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Disturbance modeling and design of state estimators for offset-free Model Predictive Control (MPC) with linear state-space
process models is considered in the paper for deterministic constant-type external and internal disturbances (modeling
errors). The application and importance of constant state disturbance prediction in the state-space MPC controller design
is presented. In the case with a measured state, this leads to the control structure without disturbance state observers.
In the case with an unmeasured state, a new, simpler MPC controller-observer structure is proposed, with observation of
a pure process state only. The structure is not only simpler, but also with less restrictive applicability conditions than
the conventional approach with extended process-and-disturbances state estimation. Theoretical analysis of the proposed
structure is provided. The design approach is also applied to the case with an augmented state-space model in complete
velocity form. The results are illustrated on a 2×2 example process problem.
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1. Introduction

The aim of this paper is twofold: first, to present
a systematic explanation of the way the deterministic
constant-type disturbances entering the process at any
point, possibly with white noise added, can be effectively
treated to obtain offset-free model predictive control,
under (asymptotically) constant set-point values. The
examined class of disturbances, important particularly
in process control, includes modeling errors and outer
step or piecewise-constant disturbances changing rarely
(with respect to controlled process dynamics). Second,
the closely related problem of state observer (or Kalman
filter) design, when operating with MPC algorithms for
processes under disturbances from the stated class, will
be presented. Linear state-space process models will be
considered in the paper, for which new and competitive
control structures will be proposed.

Among the advanced control techniques (see, e.g.,
Blevins et al., 2003; 2013; Tatjewski, 2007). Model
Predictive Control (MPC) is now a well established
general technology, resulting in a variety of very
successful control techniques applied in practice (see,
e.g., Camacho and Bordons, 1999; Maciejowski, 2002;
Qin and Badgwell, 2003; Rossiter, 2003; Blevins et al.,

2003; 2013; Tatjewski, 2007; 2008; 2010; Wang, 2009;
Rao and Rawlings, 2009). While nonparametric models
(like step responses) and transfer function models lead
to well established MPC structures, as DMC and GPC,
respectively, state-space modeling results in a variety of
possibilities.

Different approaches to state-space modeling (as
minimal and non-minimal models with full measured
state, models with state observers, extended velocity
form state-space models including integrators) lead to
different handling of deterministic disturbances. Another
important factor are points and ways these disturbances
influence the process. The mentioned problem had
attracted rather limited attention in the literature until the
last decade (Muske and Badgwell, 2002; Pannocchia and
Rawlings, 2003; Tatjewski, 2007; 2011; Pannocchia and
Bemporad, 2007; Gonzalez et al., 2008; Maeder and
Morari, 2010; Morari and Maeder, 2012). However, there
can still be seen a certain lack of clear understanding
how disturbances should be most effectively treated in
appropriate MPC algorithms with state-space models. A
closely related problem is the way that state observers or
Kalman filters should be designed within MPC control
structures, as this occurs not to be unique even in
general terms (which variables to estimate), and also not
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sufficiently well understood and explained in the current
literature. We concentrate on these problems in the
paper, for the class of deterministic disturbances defined
above. More general, continuously varying disturbances,
like sinusoids, are not considered (see the work of
Maeder and Morari (2010) for offset-free MPC reference
tracking under varying disturbances). It is hard to say,
at the moment, whether it is possible to generalize the
approaches proposed in the paper to this case.

The structure of the paper is as follows. First,
in Section 2, MPC is briefly recalled, to introduce
formulations needed for further discussion. In Section 3,
the case with a state-space process model assuming
full state measurement is considered, with disturbances
entering the process input or directly the process states
(thus, including also modeling errors). It is explained
that, when the constant state disturbance prediction is
used (Tatjewski, 2007), then the observer for deterministic
disturbances considered is not needed. In Section 4,
the case with an unmeasured state and state observers
is described. It is argued that the standard approach
of extension of the process dynamics by states of
deterministic disturbances and then estimation of the
extended process-and-disturbance state (see Muske and
Badgwell, 2002; Maciejowski, 2002; Pannocchia and
Bemporad, 2007; Gonzalez et al., 2008; Morari and
Maeder, 2012), although correct, may not be the best
solution. Using, appropriately, a pure process state
observer only is proposed as more efficient for the class
of disturbances considered. It is shown that then the
observer estimates not exactly the actual process state, but
the state shifted by appropriate values corresponding to
disturbances. It is proved that the use of constant state
disturbance prediction and an appropriate correction term
in output prediction equations provides offset-free control.
In Section 5, the case of a non-standard, extended process
model in complete velocity form (incremental process
state vector augmented by the outputs) is considered (Prett
and Garcia, 1988; Gonzalez et al., 2008). It is shown
that also in this case the simpler original process state
observer followed by appropriate recalculations seems
to be a sound solution. The proposed design methods
are illustrated on a multivariable (2×2) example process
model representing a linearized continuous flow reactor.

