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Many effective robot-manipulator control schemes using a disturbance observer have been reported in the literature

in the past decades. Besides, the disturbance observer combined with the Kalman filter has attracted the attention of

researchers in the field of motion control. The major advantage of a motion control system based on the Kalman filter

and disturbance observer is the realization of high robustness against disturbance and parameter variations, effective

noise suppression and wideband force sensing. This paper presents a survey of motion control based on the Kalman

filter and disturbance observer, which have been previously introduced by the authors. Several control schemes, as

well as formulations and applications of the Kalman filter and disturbance observer, are described in the paper. The

performance and effectiveness of the control schemes are evaluated to give a useful and comprehensive design of the

Kalman filter and disturbance observer in various motion control applications.
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1. Introduction

For several decades, motion control using disturbance ob-

server (DOB) has been extensively reported in the liter-

ature and employed for various applications for the con-

trol of industrial robotics, human-robot interaction, machine

tools, bilateral control, motion copying system and robotic

surgery (1)–(5). Conventionally, in a force control system, force

measurement is realized using force sensors. Although com-

mercial force sensors benefit from their accuracy, flexibility,

and reliability, the use of force sensors in a force control sys-

tem has its own noteworthy downsides. Most force sensors

are not very durable and are vulnerable to impact. Besides,

high-precision force sensors are not economical for limited

budget projects. Moreover, force sensors are susceptible to

noise effect, which results in a narrow force-sensing band-

width, and are not suitable for diverse environments or ap-

plications. These drawbacks limit the use of force sensors.

Therefore, many approaches have been proposed to develop

suitable force observers. One popular force-sensor-less ob-

server method is the disturbance observer (6)–(8). Essentially,
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the DOB is used instead of a force sensor to estimate and

compensate for disturbance. Since its invention, it has be-

come one of the most preferred solutions in motion control.

By using the DOB, the disturbance force is rejected, and ro-

bust motion control is attained. In fact, the performance of

a force control system is determined by the fidelity of force

detection. This leads to a large number of elegant approaches

to develop the DOB as well as to improve its performance.

Xiong and Saif have proposed a state functional disturbance

observer to estimate disturbances with a bounded error (9). In

this method, the disturbance observer state does not precisely

track the system states, which is an advantage that simplifies

the estimation error dynamics. To provide satisfactory con-

trol performance, Chen et al. have proposed a new nonlinear

disturbance observer scheme and applied it to a robotic sys-

tem (10). Natori et al. have introduced a time delay compensa-

tion method based on the concept of network disturbance and

communication disturbance observer for network-based con-

trol systems (11). A generalized disturbance observer has been

proposed by Kim et al. to estimate higher order disturbances

in the time series expansion (12). Oh and Kong have proposed

the disturbance observer and feed-forward controller as the

model-based control algorithm to achieve the high-precision

force control of a series elastic actuator (13).

Although the DOB has superior performance in terms of

robustness, its force sensing performance deteriorates with

noise. The effect of noise limits the force sensing band-

width and causes oscillations in control systems. Recently,

the Kalman filter, a powerful tool for estimating the state

of a process by minimizing the mean of the squared error,

has been widely used in motion control applications (14)–(26).

The noise of the measurement system and the estimations is
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reduced effectively using the Kalman filter. Therefore, the

approach of combining the DOB and Kalman filter in motion

control systems has risen to prominence due to its advantages

in achieving high robustness against disturbance and parame-

ter variations, effective noise suppression and wideband force

sensing.

This paper presents a survey on motion control based on

the Kalman filter and the DOB, introduced by the authors in

previous works. Several control schemes, as well as formula-

tions and applications of the Kalman filter and the DOB are

described in the paper. The performance and effectiveness

of the control schemes are evaluated to develop a useful and

comprehensive design of the Kalman filter and the DOB in

various motion control applications.

The content of the paper is organized as follows: Section 2

gives a description of the Kalman filtering algorithm. Sec-

tion 3 presents the force-sensor-less observer approaches pro-

posed in our previous works. These observers are designed

for disturbance torque or load torque estimation, and are

combined with the Kalman filter in motion control schemes.

Section 4 introduces the methods to integrate the Kalman fil-

ter and the DOB in specific applications of motion control.

Section 5 presents the summary and conclusions of the paper.

2. Kalman Filtering Algorithm

The Kalman filter (27) is an optimal estimator that minimizes

the mean of the squared error to obtain approximations of

the true response using information from a model and avail-

able measurements. The Kalman filter estimates the state of

a measuring process formulated in the following equations.

x(k+1) = Ax(k) + Bu(k) + w(k) · · · · · · · · · · · · · · · · · · · · · (1)

z(k) = Hx(k) + v(k) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (2)

Here, x(k) is the state; z(k) is the measured data corrupted

by noise; and u(k) is the known input to the system. The ran-

dom variables w(k) and v(k) represent the process noise and

measurement noise, respectively. k is the sampling time in-

dex corresponding to each sampling step of the discrete mea-

suring process. A, B and H are the state, control input and

observation matrices, respectively.

In (1) and (2), both w(k) and v(k) are assumed to be uncor-

related zero-mean Gaussian white noise with the covariance

matrix of process noise, Q, and the covariance matrix of mea-

surement noise, R. The covariance matrices Q and R are de-

fined as follows.

Q = E
[

wwT
]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3)

R = E
[

vvT
]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (4)

where Q and R are nonnegative definite matrices and E[ ]

denotes the expected value. For a steady-state Kalman filter

in which the noise characteristics are constant, Q and R can

be determined by using the testing simulations of the mea-

surable signal, which is based on actual experimental data.

The susceptibility of the Kalman filter to noise depends on

the process noise covariance matrix Q and the measurement

noise covariance matrix R.

