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Abstract— We present a novel hysteresis compensation
method for piezoelectric actuators. Instead of using any par-
ticular mathematical model of hysteresis, we consider the
hysteresis nonlinearity as a disturbance over a linear system.
A disturbance observer (DOB) is then utilized to estimate
and compensate for the hysteresis nonlinearity. In contrast
to the existing inverse model-based approaches, the DOB-
based hysteresis compensation does not rely on any particular
hysteresis model, and therefore provides a simple and effec-
tive compensation mechanism. Experimental validation of the
proposed hysteresis compensation is performed on a PMN-PT
cantilever piezoelectric actuator.

I. INTRODUCTION

During the last decade, micro-/nano-manipulation have

been extensively studied in robotics and control communi-

ties [1], [2]. For manipulation platforms, for example, atomic

force microscope (AFM), piezoelectric cantilever beams and

piezoelectric tubes are the most widely used actuation mech-

anisms. However, one of the potential issues of using these

actuators is deteriorating performance and limited bandwidth

due to the nonlinear hysteresis effect of the piezoelectric

materials [3].

To compensate for hysteresis nonlinearity, various control

strategies have been proposed in the past decade. A recent

review of the hysteresis compensation methods for micro-

/nano-applications can be found in [3], [4]. Among these

strategies, two control structures are often used for hysteresis

compensation [5]: (1) inverse-model feed forward hystere-

sis compensation, and (2) closed-loop feedback hysteresis

compensation. The inverse-model feed forward hysteresis

compensation mechanism uses an inverse hysteresis model

in the feed forward loop to cancel the hysteresis nonlinearity.

While this implementation does not require displacement or

force sensors, an accurate mathematical model for hysteresis

is essential to such an approach. Additionally, the hysteresis

model is typically complicated [6], [7], and the method

is prone to robustness issues due to disturbances. On the

other hand, although the feedback hysteresis compensation
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approach requires external displacement or force sensors, it

provides an effective and robust means to suppress the hys-

teresis nonlinearity. Moreover, the feedback approach does

not rely on a precise mathematical model of the hysteresis.

In this paper, we present a novel hysteresis compensation

mechanism for a piezoelectric cantilever actuator that is used

for micro-/nano-manipulation applications. Our approach is

based on the closed-loop compensation mechanism. Instead

of precisely modeling the hysteresis, we treat the hysteresis

as an external disturbance adding to the linear dynamic

behavior of the cantilever actuator. Then we use a disturbance

observer (DOB) to estimate and compensate for the hystere-

sis nonlinearity. The significance of the proposed DOB-based

hysteresis compensation is its simplicity in implementation

and robustness due to its independence from any mathemati-

cal models of hysteresis. We also experimentally validate the

proposed compensation method on a piezoelectric cantilever

actuator.

Our approach is inspired by several related works [8], [9].

In [8], a DOB-based nonlinearity cancellation is proposed for

a large class of single-input single-output (SISO) nonlinear

systems. The output of the nonlinear SISO system is assumed

as the sum of the outputs of a stable SISO linear-time-

invariant system and a bounded function of time. The nonlin-

earity in the system could include dead-zone, backlash, and

hysteresis. In [9], a linear active disturbance rejection control

(LADRC) is proposed for hysteresis compensation. Hystere-

sis nonlinearity is considered as a disturbance and a linear

observer is proposed as a disturbance estimator. However, it

is not clear why the hysteresis-induced disturbance can be

treated as a linear system. Moreover, no experimental valida-

tion has been presented for the proposed approach. Our work

is an extension of the approach in [8]. We use a piezoelectric

cantilever actuator as an example to show that hysteresis

nonlinearity can be decomposed into a bounded hysteresis

operator and an approximated linear dynamic system. We

relax the linear disturbance estimation assumption in [9], and

provide a more comprehensive treatment for the hysteresis

nonlinearity. We also provide an experimental validation.

The remainder of the paper is organized as follows. We

present the DOB-based hysteresis compensation design in

Section II. In Section III, we discuss modeling of a piezo-

electric cantilever actuator. The experimental implementation

of the DOB-based hysteresis compensator is presented in

Section IV before concluding the paper in Section V.
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II. DISTURBANCE OBSERVER-BASED HYSTERESIS

COMPENSATION

In this section, we first discuss the decomposition of a

class of nonlinear dynamic systems with hysteresis relation-

ship as a component of the system. Then we present a DOB-

based hysteresis compensation approach.