2. Predictive control briefly recalled

The principle and various algorithms of MPC are
presented in many papers and books, including those
with discrete-time state-space process models we are
interested in (see, e.g., Maciejowski, 2002; Rossiter, 2003;
Tatjewski, 2007; Wang, 2009). Therefore, we shall only
briefly recall what will be needed for further presentation.

The principle of MPC is to evaluate the current
control signal by minimizing, at each sampling instant

k, a performance function (cost function) on the future
prediction horizon of N samples. The following
performance function (with dim y = dimu assumed, for
simplicity of presentation) is one of the most widely used:

J(k) =
N∑

p=1

‖[ysp(k + p|k) − y(k + p|k)‖2
Ψ

+
Nu−1∑

p=0

‖Δu(k + p|k)‖2
Λ , (1)

where ‖x‖2
R = xT Rx, Ψ ≥ 0 and Λ > 0 are square

diagonal scaling matrices of dimensions corresponding
to those of the process controlled output and control
input vectors, dimy = ny and dimu = nu (often
simpler formulation of (1) is used in basic theoretical
deliberations, with one scaling scalar λ only, i.e., Ψ = I
and Λ = λI). In the above, Nu ≤ N denotes the
length of the control horizon, ysp(k+p|k) and y(k+p|k)
are set-points (reference values) and outputs predicted
for a future sample k + p, but calculated at the current
sample k, p = 1, . . . , N . The decision variables are
control increments on the control horizon, Δu(k+p|k) =
u(k + p|k) − u(k + p − 1|k), p = 0, . . . , Nu − 1.

The optimization of J(k) is performed subject to
constraints (a more general form of constraints, including
any linear functions of all variables used, is possible, but
avoided here for presentation simplicity):

−Δumax ≤ Δu(k + p|k) ≤ Δumax,

p = 0, . . . ,Nu−1, (2)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . ,Nu−1, (3)

ymin ≤ y(k + p|k) ≤ ymax, p = 1, . . . , N. (4)

The superposition principle can be applied when
using linear process models; then the predicted trajectory
of the outputs can be split into the “free trajectory”
{y0(k + p|k), p = 1, . . . , N}, depending on current and
past data only (obtained with the control frozen over the
prediction horizon on the last applied value u(k − 1))
and the “forced trajectory” {y+(k + p|k), p = 1, . . . , N},
depending on the vector of decision variables only,

y(k + p|k) = y0(k + p|k) + y+(k + p|k),
p = 1, . . . , N. (5)

Denoting the vector of decision variables by ΔU(k),

ΔU(k) = [Δu(k|k)T Δu(k+1|k)T · · ·
· · ·Δu(k+Nu−1|k)T ]T , (6)

we have, due to linearity of the process model,

y+(k + p|k) = Mp ΔU(k), p = 1, . . . , N, (7)
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where the matrix M=[MT
1 · · ·MT

N ]T consists of process
step response coefficients (it is often called the dynamic
matrix).

Denote

Y sp(k) = [ysp(k + 1|k)T · · · ysp(k + N |k)T ]T , (8)

Y 0(k) = [y0(k + 1|k)T · · · y0(k + N |k)T ]T , (9)

Y +(k) = [y+(k + 1|k)T · · · y+(k + N |k)T ]T , (10)

Ψ = diag{
N times︷ ︸︸ ︷

Ψ, . . . , Ψ}, Λ = diag{
Nu times︷ ︸︸ ︷

Λ, . . . , Λ}. (11)

Then we can formulate in compact form the way the
MPC algorithm calculates the control trajectory. It is the
following MPC optimization problem:

min
ΔU(k)

{J(k) =
∥∥[Y sp(k) − Y 0(k) − MΔU(k)

∥∥2

Ψ

+ ‖ΔU(k)‖2
Λ} (12)

subject to (2)–(4).
Under the stated assumptions, the MPC optimization

problem (12) is a strictly convex Quadratic Programming
(QP) problem, thus with a well-defined, unique solution,
provided the set defined by the constraints assures
feasibility (is non-empty).