Figure 1 shows the algorithm of the Kalman filter. The

Kalman filter uses a form of feedback control to estimate the

state x. The filter predicts the state for a given time step and

then obtains the feedback in the form of measurements for

Fig. 1. Recursive adaptive Kalman filter algorithm

the corresponding time step, corrupted by noise. The current

state and the estimation error are projected forward in time

by the predictor equations as described in (5) and (6).

x(k|k−1) = Ax(k−1|k−1) + Bu(k−1) · · · · · · · · · · · · · · · · · · · (5)

P(k|k−1) = AP(k−1|k−1) AT + Q · · · · · · · · · · · · · · · · · · · · (6)

where P is the estimate error covariance matrix derived from

the variance between the predicted state estimation and the

improved state estimation. The Kalman filter gain matrix K,

which is based on the total uncertainty measurement, is com-

puted to minimize the error covariance using the following

equation.

K(k) = P(k|k−1)H
T (HP(k|k−1)H

T + R)−1 · · · · · · · · · · · · (7)

The next step is to update the prior state estimation and the

prior error covariance. The actual measurement z(k) at every

sampling time is incorporated into the previous estimations

to obtain improved estimates using the corrector equations as

follows.

x(k|k) = x(k|k−1) + K(k)(z(k) − Hx(k|k−1)) · · · · · · · · · · · · (8)

P(k|k) = P(k|k−1) − K(k)HP(k|k−1) · · · · · · · · · · · · · · · · · · (9)

3. Force-sensor-less Observer Approaches

This section presents the approaches for the synthesis

of the force-sensor-less observer proposed in our previous

works. These observers are designed for disturbance force

estimation or load force estimation, and have been integrated

with the Kalman filter in various motion control schemes.

3.1 Disturbance Observer for Force Estimation

A disturbance observer (6)–(8) is a technique for the estima-

tion and compensation of the disturbance force without using

a force sensor. A robust acceleration control is realized by

using the DOB. The DOB estimates the parameter variation,

nonlinear friction, and other disturbances into consideration

as one state variable.

Figure 2 shows the block diagram of the conventional DOB

with a motor model. Here, Jm denotes the motor inertia, Kt

denotes the torque coefficient and the subscript n represents

the nominal value. Im is the motor torque current, θm is the

angle and ωm represents the motor speed. Tm denotes the

motor torque and Tdis is the disturbance torque. The expres-

sion for the disturbance torque in Fig. 2 is described in many

papers (28) (29).

The dynamic equation of the motor is expressed by (10).

Jmω̇m = Tm − Tdis · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (10)
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Fig. 2. Block diagram of the conventional disturbance observer

The total generated motor torque is given by (11).

Tm = KtIm · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (11)

The disturbance torque Tdis is defined as the total load torque

applied on the motor including the effect of parameter varia-

tion and is represented as given in (12).

Tdis = Text + Fc + Dωm + (Jm − Jmn)ω̇m + (Ktn − Kt)Im

· · · · · · · · · · · · · · · · · · · (12)

where Text denotes the reaction torque, Fc denotes the

Coulomb friction and Dωm denotes the viscous friction.

(Jm − Jmn)ω̇m is the torque due to the variation in self-inertia

and (Ktn − Kt)Im is the torque ripple caused by the variation

of the torque coefficient.

For the case where the motor parameter variations are zero,

the disturbance force is given by (13).

Tdis = Text + Fc + Dωm · · · · · · · · · · · · · · · · · · · · · · · · · (13)

From (10) and (11), the disturbance torque is expressed by

(14).

T̂dis = KtnIm − Jmnω̇m · · · · · · · · · · · · · · · · · · · · · · · · · · (14)

Originally, equation (14) indicates that the disturbance

torque is estimated based on the motor acceleration. The ac-

celeration is estimated based on the position using the second

derivative calculation. However, the second derivative of the

position exhibits high noise level; therefore, a low-pass filter

is used to filter out the high-frequency noise, and the DOB is

derived with a low-pass filter. The DOB in Fig. 2 is derived

with a first order low-pass filter, and the velocity information

is usually obtained from the derivative of the position signal

and a low-pass filter.

The estimated disturbance torque T̂dis is obtained from the

motor speed ωm, and the motor current Im, as given in (15).

T̂dis =
gdis

s + gdis

(KtnIm + gdisJmnωm) − gdisJmnωm

· · · · · · · · · · · · · · · · · · · (15)

where gdis is the cut-off frequency of the low-pass filter used

in the DOB to attenuate the high-frequency noise. gdis deter-

mines the bandwidth of force sensing by the DOB.

The compensation current is computed from the estimated

disturbance torque as follows.

Idis =
1

Ktn

T̂dis · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (16)

By feeding back the compensation current, robust acceler-

ation control is achieved.

3.2 Friction-free High-order Disturbance Observer

for Force Estimation (15) The performance of a force con-

trol system is determined by the accuracy of estimating the

force. However, in practical applications, force estimation by

the conventional DOB is deteriorated by friction phenomena.

This also degrades the performance of the control system.

The elimination of friction improves force sensing and

control performance. Our friction compensation method is

the dithering technique, which is preferred to other tech-

niques owing to its simple implementation. The effect of a

dither signal is to smoothen the discontinuity due to friction.

Therefore, by using the dithering method, we do not consider

the friction model in our approach.

However, a dither signal introduces oscillatory disturbance

in force estimation by the conventional DOB. Therefore, a

force-sensing method capable of eliminating the effect of the

oscillatory component in the force information is required.

Based on this reasoning, we have proposed a high-order dis-

turbance observer (HDOB) (15) to perform the force sensing

function while reducing friction and the oscillatory compo-

nent in the force information.

The dynamics of the oscillatory signal is modeled by a

second-order system. The plant system of the HDOB is

shown in Fig. 3. Therefore, the oscillatory torque is expressed

as follows.

T ′dis =
ω2

0

s2 + 2ζω0s + ω2
0

Tdis · · · · · · · · · · · · · · · · · · · · · (17)

where ω0 is the predetermined angular frequency of the addi-

tional periodic signal and ζ denotes the damping ratio. Here,

Tdis is the torque signal without the oscillatory component,

which is the step function expressed by (18); T ′
dis

is the oscil-

latory torque generated by superimposing the periodic signal

on Tdis.

d

dt
Tdis = 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (18)

The model of the HDOB is realized based on the state

space model in (19) and (20).

