa Gray over 120 years ago.
Gray (1879) thought that exotic plants may thrive in dis-
turbed areas because they are adapted to disturbances that
are novel to the locals. Since the “locals” in California are
represented almost exclusively by exotics from Eurasia, in
our study, this hypothesis might better apply to central
Argentina, where grasslands are dominated by native
bunchgrasses (table 1). Moreover, a recent study showed
that the present dominance of exotic annual grasses them-
selves in California grasslands may be due to disturbance
(Corbin and D’Antonio 2004). Although the simulation
of a novel disturbance such as plowing in Argentina pro-
moted C. solstitialis abundance and performance more
than any other treatment when compared with Turkey and
other treatments in Argentina (figs. 2, 3), the success of
the weed was greater in this nonnative region than at home
in virtually every disturbance type, including natural dis-
turbance such as fire (fig. 2B, 2C). Perhaps a longer history
with humans and, in consequence, with severe disturbance
enables this plant to gain tenure over natives under a large
suite of disturbance types. However, proportional estab-
lishment and fecundity were higher in Argentina than in
Turkey, even in the absence of disturbance (fig. 2), rein-
forcing the idea that other factors in addition to distur-
bance promote greater success in nonnative relative to
origin ranges.

The observation that C. solstitialis can form dense and

almost monospecific stands in recipient regions has
prompted some researchers to propose that allelopathy
could be behind its invasion success (e.g., Maddox et al.
1985), and there is good evidence that allelopathy may
play a role in plant invasions (Hierro and Callaway 2003),
including invasion by other Centaurea species (Bais et al.
2003; Vivanco et al. 2004). However, recent experiments
coordinated in three different laboratories have not found
convincing evidence that C. solstitialis is allelopathic (R.
M. Callaway, S. Strauss, J. M. Vivanco, and J. Yoder, un-
published data), suggesting that the novel-weapons hy-
pothesis (Callaway and Aschehoug 2000; Callaway and
Ridenour 2004) is unlikely to explain the disproportional
success of this species in nonnative ranges.

Although soils were relatively deep in all three experi-
mental sites (table 1), shallower soils in the native site
could have influenced the outcome of our study as soil
depth can reduce resource partitioning and increase com-
petition between C. solstitialis and other plants (Sheley and
Larson 1995; Dukes 2001, 2002). Centaurea solstitialis re-
cruitment in the soil disturbance treatment at home, how-
ever, was low even in the first three months after we ini-
tiated our field experiment (fig. 1), a period of time likely
to be too short for soil depth to become a factor. Differ-
ences in soil depth between native and nonnative regions
could have been involved, on the other hand, in the de-
clines in plant density observed in the other treatments.
Due to the lack of true replication of our field experiment,
we cannot rule out a possible role of soil depth in our
biogeographical pattern; however, the results from the dis-
turbance and seed addition experiment are consistent with
measurements of density obtained in natural C. solstitialis
populations in disturbed sites in the three regions (fig. 5).
Our measurements in Turkey appear to be quite conser-
vative for C. solstitialis abundance in general because a
different study describes densities about one order of mag-
nitude lower at all measured sites in this country (Uygur
et al. 2004). Thus, it is highly unlikely that we simply chose
places to work in Turkey where C. solstitialis performs
poorly. Densities of C. solstitialis in California in the sum-
mer of 2003, on the other hand, were comparable with
those at three other sites studied over 7 years (Pitcairn et
al. 2002), indicating that densities we recorded in 2004 are
exceptionally low for this region and were due to the dry
spring season of that year. Adequate or high rainfall in the
spring appears to greatly increase the abundance of C.
solstitialis in California. There are no previous measure-
ments of density in Argentina for comparison with our
densities; however, the extreme drought conditions during
the year before our 2004 measurements suggest that the
2003 densities are more representative.
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Is the Response to Disturbance Consistent for Two
Climatically and Ecologically Contrasting Regions

where C. solstitialis Has Been Introduced?

Limited establishment in plots without disturbance in Cal-
ifornia (figs. 1–3, C1, C2) highlights the important role
of disturbance for C. solstitialis invasion (also see Dukes
2002; Gerlach and Rice 2003; Gelbard and Harrison 2005).
The importance of disturbance, especially soil turnover,
for C. solstitialis to attain community dominance is also
clear in central Argentina (figs. 1–3, C1, C2). In contrast
to the strong context specificity of invasions found by
others (e.g., D’Antonio 1993; Lambrinos 2002), and de-
spite substantial variation in rainfall patterns and domi-
nant plant functional groups between California and Ar-
gentina, we found that disturbance to plant communities
in both regions prompted invasion and domination by C.
solstitialis in a very similar manner. The better response
of C. solstitialis to disturbance abroad than at home, how-
ever, indicates that disturbance is only part of the answer
for why this species is such a dominant invader. Whether
the efficient exploitation of disturbed sites by C. solstitialis
in California and central Argentina shares a mechanistic
commonality remains to be determined.
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