All the formulae given in this section are general,
valid for linear process models in any form—for different
kinds of models different formulae for the matrix M and
the predicted output free trajectory Y 0(k) result.

3. MPC with a state-space model and
a measured state

We shall describe MPC controllers with state-space
process models as MPCS (MPC with a State-space model)
controllers. Let us assume now the following state-space
process model:

x(k + 1) = Ax(k) + Bu(k) + v(k), (13)

y(k) = Cx(k), (14)

where x is the state vector of dimension nx, assumed mea-
sured in this section, y is the output vector of dimension
ny and v is the state disturbance vector, representing
constant-type disturbances of the class considered. Using
this model, recursively, we can easily obtain the formulae
for Y 0(k) and M (see Tatjewski, 2007),

Y 0(k) = C̃Ãx(k) + C̃VBu(k − 1) + C̃Vv(k), (15)

M=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB · · · 0
C(I + A)B · · · 0

C(I + A + A2)B · · · 0
...

. . .
...

C(I+ · · · +ANu−1)B · · · CB
C(I + · · · + ANu)B · · · C(I + A)B

...
...

...
C(I + · · · + AN−1)B · · · C(I+· · ·+AN−Nu)B

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)
where

C̃ = diag{
N times︷ ︸︸ ︷

C, · · · ,C}, (17)

Ã =

⎡

⎢⎢⎢⎢⎢⎣

A
A2

A3

...
AN

⎤

⎥⎥⎥⎥⎥⎦
, V =

⎡

⎢⎢⎢⎢⎢⎣

I
A + I

A2 + A + I
...

AN−1+ · · ·+ A + I

⎤

⎥⎥⎥⎥⎥⎦
.

(18)
To predict v(k), the constant state disturbance pre-

diction model was proposed by Tatjewski (2007):

v(k) = x(k) − [Ax(k − 1) + Bu(k − 1)], (19)

v(k + 1|p) = v(k + 2|p) = · · · v(k + N − 1|k) = v(k).
(20)

The information given above is sufficient for the
formulation and solution of the QP problem of the
state-space model based MPC (MPCS) algorithm. The
above formulation of the MPCS algorithm with state
disturbances v(k) and their prediction (19) used in (15)
assures offset-free disturbance attenuation for any process
input and state disturbances of the class considered.

Process outputs are usually certain elements of the
state vector or linear combinations of its elements; then
the output equation is a precise one, not introducing any
output disturbances (state is measured), and the approach
presented above is sufficient, complete. However, there
are cases when the original output equation is nonlinear,
y(k) = g(x(k)), as, e.g., in the case of the polymerization
reactor considered by Doyle III et al. (1996), where the
output is a nonlinear function of the process states. Then,
using a linearized output equation results in an output
disturbance of modeling error type, which cannot be
attenuated in the structure considered with a measured
state and state disturbances v(k). That is because
the feedback information used in the MPCS algorithm
as “output measurement” is Cx(k)—the true nonlinear
output g(x(k) + x0) is outside the feedback loop (where
x0 is the working point at which the linearized state-space
model has been derived and is applied). A straightforward
analytical compensation, based on the knowledge of the
nonlinear output equation, is recommended here (see
Tatjewski, 2007). Technically, it can be treated as “output



316 P. Tatjewski

disturbance” d(k),

d(k) = g(x(k) + x0) − [g(x0) + Cx(k)]. (21)

It is calculated and added to the predicted output free
trajectory (15), which then takes the form

Y 0(k) =C̃Ãx(k) + C̃VBu(k−1)

+ C̃Vv(k) + Ĩyd(k), (22)

where Ĩy = [

N times︷ ︸︸ ︷
Iy Iy · · · Iy]T , dim Iy = ny × ny .

It should be mentioned that the case with a full
state measured is of practical value not only, e.g.,
in mechatronic applications (like robotics), but also
in process control, where the use of non-minimal
state representations, with state vectors consisting of
current and past process outputs and inputs, introduced
originally by Hesketh (1982) within a pole-placement
control context, can be applied to avoid the necessity
of using state observers or filters (see the works of
Maciejowski (2002), Tatjewski (2007) and Wang (2009)
for applications in MPC algorithms). In particular, models
of dynamic processes in the form of difference equations
can be easily transformed to the above-mentioned
state-space form. This case includes also neural-network
models important for on-line applications of MPC control
(Tatjewski and Ławryńczuk, 2006; Ławryńczuk, 2009;
Ławryńczuk and Tatjewski, 2010).