ẋ = Ax + Bu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (19)

y = Cx · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (20)

where

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ωm

T̈ ′
dis

Ṫ ′
dis

T ′
dis

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, u = Im, y = ωm · · · · · · · · · · · · · · · · · · · (21)

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 −1/Jmn

0 −2ζω0 −ω2
0

0

0 1 0 0

0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ktn/Jmn

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

C =
[

1 0 0 0
]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · (22)

Since the state variable ωm is measurable, from the state

matrices A and B, the HDOB is defined using the minimum-

order observer principles and the Ackermann method (30). The

state equations of the HDOB are obtained as described in (23)

and (24).

d

dt

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

η1

η2

η3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a0 a1 a2

1 0 a3

0 1 a4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

η1

η2

η3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b1

b2

b3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ωm +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c1

c2

c3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Im

· · · · · · · · · · · · · · · · · · · (23)
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Fig. 3. Plant system of the high-order disturbance observer

Fig. 4. Structure of the high-order disturbance observer

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

T̈ ′
dis

Ṫ ′
dis

T ′
dis

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

η1

η2

η3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

k1

k2

k3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ωm · · · · · · · · · · · · · · · · · · · · · · · · · (24)

where

a0=−2ζω0, a1=−ω
2
0, a2=

k1

Jmn

, a3=
k2

Jmn

, a4=
k3

Jmn

· · · · · · · · · · · · · · · · · · · (25)

b1 = −2ζω0k1 − ω
2
0k2 +

k1k3

Jmn

· · · · · · · · · · · · · · · · · · (26)

b2 = k1 +
k2k3

Jmn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (27)

b3 = k2 +
k2

3

Jmn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (28)

c1 = −
Ktnk1

Jmn

, c2 = −
Ktnk2

Jmn

, c3 = −
Ktnk3

Jmn

· · · · · · (29)

where k1, k2 and k3 are the elements of the observer gain

matrix Ke which is derived by the Ackermann formula and

is determined by the observer pole. The disturbance torque

estimated by the HDOB is obtained using the estimated val-

ues ˆ̈T ′
dis

, ˆ̇T ′
dis

and T̂ ′
dis

as given in (30). The structure of the

HDOB is illustrated in Fig. 4.

T̂dis =

ˆ̈T ′
dis
+ 2ζω0

ˆ̇T ′
dis
+ ω2

0
T̂ ′

dis

ω2
0

· · · · · · · · · · · · · · · · (30)

3.3 Instantaneous State Observer for Load Torque

Estimation (21) (22) In recent years, there has been a growing

interest in robot motion control. Rapid and precise robot mo-

tion control is vital to improve productivity and quality. Ro-

bustness plays a central role in the design of a robot control

scheme to achieve the above objective. Although the DOB

is a common technique used for dynamic torque estimation

and compensation to achieve robustness in robot systems, the

high robustness of the robot manipulator is difficult to realize

since the DOB exhibits estimation delay due to pole alloca-

tion. Therefore, we have proposed a load torque estimation

method using the instantaneous state observer (ISOB) for in-

dustrial robots. The ISOB overcomes the estimation delay

presented by the DOB, and attains instantaneous load torque

estimation of a robot arm (21) (22). The load torque compensa-

tion based on the instantaneous load torque estimation makes

the robot manipulator highly robust.

The ISOB is designed for the robot manipulator modeled

as a two-inertia system with an integration of the accelerom-

eter to measure the load-side acceleration. The state equation

of the two-inertia system including the load torque τL is ex-

pressed as follows.

d

dt

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ωM

ωL

θS

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−DMn/JMn 0 −KS n/RgnJMn

0 −DLn/JLn KS n/JLn

1/Rgn −1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ωM

ωL

θS

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

KTn/JMn

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Icmd −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

1/JLn

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

τL · · · · · · (31)

where ωM is motor velocity, ωL is load-side velocity, and θS
is torsional angle. JM and JL denotes motor side and load side

inertia, respectively. DM and DL denotes motor side and load

side viscosity coefficients, respectively. KS is torsion spring

constant, and Rg is gear ratio. Icmd is the current command.

Subscript n denotes the nominal value.

From (31), the derivative of the load-side velocity can be

obtained directly using ω̇L = aL, when the load-side accel-

eration is detected using an acceleration sensor. Using aL,

the load torque τL is estimated as expressed in the following

equation.

aL = ω̇L = −
DLn

JLn

ωL +
KS n

JLn

θS −
1

JLn

τL

⇔ τL = KS nθS − DLnωL − JLnaL · · · · · · · · · · · · · · · (32)

Equation (32) shows that the load torque τL is obtained in-

stantaneously using the load-side acceleration aL. To com-

pensate for the initial state error, the state observer is de-

signed using the observable output ωM. The observer gain

k =
[

k1 k2 k3

]T
is designed to express the state observer

of the two-inertia system. The state equation of the ISOB is

presented as follows.

d

dt

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ω̂M

ω̂L

θ̂S

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
DMn
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− k1 0 −
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RgnJMn
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1
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⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ω̂M

ω̂L

θ̂S

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

KTn

JMn

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Icmd +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

1

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

aL +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

k1

k2

k3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ωM · · · · · · · · · (33)

τ̂L =
[

0 −DLn KS n

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ω̂M

ω̂L

θ̂S

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− JLnaL · · · · · · · · · · · (34)
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Fig. 5. Block diagram of the instantaneous state observer

Equations (33) and (34) show that the ISOB consists of a

state observer for a two-inertia system with an acceleration

input, and achieves instantaneous load torque estimation us-

ing the estimated state variables ω̂L, θ̂S , and the measured

load-side acceleration aL. The block diagram of the ISOB is

shown in Fig. 5.

In our research, the acceleration sensor, which is used with

the ISOB, is a DC-response accelerometer (PCB Piezotron-

ics: 3711B) with bandwidth of 1 kHz. The load torque esti-

mation delay by the ISOB is not dependent on the observer

pole. However, the estimation delay is determined by the

bandwidth of acceleration sensor.