A. Decomposition of a class of nonlinear dynamic systems

with hysteresis

Here, we consider a class of nonlinear dynamic systems

in which the hysteresis nonlinear relationship is one part of

the dynamics. For the piezoelectric cantilever actuator that

we will discuss in the next section, the applied voltage input

v(t) generates a charge q(t) between the electrodes. This

charge then produces a deformation y(t) in the piezoelectric

material. The left sub-figure in Fig. 1 shows such a nonlinear

relationship. We denote the hysteresis relationship between

the input voltage v(t) and charge q(t) as

q(t) = (H(v))(t), (1)

where H(·) denotes the hysteresis operator. The dynamic

relationship between q(t) and output y(t) is given by the

linear time-invariant system P (s).

v(t) v(t)q(t)

q(t)

y(t) y(t)

d(t)

H(·)

N (H, P )
L(K, P, d)

K(s)P (s) P (s)

H(·)

Fig. 1. Schematic of decomposition of a nonlinear system with hysteresis
nonlinearity H(·) as an integrated part of the system.

Let N (H, P ) denote the nonlinear dynamic system.

We propose to decompose N (H, P ) into a linear system

L(K, P, d) as shown in the right sub-figure in Fig. 1. Here

K(s) denotes a linear time-invariant relationship between

input variable v(t) and intermediate variable q(t). Also, the

disturbance d(t) is a bounded nonlinear function of input

v(t). The intermediate variable q(t), such as electric charge

in piezoelectric actuators, is typically assumed unmeasurable.

To elucidate the above decomposition, we consider a

Duhem model to capture the rate-independent hysteresis

relationship between the input v(t) and intermediate variable

q(t) [7], [10]. The Duhem model represents H(·) by a first-

order nonlinear differential equation as

q̇(t) = α|v̇(t)| (av(t) − q(t)) + bv̇(t), (2)

where α > 0 and a > b ≥ 1
2a are model constants that

depend on the shape and area of the hysteresis curves exper-

imentally. In Eq. (2), q(t) is considered as the state variable

of the differential equation and depends on the values of

both v(t) and v̇(t). Such a mathematical relationship (2)

can reproduce the hysteresis phenomena that we observe in

experiments. Readers can refer to [7], [10] for more details

on how to estimate these hysteresis model parameters.

We consider the solution properties of the Duhem

model (2). Following a similar derivation in [11], we can

solve (2) explicitly as follow.

q(t) = αv(t) + d(t), (3)

where

d(t) := d(v(t)) = (q0 − av0)e
−α(v−v0) sgn(v̇)

+e−αv sgn(v̇)

∫ v

v0

(b − a)eατ sgn(v̇)dτ, (4)

where q0 := q(0), v0 := v(0), and function sgn(x) = 1 if

x ≥ 0 and sgn(x) = −1 if x < 0. It is straightforward to

check that for v̇ > 0 or v̇ < 0, the above solution satisfies

lim
v→+∞

d(t) = −a − b

α
or lim

v→−∞
d(t) =

a − b

α
(5)

respectively. Therefore, d(t) is bounded, that is, |d(t)| ≤
dm := supt≥0 |d(t)|.

Fig. 2 shows the linear representation of the nonlinear

hysteresis operator H(·) by (3) with the bounded unknown

disturbance d(t). Note that for the Duhem model,

K(s) = α

for the linear system L(K, P, d) shown in Fig. 1. It is also

noted that, although we describe the decomposition process

by using the Duhem model, the same conclusion can be

always obtained for a general hysteresis relationship.

v(t)

q(t)

αv(t)

α dm

dm
d(t)

q(t) = (H(v))(t)

Fig. 2. Schematic of the linear representation for the hysteresis operator
q(t) = (H(v))(t) = αv(t) + d(t).