Finally, let us point out the rather known fact that,
applying mechanically, for constant-type disturbances, the
approach copied from classical DMC or GPC algorithms,
with constant output disturbance prediction used only,

d(k) = y(k) − y(k|k − 1)
= y(k) − Cx(k|k − 1)
= y(k) − C[Ax(k−1) + Bu(k − 1)], (23)

is not correct. It does not usually provide offset-free
control, when used without any other estimation of state
(or input) disturbances. Therefore, the standard solution
was to add a dynamic model of disturbances and next,
consequently, an observer. The approach with constant
state disturbance prediction (19)–(20) is a simpler,
sound solution, not needing the observer (Tatjewski,
2007). Further, we shall utilize this approach to design
a simpler and more general MPC controller-observer
control structure, for the case with an unmeasured state.

4. MPCS with state observation/estimation

The entire state vector is often not accessible, especially
when using minimal state-space representations. State
estimation using observers or Kalman filters is then a
standard solution. We concentrate on state observers,

as the presentation is then simpler and can be easily
generalized.

For the process described by (13)–(14), the state
observer of Luenberger type can be formulated as
follows (the predictive observer (see, e.g., Astrom and
Wittenmark, 1997)):

x̂(k+1) = Ax̂(k)+Bu(k)+Kobs[y(k)−Cx̂(k)], (24)

where x̂(k) denotes the state estimate and Kobs is the gain
matrix of the observer. As well known, observability of
a dynamic system given by matrices A, B, C makes it
possible, by a suitable choice of Kobs, to get any desirable
location of poles of the observer state matrix A − KobsC.
This matrix describes also the dynamics of the estimation
error, eobs(k) = x(k) − x̂(k), as we can easily get

eobs(k + 1) = (A − KobsC)eobs(k). (25)

Having the state estimate x̂(k) and inserting it, in place of
the state x(k), into (19),

v(k) = x̂(k) − [Ax̂(k − 1) + Bu(k − 1)], (26)

and into (15), we get the formula for the free predicted
output trajectory, corresponding to (15):

Y 0(k) = C̃Ãx̂(k) + C̃VBu(k − 1) + C̃Vv(k). (27)

However, it should be realized that the presented
observer estimates the process steady-state correctly
only if deterministic disturbances have zero steady-state.
Under constant non-zero disturbances, the estimated
state will not be equal to the true process state, but
will converge to a shifted state value, biased by the
disturbances. This follows directly from the disturbed
process and observer equations, as presented below.

Consider the process equation with a general state
disturbance vector z(k) ∈ R

nz , nz ≤ nx,

x(k + 1) = Ax(k) + Bu(k) + Gz(k). (28)

Observe that, when G = B, then z(k) are pure input
disturbances (acting on the process input), when G = I,
z(k) are disturbances affecting directly the next state,
while with G z(k) = δAx(k) we have a representation
of modeling errors. Taking now into account the observer
and output equations, (24) and (14), we get

eobs(k + 1) = (A − KobsC)eobs(k) + Gz(k). (29)

Assuming asymptotic stability of the feedback control
system, a constant set-point and constant (in steady-state)
disturbance value zss, we obtain at the equilibrium (in
steady-state) the following constant observation error:

eobs,ss = (I − A + KobsC)−1Gzss, (30)
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which is not zero for zss �= 0. Observe that we have
at steady-state (at the equilibrium), in general, x̂ss �=
xss , yss = Cxss and a non-zero correction term in the
observer equation, yss − Cx̂ss �= 0 (it may happen that
yss = Cx̂ss, occasionally, despite x̂ss �= xss).

Nevertheless, the presented MPCS controller with
the (not augmented) state observer (24) will work cor-
rectly, with offset-free control, provided the predicted
output free trajectory is extended to the following form:

Y 0(k) = C̃Ãx̂(k) + C̃VBu(k − 1) + C̃Vv(k)

+ Ĩy[y(k) − Cx̂(k)]. (31)

This statement will now be proved.
Consider prediction equations of the state, as used in

(31), with the constant state disturbance predictions (26)
taken into account, and formulated recursively:

x0(k + 1|k) = Ax̂(k) + Bu(k − 1)
+ [x̂(k) − Ax̂(k − 1) − Bu(k − 1)],

(32a)

x0(k + 2|k) = Ax0(k + 1|k) + Bu(k − 1)
+ [x̂(k) − Ax̂(k − 1) − Bu(k − 1)],

(32b)

...