Moreover, the accelerometer has offset and high-frequency

noises. For eliminating the sensor offset: because we use

an acceleration sensor capable of measuring DC response,

the sensor can detect gravitational acceleration. Therefore,

we calibrate the offset caused by acceleration of gravity

in the measured acceleration easily. For suppressing high-

frequency noises: because the bandwidth of acceleration sen-

sor is 1 kHz, the noise with frequency higher than 1 kHz is

suppressed. To suppress the noise with frequency smaller

than 1 kHz in acceleration signal, we apply the VNC Kalman

filter to estimate the load acceleration. The VNC Kalman fil-

ter reduces the vibration of impulsive responses and suppress

the high-frequency noises in acceleration signal. Figure 22 in

Section 4.3 shows the effect of noise suppression using VNC

Kalman filter.

4. Applications of Motion Control based on
Kalman Filter and Disturbance Observer

This section introduces the methods to integrate the

Kalman filter and the DOB in specific applications of mo-

tion control and provides evaluations on the performance of

the control schemes.

4.1 Motion Control Using Position-sensor-based

Kalman Filter and Disturbance Observer (14)–(16)

4.1.1 Position-sensor-based Kalman Filter for Veloc-

ity Estimation The disturbance observers described in

Sections 3.1 and 3.2 use the information of the current refer-

ence and motor velocity as inputs to estimate the disturbance

force. Hence, the performance of force estimation by the

DOB is related to how the velocity is accurately estimated.

Conventionally, the motor velocity is estimated based on the

derivative of the position signal with respect to time. The

position information is simply obtained from an encoder.

However, the conventional velocity estimation method is

susceptible to the effect of derivative noise. Hence, the

force-sensing performance of the DOB is degraded by noise.

Noise also limits the bandwidth of force sensing by the DOB.

Therefore, to address the noise problem, the Kalman filter is

utilized for velocity estimation. Using the Kalman filter, we

can reduce the noise of the measurement system effectively.

As a result, the performance of the control system and the

force-sensing bandwidth is improved.

Here, velocity estimation by the Kalman filtering is based

on the position information measured by an encoder. The

state, control input and observation matrices corresponding

to (1) and (2) are described in (35).

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 Ts 0.5T 2
s

0 1 Ts

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, H =
[

1 0 0
]

· · · · · (35)

x(k) is the vector of the estimated state, including the posi-

tion, velocity, and acceleration; z(k) is the measured position,

which is corrupted by noise. Ts is the sampling time of con-

trol system. The estimation process by the Kalman filter is

then carried out as given in (5)–(9) in Section 2.

4.1.2 Force Control of a Linear Shaft Motor Sys-

tem Using Position-sensor-based Kalman Filter (PKF)

and Disturbance Observer (14) Figure 6 shows the block

diagram of the force control using position-sensor-based

Kalman filter and disturbance observer. Here, the velocity es-

timation is performed by PKF using only the encoder output.

The DOB estimates the disturbance force using motor cur-

rent reference and velocity estimated by PKF. This method is

applied for a linear shaft motor. The control algorithm is im-

plemented in FPGA to shorten the sampling time so that the

force sensing bandwidth of DOB can be widened by increas-

ing the cut-off frequency of the low-pass filter used in the

DOB. Figure 7 shows experimental devices of force control

system.

The effectiveness of this method is evaluated through ex-

periments of force control using DOB with conventional

velocity estimation and force control using DOB with PKF.

In the experiments, the force sensing bandwidth of DOB is

set to 6280 rad/s, the cut-off frequency of conventional ve-

locity estimation is also set to 6280 rad/s, and the force com-

mand is a constant of 0.5 N. The motor movements are stim-

ulated by human force applied on the motor. The impact

motions are caused by the collision between the motor and

a rubber piece. Figure 8 shows the experimental results of

force responses. The force response estimated by the DOB

with conventional velocity estimation is totally corrupted by

noise at the bandwidth of 6280 rad/s as shown in Fig. 8(a).

Whereas in Fig. 8(b), the DOB using PKF attains the smooth

force responses with very low noise level. These results in-

dicate that the DOB using PKF provides the improved force

sensing performance in terms of noise reduction and widen-

ing force sensing bandwidth.

4.1.3 Force Control of a Ball-screw System Us-

ing Friction-free High-order Disturbance Observer and

Position-sensor-based Kalman Filter (15) Figure 9 shows

the force control of a ball-screw system using friction-free

HDOB and PKF. Here, the velocity estimation is also per-

formed by PKF using the encoder output only. The HDOB

uses motor current reference and velocity estimated by PKF
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Fig. 6. Block diagram of force control using PKF and DOB

Fig. 7. Experimental devices for force control of a lin-
ear shaft motor

(a) Estimated by DOB using conventional velocity estimation

(b) Estimated by DOB using PKF

Fig. 8. Force responses at force sensing bandwidth of 6280 rad/s

to estimate the disturbance force with the elimination of os-

cillatory component caused by dither. This method is applied

for a ball-screw system exhibiting high friction. The friction

compensation is based on dithering method with dither fre-

quency of 5 Hz. The control algorithm is also implemented

in FPGA to shorten the sampling time and make it possible to

widen the force sensing bandwidth of HDOB by increasing

observer pole.

(a) Block diagram of the force control system

(b) Experimental device: Servo motor with a ball-screw

Fig. 9. Force control based on HDOB and PKF

Fig. 10. Torque response estimated by conventional
DOB distorted by friction

The design of dither signal is as follows (15). In our paper,

we selected ζ = 0 so that the dither signal is an undamped

oscillation, because we desire that the dither signal always

has effect during control system operation. The amplitude

of dither signal is determined experimentally so that it does

not cause vibration in the control system, and is based on

the peak-to-peak amplitude of torque signal deteriorated by

friction (∆T ). Here, the peak-to-peak amplitude of torque

signal is 0.00545 Nm as shown in Fig. 10. Hence, the cor-

responding current value is ∆I = ∆T/Ktn = 0.011 A, with

Ktn = 0.498 Nm/A. The amplitude of dither signal is selected

with a value higher than ∆I so that the effect of friction can be

reduced provided that it does not generate system vibration.