With the above decomposition, we are now ready to

apply the DOB scheme for the nonlinear hysteretic dynamic

system (1).
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B. DOB-based hysteresis compensation

Fig. 3 shows the block diagram of the DOB-based hys-

teresis compensation mechanism [8]. Here, C(s) denotes

the controller for the plant L(K, P, d) and η(t) denotes the

measurement noise. Kn(s) and Pn(s) denote the nominal

transfer functions for K(s) and P (s), respectively. It is

straightforward to calculate that the estimated disturbance

d̃(t) will be close to real d(t) if the measurement noise η(t)
is negligible and the nominal plants Kn(s) and Pn(s) are

close to K(s) and P (s), respectively.

yb

e v(t)

q(t)

q̂(t)

r(t) y(t)

d(t)

d̃(t)

η(t)

K(s) P (s)

H(·)

Kn(s) P−1

n (s)

K−1

n (s)Q(s)

C(s)

Fig. 3. Schematic of the disturbance observer-based control design.

The filter Q(s) is used to make Q(s)K−1
n (s)P−1

n (s) re-

alizable since K−1
n (s) and P−1

n (s) are typically non-casual.

The relative degree of Q(s) must be greater or equal than

that of the nominal plant Kn(s)Pn(s) [12]. Moreover, all

unstable zeros of Kn(s)Pn(s) must be zeros of Q(s) [13].

Typically, Q(s) can be chosen as [12]

Q(s) =

∑N−r
k=1 βk(τs)k + 1∑N
k=1 βk(τs)k + 1

,

where r is the relative degree of Q.

The stability of the DOB-based control design has been

recently presented in [14], [15]. If we design the outer-

loop controller C(s) to stabilize the nominal plant Pn(s),
real plant P (s) is of minimal phase, and some moderate

requirements on the filter design Q(s), the DOB-based

hysteresis compensation and control are stable even under

the existence of plant uncertainties. We omit the proof here

due to the page limit.

III. MODELING OF A PMN-PT PIEZOELECTRIC

ACTUATOR

In this section, we first briefly describe the used piezoelec-

tric cantilever actuator and then present a dynamic model of

the actuator. More detailed modeling discussion can be found

in [16], [17].

The actuator is made of a single crystal relaxor ferro-

electric material, PMN-PT. An interdigitated electrode (IDE)

design is employed for better actuation performance. To

reduce the stress concentration at the support and therefore

increase the reliability of the actuator for cyclic loading, we

use polydimethylsiloxane (PDMS) to form a coating layer

on the PMN-PT cantilever. A proof mass at the cantilever

tip is also formed by PDMS to emulate any attached end-

effector of micro-/nano-manipulation. Fig. 4 shows the PMN-

PT/PDMS cantilever prototype (8 mm × 8 mm × 1 mm) that

is attached to a PCB board.

Relative to the PMN-PT layer, the PDMS layer is thin

and soft. Therefore, the dual layer structure is considered as

a single-layer; see Fig. 5. We denote the size of the PMN-

PT cantilever beam as l (length) × b (width) × h (height).

Let Mp denote the mass of the proof mass and m the mass

density per unit length of the PMN-PT beam.

2mm

Testing PCB ba

IDE

Fig. 4. A PMN-PT/PDMS cantilever actuator.

+

+

x

z

IDEs

Proof mass Mp

PMN-PT beam

h

b l−

−

Fig. 5. Schematic of the PMN-PT actuator with IDEs.

Let EI denote the flexural rigidity of the PMN-PT can-

tilever. We set up the coordinate system such that the x-axis

is along the axial direction and the deflection is along the

z-axis direction (Fig. 5). The vertical deflection of the beam

is denoted by w(x, t) at location x and time t. The kinetic

and potential energy of the system are, respectively, as

T =
1

2

∫ l

0

mẇ(x, t)2dx +
1

2
Mpẇ(l, t)2,

V =
1

2

∫ l

0

EI (w′′)
2
dx,

where ẇ(x, t) := ∂w(x,t)
∂t

and w′′(x, t) := ∂2w(x,t)
∂x2 . Let c

denote the viscous damping coefficient for the beam. The
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virtual work is

δWc =

∫ l

0

(−cẇ(x, t) + M ′′
n (x, t)) δwdx,

where δw is the virtual displacement and Mn(x, t) is the

bending moment due to the electric field by the input charge

qB(t) (bottom electrode) and qT (t) (top electrode).