x0(k + p|k) = Ax0(k + p − 1) + Bu(k − 1)
+ [x̂(k) − Ax̂(k − 1) − Bu(k − 1)],

(32c)

and so on, until p = N .
Assuming the set-point signal is (asymptotically)

constant, ysp(k) = ysp, and feasible at steady-state,
disturbances are constant and the control system is
asymptotically stable, the following conditions hold at
steady-state:

– states x(k) and their estimates x̂(k) stabilize at
constant values xss and x̂ss,

– the performance function (1) stabilizes at the
most minimal, zero value, as the set-point is
assumed feasible and control increments are zero at
steady-state, which means that

ysp = y0(k + p|k), p = 1, . . . , N. (33)

Taking into account the above conditions, without the
correction term y(k)−Cx̂(k) the free part (31) of the
predictive output trajectory would take, at steady state, the
form

y0(k + p|k) = Cx0(k + p|k)
= C [Ax̂ss + (x̂ss− Ax̂ss)]
= Cx̂ss, p = 1, . . . , N, (34)

which can be obtained by examining, recursively, Eqns.
(32a)–(32c) at steady-state: x̂(k) stabilizes at x̂ss; then
from (32a) x0(k + 1|k) = x̂ss, which with (32b) implies
that x0(k + 2|k) = x̂ss, etc. until x0(k + N |k) = x̂ss.

Therefore, (33) implies that the predicted outputs,
equal to Cx̂ss, would stabilize at the set-point value
ysp. But, adding to every output prediction equation
the correction term y(k) − Cx̂(k), see (31), which at
steady-state is equal to yss −Cx̂ss, shifts the predicted
output value Cx̂ss to the real output value yss; therefore
at steady-state we get the offset-free stabilization:

ysp = y0(k + p|k) = Cx̂ss + [yss−Cx̂ss] = yss, (35)

which completes the proof.
The described technique works properly due to two

factors: the first and key factor is the proper state
prediction due to the use of the constant state disturbance
predictions (26), the second one is the use of the
appropriate correction term y(k)−Cx̂(k), added to the
predicted outputs (after predictions), see (31). It should be
noticed that also output disturbances, either representing
modeling errors of the output equations or outer influences
on the process outputs, will be attenuated, due to the use
of the correction term.

The presented technique is not a known, standard
one. The standard one applied up to now (see Muske
and Badgwell, 2002; Pannocchia and Rawlings, 2003;
Maciejowski, 2002; Pannocchia and Bemporad, 2007;
Gonzalez et al., 2008; Rao and Rawlings, 2009; Maeder
and Morari, 2010) is to augment the process state by the
states of deterministic disturbances, which results in the
following extended state and output equations:

⎡

⎣
x(k + 1)
z(k + 1)
d(k + 1)

⎤

⎦ =

⎡

⎣
A G 0
0 I 0
0 0 I

⎤

⎦

⎡

⎣
x(k)
z(k)
d(k)

⎤

⎦ +

⎡

⎣
B
0
0

⎤

⎦ u(k),

(36)

y(k) =
[

C 0 Gd

]
⎡

⎣
x(k)
z(k)
d(k)

⎤

⎦ . (37)

Then a standard observer is used for estimation
of the extended state vector consisting of process
and disturbance states, (x(k), z(k), d(k)), provided the
extended system is detectable. Necessary and sufficient
conditions for that are the detectability of (C,A) and the
following rank requirement (Muske and Badgwell, 2002):

rank
[
I− A −G 0

C 0 Gd

]

= dim x + dim z + dim d. (38)

In particular, assuming full column ranks of G and Gd,
the condition (38) implies that the extended model is not
detectable if dim z + dim d > dim y, which may be
restrictive.



318 P. Tatjewski

Applying the conventional approach presented
above, we should apply the following formula for
predicted output free trajectory Y 0(k) (instead of (31)):

Y 0(k) = C̃Ãx̂(k) + C̃V(Bu(k − 1)

+ Gẑ(k)) + Ĩy d̂(k), (39)

where ẑ(k), d̂(k) are estimates of disturbances obtained
from the observer of the augmented state.

The MPC controller-observer structure proposed in
the paper, with the constant state disturbance prediction
(26), is a sound alternative to the conventional approach
just described above. It should be pointed out that the
proposed approach is simpler and operates under the
pure process detectability condition only (pair (A,C)
detectable), not imposing additional conditions. On
the other hand, the requirement of detectability of the
extended system (36)–(37) in the conventional approach
implies the additional condition (38), limiting the number
of deterministic disturbances by that of measured outputs
(dim y).