In this paper, the dither is added to the current reference and

has the amplitude of 0.015 A.

For determination of dither frequency, we conducted the

experiments of force control using HDOB with different fre-

quencies of dither signal, under conditions of constant torque

command of 0.1 Nm and constant velocity of 10.5 rad/s.

Here, the HDOB with dither signal performs the force es-

timation with the observer pole of 300 rad/s. We investigate

the relationship between the dither frequency and the peak-

to-peak amplitude of torque signal estimated by HDOB. The

experimental results are shown in Fig. 11. The results show

that the peak-to-peak amplitude of torque signal significantly

decreases at dither frequency of 5 Hz, then continues to a

little decrease and reaches the saturation state at dither fre-

quencies 10 Hz, 15 Hz, and 20 Hz. These results indicate that
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Fig. 11. Experimental results of relationship between
dither frequency and peak-to-peak amplitude of torque
estimated by HDOB

Fig. 12. Torque responses estimated by HDOB using
Kalman filter and HDOB using conventional velocity es-
timation with observer pole at 1000 rad/s

friction in force estimation is effectively reduced by select-

ing dither signal with frequency of 5 Hz or of higher value.

Therefore, we determine to use the 5 Hz-dither signal with

HDOB for the force control of ball-screw system.

To verify the effectiveness of this method, the force con-

trol experiment of a ball-screw system was carried out to per-

form the torque tracking with a constant torque command of

0.1 Nm. The observer pole is set to 1000 rad/s. Figure 12

presents torque responses estimated by HDOB using conven-

tional velocity estimation and HDOB using PKF (both with

additional dither signal). The signal estimated by the HDOB

without Kalman filter is highly corrupted by very high noise

level when observer pole is set to 1000 rad/s. However, the

signal estimated by the HDOB using PKF is significantly

improved because the noise in the estimated torque is sup-

pressed effectively and the oscillatory disturbance caused by

dither is eliminated. The results confirm that the force control

using the HDOB and the Kalman filter with a dither sig-

nal achieves high-performance force sensing with a widened

bandwidth of 1000 rad/s based on friction-free and noise-free

force observation.

Moreover, Fig. 13 presents the comparison of the torque es-

timations between the conventional DOB using Kalman filter

(without dither signal) and the HDOB using Kalman filter

(with dither signal) at force sensing bandwidth of 1000 rad/s.

The estimated torque without dither has unsmooth response

caused by friction. For the HDOB with the Kalman filter and

Fig. 13. Torque responses estimated by conventional
DOB using Kalman filter (without dither signal) and
HDOB using Kalman filter (with dither signal) at force
sensing bandwidth of 1000 rad/s

with the dither signal, the effect of friction in the estimated

torque is reduced, and the oscillatory component caused by

dither is also eliminated. These results confirm the effective-

ness of dither signal inputting.

4.2 Motion Control Using Multi-sensor-based

Kalman Filter and Disturbance Observer (14) (17)–(20)

4.2.1 Multi-sensor-based Kalman Filter (MKF) for

Velocity Estimation Although the position-sensor-based

Kalman filter can reduce noise efficiently and the DOB

can obtain improved force estimation, the limitation of this

method is that the accuracy and bandwidth of the measuring

system are subject to the performance of the encoder. For

the condition of only position measurement, imprecise ve-

locity estimation often occurs during impact motions with

high accelerations due to bandwidth limitation of the mea-

surement device. Therefore, a multi-sensor fusion in Kalman

filter is employed to obtain the accurate velocity estimation,

especially in impulsive responses.

In our system, we use the linear encoder Renishaw

RGH24Y with the maximum speed of 0.25 m/s and resolu-

tion of 0.1 µm. The control sampling time is 5 µs, and we

obtain position information in every control sampling pe-

riod. Hence, the bandwidth of the position measurement is

100 kHz. The performance of velocity estimations by PKF

and MKF are dependent on the measurement devices and the

bandwidth of Kalman filter, which is dependent on the noise

characteristics (R and Q matrices). Figures 14 and 15 show

the simulation results of the bandwidth limitation of estima-

tions using PKF and MKF.

As shown in Fig. 14, the PKF has the position-estimation

bandwidth of 1130 rad/s. Since the PKF uses only position

sensor as the input to estimate velocity, the bandwidth of

position estimation determines the bandwidth of velocity es-

timation by the PKF. However, for the MKF, the position-

estimation bandwidth is 940 rad/s while the acceleration es-

timation has a wider bandwidth of 7800 rad/s as shown in

Fig. 15. Since the MKF uses both position sensor and accel-

eration sensor as the inputs to estimate velocity, these band-

widths determine the bandwidth of velocity estimation by the

MKF. The wider bandwidth of acceleration estimation con-

tributes to the velocity estimation in impact motion with high

frequency accelerations. Therefore, the velocity estimation in

impact motions by the MKF is more accurate than the PKF
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Fig. 14. Bandwidth of position estimation by PKF

(a) Bandwidth of position estimation

(b) Bandwidth of acceleration estimation

Fig. 15. Bandwidth of estimations by MKF

because the velocity estimation performance by the PKF is

limit by position estimation bandwidth. With the improved

velocity estimation by MKF, it is possible for the DOB to

achieve high force sensing performance.

In the multi-sensor measuring system, the measurement

process model is also given by (1) and (2). x(k) is still the state

vector of position, velocity and acceleration. z(k) is the vec-

tor of measured variables comprising the position measured

by encoder and the acceleration measured by accelerometer.

Hence, the state, control input and observation matrices are

described as follows.

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 Ts 0.5T 2
s

0 1 Ts

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, H =

[

1 0 0

0 0 1

]

· · · · · · · · · · · · · · · · · · · (36)

The estimation process by Kalman filter is then performed

as described in (5)–(9) in Section 2. The design of the

covariance matrices Q and R for MKF is described as fol-

lows.