Let vT (t) and vB(t) denote the applied voltages on

the top and bottom electrodes, respectively. Let vd(t) :=
vT (t) − vB(t) and qd(t) := qT (t) − qB(t). We describe

the relationship between the voltage vd(t) and charge qd(t)
as a hysteresis relationship [10], that is, qd = (H(vd))(t).
Moreover, Mn(x, t) is approximated [16] as Mn(x, t) =

Keqd(t), where Ke := −Ebd33CEh2

12hF
, CE is the capacitance

of the IDE, hF is the inter-electrode distance, and d33 is

the piezoelectric coefficient. We assume that the electrode is

fabricated on the beam between location xs ≥ 0 and xe ≤ l.

Therefore, the spatial derivative M ′′
n (x, t) can be represented

as

M ′′
n (x, t) = Kaqd(t), (6)

where Ka := Ke [δ′(x − xs) − δ′(x − xe)], and δ′(·), the

spatial derivative of the Dirac delta function, represents the

unit dipole function [18].

Using the extended Hamilton’s principles, we obtain the

equations of motion and boundary conditions

Mp

∂2w(l, t)

∂t2
+ m

∂2w

∂t2
+ c

∂w

∂t
+ EI

∂4w

∂x4
= M ′′

n (x, t),

(7a)

w(0, t) = w′(0, t) = w′′(l, t) = 0. (7b)

We define ξ := x
l
, γm :=

Mp

ml
, and λ4 := ml4ω2

EIeq
as the

dimensionless length of the beam, mass ratio of the proof

mass and the beam, and the natural frequency parameters

of the beam-mass system, respectively. The characteristic

equation of the dynamic systems given in Eq. (7) is then

obtained as

1 + cos λ cosh λ + λγm (cos λ sinhλ − sin λ cosh λ) = 0.

(8)

The natural frequency decreases as γm increases (or as the

tip mass increases) [17].

To obtain a generalized single-degree-of-freedom (SDOF)

equation of motion, we use the generalized SDOF approxi-

mation described in [19]. By variable separation, we write

w(x, t) = φ(x)p(t), where φ(x) is the modal shape and

p(t) is the generalized coordinate for the SDOF system. We

consider the following mode shape φ(x) for the beam-mass

systems

φ(x) = sin (λξ) − sinh (λξ) − B [cos (λξ) − cosh (λξ)] ,

where B(ξ) = sin(λξ)+sinh(λξ)
cos(λξ)+cosh(λξ) . Using expansions for hyper-

bolic functions, φ(x) can be approximated as

φ(x) = Aξ2 − Cξ3, (9)

where A = B(1)λ2 = sin λ+sinh λ
cos λ+cosh λ

λ2, C = 1
3λ3.

Using the generalized SDOF system method, the equation

of motion for the beam-mass systems in terms of p(t) is

obtained as

mep̈(t) + ceṗ(t) + kep(t) = feqd(t), (10)

where me, ce, ke, and fe are generalized mass, damping,

stiffness, and force coefficients, respectively [17], [19]. Let

wp(t) := w(l, t) = φ(l)p(t) denote the measurable tip

displacement. From Eqs. (10) and the relationship wp(t) =
(A − C)p(t), we find the transfer function between the

excitation charge qd(t) and the tip displacement wp(t) as

P (s) :=
Wp(s)

Qd(s)
=

(A − C)fe

mes2 + ces + ke

=
Avω2

n

s2 + 2ζωns + ω2
n

,

(11)

where ω2
n = ke

me
, 2ζωn = ce

me
, and Av = (A−C)fe

ke
.

IV. EXPERIMENTS

A. Experimental setup

A PMN-PT cantilever actuator prototype (shown in Fig. 4)

was fabricated with a dimension of 7.4 mm × 2 mm ×110
µ m. To test the cantilever actuator, we setup a testbed as

shown in Fig. 6. The cantilever actuator is mounted on a

fixed base. A high-precision fiber optic displacement sensor

system (model D11, Philtec Inc.) is used to measure the

tip displacement of the cantilever. The cantilever actuator is

driven by an amplifier (model 790A, PCB Piezotronics Inc.).

A real-time control system (model ACE1104, dSPACE Inc.)

is used to control the motion of the actuator and also to

collect the displacement data.

Systems

(dSPACE)

PMN−PT/PDMS 

Power amplifier

Disp. Sensor

Real−time

Control

Fiber Optic 

cantilever actuator 

Fig. 6. A schematic of the actuator testing systems.