The presented reasoning for the system (13)–(14) has
been so far for the predictive observer (24). A slightly
different and popular observer form, known as the cur-
rent observer (see, e.g., Astrom and Wittenmark, 1997), is
given by the equation

x̂(k) = Ax̂(k − 1) + Bu(k − 1) + Kobs[y(k)
− C(Ax̂(k − 1) + Bû(k − 1))]. (40)

The results described for the predictive observer are all
true for the current observer (can be similarly obtained).

The reasoning presented so far in this paper
was made under the assumption of zero stochastic
disturbances (noises). In general, additional state and
output noises cannot be neglected, thus, instead of
(13)–(14), the system model would be

x(k + 1) = Ax(k) + Bu(k) + v(k) + wx(k), (41)

y(k) = Cx(k) + wy(k), (42)

where wx and wy are state and measurement noises,
assumed usually to be white Gaussian with zero mean
values and covariance matrices Q and R, respectively.
In this case, the use of a Kalman filter instead of a
deterministic observer is recommended. The presented
results can be easily generalized to this case, as the
form of the Kalman filter dynamic equation is identical
with that of Luenberger’s current observer (40) (Anderson
and Moore, 2005; Astrom and Wittenmark, 1997). We
have only the Kalman filter gain matrix K, obtained
in a different way, instead of the observer gain matrix
Kobs. For the stationary (steady-state) Kalman filter, the
generalization is straightforward, as its gain matrix K

is then also constant, given by the equation, (see, e.g.,
Anderson and Moore, 2005)

K = PCT (CPCT + R)−1, (43)

where matrix P is a solution to the Riccati equation

P = A[P − PCT (CPCT + R)−1CP]A + Q. (44)

Certainly, the results concerning state estimates and
zeroing control errors apply now in the stochastic sense.
The proposed MPC control structure, with process state
estimation only, works also with a general (not stationary)
Kalman filter with a variable gain matrix K = K(k) (see
Tatjewski, 2012).

Example 1. The following MIMO (2×2) discrete
process model, representing linearized (at an operating
point) model of a continuous flow reactor will be
considered (Camacho and Bordons, 1999; Tatjewski,
2007):
[

y1(k)
y2(k)

]

=

⎡

⎢⎢⎣

0.041951z−1

1 − 0.958048z−1

0.475812z−1

1 − 0.904837z−1

0.058235z−1

1 − 0.941764z−1

0.144513z−1

1 − 0.927743z−1

⎤

⎥⎥⎦

[
u1(k)
u2(k)

]
.

Applying the “ss” function in Matlab, we get the
following 4-dimensional state-space model:

x(k + 1) =

⎡

⎢⎢⎣

0.958 0 0 0
0 0.9418 0 0
0 0 0.9048 0
0 0 0 0.9277

⎤

⎥⎥⎦x(k)

+

⎡

⎢⎢⎣

0.25 0
0.25 0
0 0.5
0 0.5

⎤

⎥⎥⎦u(k), (45)

y(k) =
[

0.1678 0 0.9516 0
0 0.2329 0 0.289

]
x(k).

(46)
There are also constraints on the process inputs:

−2 ≤ u1 ≤ 2, −0.6 ≤ u2 ≤ 0.6,

−0.5 ≤ Δu1 ≤ 0.5, 0.3 ≤ Δu2 ≤ 0.3.

The chosen MPCS parameters were N =10, Nu =5 and
single scalar weighting Ψ=I, Λ=λI, with λ=0.1. �

The simulation scenario contained both step changes
of the set-points (set-point trajectories are shown by
dashed lines in the figures) and unmeasured input step
disturbances z(k), with step changes from zero to 0.3 and



Disturbance modeling and state estimation for offset-free predictive control. . . 319

−0.2 , respectively, at sample k = 50. The extended state
observer for this case is of the form

[
x̂(k + 1)
ẑ(k + 1)

]

=
[

A B
0 I

] [
x̂(k)
ẑ(k)

]
+

[
B
0

]
u(k)

+ Kobs

(
y(k) − [

C 0
] [

x̂(k)
ẑ(k)

])
, (47)

where the matrices A,B,C correspond to the process
equations (45)–(46).

The poles of the process state observer (24) were
chosen at 0.02, 0.021, 0.023, 0.024 and its initial point
was [1 1 1 1], while the poles of the extended observer
(47) were chosen at similar values, 0.02, 0.021, 0.023,
0.024, 0.025, 0.028, with the initial point [1 1 1 1 0 0]. All
simulations started with the system at a zero equilibrium
point.