Q = E
[

wwT
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Q11 0 0

0 Q22 0

0 0 Q33

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

· · · · · · · · · · · · · (37)

R = E
[

vvT
]

=

[

R11 0

0 R22

]

· · · · · · · · · · · · · · · · · · · · · (38)

where Q and R are nonnegative definite matrices and E[ ] de-

notes the expected value. Elements of Q and R are defined as

follows.

R11 = Var [∆xm] · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (39)

R22 = Var [∆ẍm] · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (40)

Q11 = Var [∆xe] · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (41)

Q22 = Var [∆ẋe] · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (42)

Q33 = Var [∆ẍe] · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (43)

where Var [ ] denotes variance, ∆xm is the difference between

the measured position and the desired position, ∆ẍm is the

difference between the measured acceleration and the desired

acceleration. ∆xe, ∆ẋe, and ∆ẍe are the differences between

the predicted values of position, velocity, and acceleration,

and the desired values of position, velocity and acceleration,

respectively. ∆xm is calculated from the sets of position data

measured by an encoder. ∆ẍm is calculated from the sets of

acceleration data measured by an acceleration sensor. ∆xe,

∆ẋe and ∆ẍe are calculated from the sets of filter’s predicted

values of position, velocity, and acceleration, given the cor-

responding sets of sample data of position measured by en-

coder and data of acceleration measured by acceleration sen-

sor. Variances of ∆xm, ∆ẍm, ∆xe, ∆ẋe and ∆ẍe are computed

as follows.

Var [X] =
|X1 − µ|

2 + ... + |Xn − µ|
2

n
· · · · · · · · · · · · · (44)

where

µ =
X1 + X2 + . . . + Xn

n
· · · · · · · · · · · · · · · · · · · · · · · · · (45)

X stands for ∆xm, ∆ẍm, ∆xe, ∆ẋe or ∆ẍe, and n is the data

number of the sample data set. The value of matrix R can be

easily determined based on the available measured position

data, and equations (39), (40), (44) and (45). The values of

matrix Q are selected by trial and error. The trial and error

process is carried out by fixing R value, running Kalman filter

offline with the data set of measured position, obtaining the

data sets of predicted values, calculating Q values based on

(41), (42), (43), (44) and (45), and running filter again. The

selected values of Q are those enabling the estimated state of

filter to achieve the proper values.

Figure 16 shows the experimental results to evaluate the

velocity estimation of the Kalman filter using multi-sensor

and that of the Kalman filter using only encoder. The exper-

imental system is shown in Fig. 7. These results show that

there is good agreement between the velocity responses es-

timated by both methods except for the impact motion re-

sponse. During the impact motion with high acceleration,

the velocity response estimated by MKF is much improved

as shown in Fig. 16(b). These results confirm the advantage

of acceleration measurement in obtaining accurate velocity

estimation by Kalman filter.
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(a) Velocity responses

(b) Magnification of impact motion in (a)

Fig. 16. Experimental results of velocity estimation

Fig. 17. Acceleration response of impact motion mea-
sured by acceleration sensor

To confirm the accuracy of the velocity estimation by MKF

in Fig. 16, we investigate the impact acceleration response

measured by acceleration sensor as shown in Fig. 17. The

impact acceleration response has the high frequency oscilla-

tions that are reflected in the velocity estimation by the MKF

in Fig. 16. In contrast, the velocity estimation by PKF has no

such high frequency oscillations during impact motion. It is

the acceleration information that contributes to the estimation

of velocity during impact motion using the MKF.

4.2.2 Force Control of a Linear Shaft Motor System

Using Multi-sensor-based Kalman Filter (MKF) and Dis-

turbance Observer (14) Figure 18 shows the block dia-

gram of the force control using multi-sensor-based Kalman

filter and disturbance observer. Here, the velocity estima-

tion is performed by MKF using multi-sensor information of

encoder and acceleration sensor. The DOB estimates the dis-

turbance force using motor current reference and velocity es-

timated by MKF.

This method is applied for a linear shaft motor. The control

algorithm is implemented in FPGA to shorten the sampling

time such that the force sensing bandwidth of DOB can be

widened by increasing the cut-off frequency of the low-pass

filter used in the DOB. The effectiveness of this approach is

evaluated through experiments of force control using DOB

Fig. 18. Block diagram of force control using Multi-
sensor-based Kalman filter and disturbance observer

(a) Estimated by Position-sensor-based Kalman filter and DOB

(b) Estimated by Multi-sensor-based Kalman filter and DOB

Fig. 19. Force responses at force sensing bandwidth of 6280 rad/s

with PKF and force control using DOB with MKF. In the

experiments, the force sensing bandwidth of DOB is set to

6280 rad/s, the cut-off frequency of conventional velocity es-

timation is also set to 6280 rad/s, and the force command is

a constant of 0.5 N. The motor movements are stimulated by

human force applied to the motor. The impact motions are

caused by collision between the motor and a rubber piece.

Figure 19 displays the force responses at the force sensing

bandwidth of 6280 rad/s. The results show that both the DOB

using MKF and the DOB using PKF obtain the smooth force

responses with very low peak-to-peak noise levels. From

these results, it is clear that both methods provide the good

force sensing performance. However, since the DOB with

MKF achieves accurate velocity estimation during the im-

pact motion by the Kalman filter with multi-sensor, the im-

pact force response of this method is improved significantly

compared to that of the DOB using Kalman filter with only

encoder. These results confirm that the combination of multi-

sensor-based Kalman filter and the DOB attains the high
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performance force sensing based on the improved velocity

information.

4.3 Motion Control of Industrial Robot Using Vari-

able Noise-Covariance Kalman Filter Based Instanta-

neous State Observer (21)–(23) As presented in Section 3.3,

the load torque compensation based on instantaneous load

torque estimation makes the robot manipulator highly robust.

The ISOB is designed for a two-inertia system with the in-

tegration of an acceleration sensor to measure the load-side

acceleration. The performance of load-side torque estimation

using the ISOB is related to the measurement of load-side

acceleration. Since the ISOB employs an acceleration sen-

sor to directly obtain the load-side acceleration information,

the measured acceleration signal is susceptible to the effect of

noise. Hence, the torque estimation performance of the ISOB

is also affected by the noise problem.