B. Experimental results

In all experiments, we only excite the electrode on the

top surface. The bottom electrode is connected to ground.

Therefore, input vd(t) = vT (t) and qd(t) = qT (t).
We first estimate the model parameters: natural frequency

ωn and damping ratio ζ, in P (s). We excite the cantilever

actuator by an impulse voltage and record the resulting

response. Fig. 7 shows the frequency plots of the cantilever

actuator due to an impulse response and the identified sys-

tem. Furthermore, we split the original time-domain signal
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into segments by their frequency components and then attain

the evolution of the modal amplitudes over time. A least-

square method is then used to estimate the decay rate and

thus obtain an estimate of damping ratio ζ. From the system

spectral analysis, we estimate the first natural frequency and

damping ratio to be

ωn = 1547 Hz, ζ = 0.00876.

We cannot measure the charge signal q(t) in experiments.

Also, from an input/output viewpoint, the actuator system

has two sets of dc-gain parameters, α in the hysteresis

operator (3) and Av in the plant (11). Therefore, we choose

Av = 1 C/V and let the system dc-gain be determined

by the value of α. Fig. 8(a) and 8(c) show the actuator

response under a sinusoidal input with a frequency of 10

Hz and 100 Hz, respectively. From the results, the hysteresis

nonlinearity in actuator response is apparently independent

of input frequency. We can then estimate the value of α by

using the responses under various input frequencies, and the

following estimate is obtained.

K(s) = Kn(s) = α = 76.4 nm/C.

10
2

10
3

10
4

−100

−50

0

50

10
2

10
3

10
4

−300

−200

−100

0

 

 

Open Loop

DOB

Nominal Plant

First mode Second mode

f (Hz)

|G
/A

v
|
(d

b
)

∠
G

(d
eg
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Fig. 7. Bode plot of the cantilever impulse input and feedback responses
under DOB.

To demonstrate the effectiveness of the DOB-based hys-

teresis compensation, two experimental examples are shown

in Fig. 8(b) and 8(d). In these figures, we can see the

tip displacement versus input voltage relationship under a

compensation of the DOB design. Since the plant dynamics

P (s) is stable and minimum-phase, we choose a second-

order Butterworth filter for Q(s), namely,

Q(s) =
ω2

c

s2 +
√

2ωcs + ω2
c

,

where ωc is the cutoff frequency of the filter. We have found

that for stability, the cutoff frequency ωc needs to be below

approximately 500 Hz, and therefore we choose ωc = 500
Hz in our experiments. Although we demonstrate, here, the

effectiveness of the proposed hysteresis compensation under

only two input frequencies, our other testing results have

demonstrated a successful compensation up to 200 Hz input

frequency.

A PID controller C(s) is used to track the reference signal

r(t) in the DOB-based control system design shown in Fig. 3.

The gains for the PID controller C(s) are tuned as

Kp = 10−4, Ki = 125, Kd = 10−10

for achieving the best performance under a step input r(t).
To compare the tracking performance with and without the

DOB compensation, we keep these gains unchanged in both

experiments. Fig. 9 shows the comparison result of a step

response. We observe that without hysteresis compensation,

the response has a slower response time (around 50 ms) while

using the DOB-based hysteresis compensator, we are able to

obtain a much faster response with almost no delay.

V. CONCLUSION

In this paper, we demonstrated a novel hysteresis com-

pensation method with applications to piezoelectric actuators.

The compensation mechanism treats the hysteresis nonlinear-

ity as an unknown disturbance added to a linear system. As

a result, the proposed hysteresis compensation method does

not rely on any mathematical model of hysteresis. Simplicity

in implementation and robustness of performance are the

main advantages of the DOB-based hysteresis compensation

approach. We have demonstrated the effectiveness and effi-

ciency of the method as applied it to a PMN-PT cantilever

piezoelectric actuator within a dynamic bandwidth of 100

Hz.

Improving dynamic performance of the proposed hys-

teresis compensator is an ongoing research. We are also

interested in enhancing the DOB-based design for high-

bandwidth hysteresis compensation that can be applied for

micro-/nano-manipulation systems.
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Fig. 9. Comparison results of the step responses with and without the
DOB hysteresis compensation.
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