The results of simulations are shown in Figs. 1–3, for
cases with full state measurement, with the state observer
(40) and with the extended observer (47), respectively.
The gains of the extended observer turned out to be greater
(about an order of magnitude), and therefore the values
of the state estimates were larger and the corresponding
output trajectories more variable, particularly during
initial phase of damping the initial state estimation errors,
but also after step changes of the input disturbances at k =
50. Moreover, our tests showed an increased sensitivity of
the extended observer to modeling errors.
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Fig. 1. MPCS with state measurement, under step changes of
set-points (dashed line) and input disturbances (at k =
50).

Additionally, trajectories of first two components
of the state vector (solid lines) and the state estimate
vector (dashed lines), corresponding to the trajectories
from Fig. 2, are shown in Fig. 4. It can be seen that the
observer (40) changes values of its estimates after k =
50, due to the influence of step changes of unmeasured
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Fig. 2. MPCS with the state observer (40), under step changes
of set-points (dashed line) and input disturbances (at k =
50).
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Fig. 3. MPCS with the extended state observer (47), under step
changes of set-points (dashed line) and input distur-
bances (at k = 50).
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Fig. 4. Trajectories of the first two state components (solid
lines) and observer outputs (dashed lines), correspond-
ing to the trajectories from Fig. 2.

input disturbances (and the estimation error is according
to (30)).

Figure 5 presents the most demanding experiment:
step changes (from zeros to 0.1 and −0.05 at sample
k = 50) of outer step disturbances affecting directly the
process output were additionally added. Thus at sample
k = 50 four outer step disturbances are simultaneously
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Fig. 5. MPCS with the state observer (40), under step changes
of set-points (dashed line) and step changes of output
and input disturbances (at k = 50).

affecting the system: two input and two output ones. This
is the case when the condition (38) is not satisfied and the
extended dynamical system consisting of process and all
disturbance states would be not detectable. The results
shown in Fig. 5 clearly indicate that the proposed control
structure works well in this case.

Finally, we added to the process state and output
additional noises, wx(k) and wy(k), respectively, with
normal distributions with zero mean and standard
deviations 0.01 for all state variables and (0.009, 0.011)
for the outputs, in addition to the unmeasured input
disturbances, described earlier. Then the stationary
Kalman filter for the process only (not extended) was
designed (using the Matlab function dare), with matrices
Q = 10−3diag{0.5 0.5 0.5 0.5} and R =
10−4diag{0.2 0.2} , which correspond to appropriately
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Fig. 6. MPCS with a stationary Kalman filter, under step
changes of set-points (dashed line) and input distur-
bances, states and outputs with noise (shown also sep-
arately) added.

tuned covariance matrices of the noise signals. The
control system with this filter was tested—an example
result is given in Fig. 6. It shows good performance
of the proposed control structure with simplified state
estimation, also under noisy conditions.

The presented example simulation results show that
the proposed control system works correctly, confirming
the theoretical analysis provided in this section. Based on
these results, and others not presented here due to limited
space (including also simulations with other processes),
it can be concluded that the approach proposed in the
paper should be recommended. It is simpler, using a less
dimensional, standard observer of the process state, and
more general, working also when a possibly restrictive
condition concerning a maximal number of deterministic
disturbances does not hold.

5. MPCS with an extended, velocity form
state-space model

An alternative way to deal with deterministic
disturbances, in order to assure offset-free control,
is to use a specially reformulated model, with incremental
state and corresponding state-space equations including
output integrators (Prett and Garcia, 1988), which is
called in the literature the velocity form model (see the
works of Gonzalez et al. (2008), Maciejowski (2002)
or Wang (2009) for applications to predictive control).
In this approach, there is no need to compensate for
deterministic disturbances, due to the incremental form
of the model. The state-space equation is now defined as
follows:

Δx(k + 1) = AΔx(k) + BΔu(k), (48)

where Δx(k) = x(k)−x(k−1), Δu(k) = u(k)−u(k−1).
Defining the extended state vector as

xr(k) = [Δx(k)T y(k)T ]T (49)

and taking into account (48), we obtain

y(k + 1) − y(k) = CΔx(k + 1)
= CAΔx(k) + CBΔu(k). (50)

Thus, we get the following extended state-space
equations:

[
Δx(k + 1)
y(k + 1)

]
=

[
A 0

CA I

][
Δx(k)
y(k)

]

+
[

B
CB

]
Δu(k), (51)

y(k) = [0 I]
[

Δx(k)
y(k)

]
. (52)
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Introducing individual symbols for matrices in (51) and
(52), we can write these equations in compact form,

xr(k + 1) = Arxr(k) + BrΔu(k), (53)

y(k) = Crxr(k). (54)

We shall denote the described algorithm by the acronym
MPCSE (MPC with a State-space Extended model).