To address the noise problem, a Kalman filter is uti-

lized for load-side acceleration estimation. Normally, the

Kalman filter operates under the assumption that the noise

characteristics of the measuring process remain constant at

every time step. However, in practice, the noise char-

acteristics are uncertain. Especially, in our research, the

measurement noise characteristics the of load-side acceler-

ation significantly change during impulsive acceleration re-

sponses. Therefore, to suppress the noise in acceleration

signal effectively, we proposed an acceleration estimation

based on a variable noise-covariance (VNC) Kalman filter.

Consequently, the integration of the VNC Kalman filter with

the ISOB enhances the performance of ISOB. The VNC

Kalman filter estimates the state of the measuring process for-

mulated in equations (1) and (2). Here, x(k) is the estimated

load-side acceleration; z(k) is the measured acceleration infor-

mation, which is corrupted by noise. The state, control input

and observation matrices are now given as follows.

A = 1, B = 0, H = 1 · · · · · · · · · · · · · · · · · · · · · · · · · (46)

The covariance matrix of process noise, Q, and the covari-

ance matrix of measurement noise, R, are defined as indicated

in equations (3) and (4). For a steady-state Kalman filter in

which the noise characteristics are constant, Q and R can be

determined using the testing simulations of the measurement

sensor signal, which is based on the actual experimental data.

In our research, the noise characteristics of the accelera-

tion measurement are considered to be uncertain. Hence,

a variable-noise-covariance estimation is executed to deter-

mine the value of R during the operation of Kalman filter.

The estimation of noise covariance R is performed as follows.

R = σ when (σ > RS t) · · · · · · · · · · · · · · · · · · · · · · (47)

R = RS t when (0 < σ ≤ RS t) · · · · · · · · · · · · · · · · (48)

where

σ =

√

√

√

1

N

N
∑

i=1

(ai − M)2, M =
1

N

N
∑

i=1

ai · · · · · · · · · (49)

RS t is the measurement noise covariance corresponding to

the steady-state Kalman filter. N is the length of the measured

acceleration data set used to determine R at every sampling

time. ai is the ith element of the N-element-acceleration data

set. During the filter operation, the acceleration data set is up-

dated every sampling cycle. N is dependent on the sampling

Fig. 20. Block diagram of the VNC-Kalman-filter-
based ISOB

Fig. 21. Experimental system of industrial robot arm

time of control system and is selected by testing simulations

of actual acceleration signal such that the characteristics of

high frequency and large variation of the noise at impulsive

acceleration responses are captured by (49). The estimation

of the variable noise covariance R is used to run the Kalman

filter for load-side acceleration estimation. The estimation

process by Kalman filter is then performed as described in

(5)–(9) in Section 2. The updated acceleration estimation by

the VNC Kalman filter is applied to the ISOB for load torque

estimation. The block diagram of the VNC-Kalman-filter-

based ISOB is shown in Fig. 20.

In order to verify the effectiveness of the VNC-Kalman-

filter-based ISOB, the numerical simulation results based on

the speed-control experimental data of a robot arm are pre-

sented. The speed-control experiment was carried out using

the upper arm of the industrial robot. Figure 21 shows the

overall view of the experimental equipment. The robot arm

was operated at the constant speed of 30 rad/s so that the end-

effector payload fell at a downward posture. The falling of

the end-effector payload resulted in the impulsive motion of

the robot arm and the impulsive acceleration response. Ex-

perimental data sets of Icmd, ωM, and aL were obtained dur-

ing the speed-control operation. These experimental data sets

are used to perform the numerical simulation of the VNC-

Kalman-filter-based ISOB. The simulations were conducted

with observer pole of 200 rad/s.

Figure 22 shows the accelerations estimated by the VNC-

Kalman filter compared with the actual acceleration signal

measured by the acceleration sensor. These results show that

VNC-Kalman filter reduces noise in the acceleration estima-

tion, and significantly reduces vibration in the impulsive re-

sponse. During the impulsive response, the noise covariance

10 IEEJ Journal IA, Vol.7, No.1, 2018
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(a) Load-side acceleration

(b) Magnification of impulsive response (A area)

(c) Magnification of steady state (B area)

Fig. 22. Load-acceleration responses

R of the VNC Kalman filter changes and has high values as

shown in Fig. 23. Because the bandwidth of estimation by

Kalman filter is dependent on R and Q, the changing of R

make the estimation bandwidth change. Hence, the VNC

Kalman filter reduces the vibration of impulsive response

to small amplitude effectively, and still reflects the impul-

sive response in the acceleration estimation. However, the

amplitude of impulsive response is reduced to a certain ex-

tent due to estimation bandwidth limitation during impulsive

response. For the Kalman-filter-based acceleration estima-

tion, the noise covariance R is constant during impulsive re-

sponse. The results in Fig. 24 show that the Kalman-filter-

based acceleration estimation cannot suppress the vibration

effectively.

The load torque estimated by the VNC-Kalman-filter-

based ISOB is presented in Fig. 25. This result proves that

the estimated impulsive load torque has no effect of vibration

due to superior acceleration estimation by the VNC-Kalman

filter. The above results confirm that this method achieves

high performance load torque estimation, and is feasible to

realize the high-performance load acceleration control of in-

dustrial robots.

Fig. 23. Estimation of variable noise covariance R

Fig. 24. Impulsive load-acceleration responses esti-
mated by Kalman filter

Fig. 25. Load torque estimated by VNC-Kalman-filter-
based ISOB

4.4 Force Control Using Kalman Filter Based Force

Sensing with Periodic Component Extraction (24) In

Section 3.2, we introduced the HDOB with dither signal

for force sensing operation and elimination of periodic dis-

turbance in force estimation. However, the design of the

HDOB is motivated by a state-space approach and the force

estimation is noisy when the observer pole is increased.

Besides, in Section 4.1.3, the force control of a ball-screw

system uses the HDOB with velocity estimation based on the

Kalman filter. Since motor speed is the input of the HDOB,

using Kalman filter effectively reduces noise in velocity esti-

mation, and reduces noise in force estimation by HDOB to a

certain extent.

However, since the design of the HDOB itself does not

consider the noise suppression of the estimations of T ′
dis

, Ṫ ′dis

and T̈ ′dis, the force estimation by the HDOB becomes noisy

when the observer pole is increased. Therefore, even when

the Kalman filter is employed for velocity estimation, this

method has less potential to further widen the force sensing

bandwidth.
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Fig. 26. Force control using Kalman-filter-based force
sensing with periodic component extraction

To address the noise problem, the estimations of T ′
dis

, Ṫ ′dis

and T̈ ′dis are performed by Kalman filter. Figure 26 shows

the block diagram of force control using Kalman-filter-based

force sensing with periodic component extraction. In this

control scheme, a dither signal is inserted to the system to

reduce friction effect of the ball-screw system. The DOB

with conventional velocity estimation is used to estimate the

oscillatory disturbance force caused by dither. The force

estimation by Kalman filter is based on the oscillatory force

estimated by DOB.

Here, we do not combine DOB and Kalman filter for high-

order torque estimation, because using the Kalman filter as a

state observer, we cannot determine the bandwidth of force

sensing beforehand. Therefore, here, we apply the force es-

timation by DOB and the force estimation by Kalman filter

serially. First, we determine the force sensing bandwidth of

DOB to estimate the oscillatory torque. Then, the oscilla-

tory torque will be used as an input to Kalman filter to es-

timate high-order oscillatory torques with noise suppression.

Moreover, we do not use Kalman filter for velocity estima-

tion because of the following reasons: Firstly, the velocity

estimation by Kalman filter only reduces the noise in the ve-

locity estimation. If it is used as the input of the DOB, the

noise in the force estimation by DOB is reduced to a cer-

tain extent when the DOB pole is increased. However, here,

we would like to estimate the high-order torque responses

of the oscillatory torque estimated by DOB. The estimations

of high-order torque are highly affected by noise when the

DOB pole is increased. Therefore, using velocity estimation

by Kalman filter will not have much effect on suppressing

noise in high-order torque estimation. The high-order torque

estimation with effective noise suppression is performed by

Kalman filter. Secondly, we reduce the execution time of the

controller by not using Kalman filter for velocity estimation.

In this method, we use RT-Linux instead of FPGA to im-

plement the control algorithm with sampling time of 100 µs

because it is very difficult to implement the whole control al-

gorithm with the high-order estimations of Kalman filter in

FPGA. It is impossible for us to implement this algorithm

in FPGA. Moreover, for FPGA implementation, the calcula-

Fig. 27. Torque estimations at DOB pole of 1000 rad/s
(5 Hz dither)

Fig. 28. FFT of torque responses in Fig. 27

tions are usually based on fixed point numbers for reduction

of FPGA resources and lower power consumption. However,

the calculations based on fixed point have high quantization

noise. On the other hand, the calculations in RT-Linux sys-

tem are based on floating point numbers that have much less

quantization noise than fixed point calculations. Hence, we

implement the control algorithm with the high-order estima-

tions of Kalman filter in RT-Linux to reduce the effect of cal-

culation noise.

The state, control input and observation matrices for

Kalman filtering process are given as follows.

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 Ts 0

0 1 Ts

0 −ω2
0
Ts 1 − 2ζω0Ts

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, H =
[

1 0 0
]

.

· · · · · · · · · · · · · · · · · · · (50)

The estimated states by Kalman filter includeT ′
dis

, Ṫ ′dis and

T̈ ′dis. z(k) is the periodical torque estimated by DOB, which

is corrupted by noise. The estimated disturbance torque with-

out oscillation component based on Kalman filter is applied

to compute the compensation current to cancel the effects of

the disturbance torque on the motor and the modeling errors.

In this method, the effect of noise in the force estimation is

suppressed effectively since the force sensation is based on

estimations generated by the Kalman filter. Accordingly, it

is possible to further widen bandwidth of force sensing by

increasing the pole of DOB.

In order to evaluate the performance and verify the

effectiveness of this method, the numerical simulation results

based on the force-control experimental data of a ball-screw

system are presented. The force-control experiment was car-

ried out with a constant force command of 0.1 Nm. A 5 Hz-

dither signal was inserted to the control reference signal. The
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Fig. 29. Torque estimations by HDOB using Kalman
filter and proposed method at force sensing bandwidth
of 1000 rad/s in condition 5 Hz dither signal

DOB was used to estimate and compensate for disturbance

torque. The experimental data of oscillatory torque T ′
dis

es-

timated by DOB were obtained during the force-control op-

eration. In the experiments, the bandwidth of DOB is set to

1000 rad/s. These experimental data are used to perform the

numerical simulation of the control scheme shown in Fig. 26.

Figure 27 shows the torque estimation at force sensing band-

width 1000 rad/s. The torque estimation by DOB is oscilla-

tory and noisy while the Kalman-filter-based force estimation

can eliminate the periodic component and suppress noise in

torque estimation effectively. Figure 28 confirms the peri-

odic component elimination of Kalman-filter-based method

by FFT analysis. Figure 29 shows the torque estimations by

HDOB using Kalman filter and the proposed method at force

sensing bandwidth 1000 rad/s. The results show that the noise

suppression performance of the proposed method is better

than that of the HDOB using Kalman filter. These results

confirm that the integration of force estimation by the DOB

and the force estimation by Kalman filter constructs the force

sensation with effective oscillatory component extraction and

noise suppression. It is possible to further increase the band-

width of the force sensation using the proposed method.

5. Conclusions

In this paper, a survey of motion control based on the

Kalman filter and the DOB is presented. These control

schemes have been proposed by the authors in previous

works. Several control schemes as well as formulations and

applications of the Kalman filter and the DOB are described

in the paper. The performance and effectiveness of control

schemes are evaluated through experimental results and nu-

merical simulation results to provide a useful and compre-

hensive design of the Kalman filter and the DOB in various

motion control applications.
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