The advantage of the state model (51) is that using
the difference form of state and control signals eliminates
constant (step) disturbances and removes integration from
the integrated white noise. Therefore, introduction of
state disturbance v(k) in our approach, or introduction
and estimation of disturbances z(k) in the conventional
approach with (36) and (37), is no longer needed.
Moreover, the second (lower) vector equation from (51)
describes discrete-time integration of the output y(k),
thus attenuating process output disturbances. Therefore,
the control will be offset-free for all deterministic
disturbances and integrated white noise. Consequently,
the disturbances do not enter the predictions, the predicted
free output trajectory takes the form (cf. (15))

Y 0(k) = C̃rÃrxr(k), (55)

where matrices C̃r, Ãr are defined by (17) and (18),
provided matrices C,A are replaced there by Cr,Ar.

However, there is a cost to be paid for the advantage:
it follows directly from the structure of the extended state
matrix Ar, see (51), that it retains eigenvalues of A and
adds ny = dim y eigenvalues equal to 1. Thus, numerical
properties of the predictions and of the optimization
problem (QP) get worse and may cause numerical
troubles, especially for longer prediction horizons.

A standard approach is to design an observer of the
extended state (see the tutorial paper by Gonzalez et al.
(2008)). However, the observer designed for estimation
of the process state x(k) only, despite disturbances,
as proposed earlier in this paper, can also be applied
here. Certainly, the disturbances will also bias the state
estimates, similarly as was discussed in the previous
section. As the process outputs are always measured, the
proposed procedure is as follows:

1. an observer of the original process state x(k) is
designed,

2. an estimate of the extended state is computed based
on the last two original state estimates and the output
measurement,

x̂r(k) = [(x̂(k) − x̂(k − 1))T y(k)T ]T . (56)

Under constant state disturbances (which includes
input disturbances), the process state estimate x̂(k) will
be biased by an offset, but this error will be eliminated in
the extended state estimate x̂r(k), due to subtraction of
neighboring state estimates in (56).
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Fig. 7. MPCSE with an observer of process state x(k), with step
changes of set-points and input disturbances (at k = 50).

Example 2. We shall now present results of simulations
for the process introduced earlier in Example 1, but
now with the MPCSE controller, with a standard current
observer applied to the process state x(k) and the
extended state estimate calculated according to (56). The
initial values of the process state and of the observer state
are as defined previously. The simulation scenario is also
the same as used in Example 1 before, with step changes
of set-points and input disturbances. A representative
result is presented in Fig. 7, showing proper operation of
the proposed control scheme. �

The results presented in Figs. 2 and 7 are very
similar, there were also no problems with numerical
solution of the QP problem for the case with the velocity
form state-space model and computation times were
similar for both the cases. This is due to the fact that
our test problem is rather simple, and relatively short
prediction and control horizons were sufficient. Moreover,
in both cases the same process state observer is used in
the proposed MPC control scheme. Therefore, it could
be concluded that, for relatively simple control problems,
the choice is a matter of taste. For more complex cases,
with more difficult dynamics and longer horizons, the
comparison needs appropriate research. It was not the aim
of this paper.

6. Conclusions

The paper addressed problems of proper handling
of deterministic constant-type disturbances and design
of state estimators, for the use in constrained MPC
controllers with linear state-space process models. A
systematic discussion was provided, first for the case
with a full measured state and then for the case with an
unmeasured state and state estimation. It was recalled that
using constant state disturbance prediction in the case with
a measured state enables offset-free control without the
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need for observer design. For the case with unmeasured
state (with a measured process output only) a new MPC
control structure was proposed, with the observer of a pure
process state only, working properly due to application of
constant state disturbance prediction and an appropriate
correction term in the process output prediction equations.

The proposed control structure is competitive
compared with the conventional one with extended
process-and-disturbance state modeling and an extended
state observer. It is simpler, easier to design and applicable
to a wider class of problems, as detectability conditions
of an extended process-and-disturbance state model are
more restrictive. An extension to Kalman filtering is also
straightforward. Application of the proposed approach
to alternative process modeling with extended state in
complete velocity form was also proposed. The results
were illustrated on several representative simulations of a
MIMO (2 × 2) process model representing a linearized
continuous flow reactor model.
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