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Abstract—This paper presents a unified approach to deal with
sliding mode controllers used for induction motor drives. The
study digs deep to identify matched and unmatched disturbances
and derive conditions to satisfactorily reject the same. The
investigation reveals fundamental limitations of hysteresis (first
order sliding mode) controllers those can be overcome by higher
order controllers. Second order sliding mode controllers are
investigated to achieve disturbance rejection and chattering free
performance. It is shown that the drive with second order sliding
mode controllers maintains constant switching frequency and
decoupling between torque and flux simultaneously in the face of
sudden speed, load, or parameter variations. Also, it is shown that
the dynamic performance can be drastically improved at higher
sampling frequencies keeping the switching frequency constant.
Extensive simulations are carried out in Matlab/Simulink. Imple-
mentation of such a drive becomes feasible with low cost FPGAs
due to their inherent parallel processing capability. A vector
controlled induction motor drive is developed and the controller
is implemented using FPGA to corroborate the simulation results
through experimentations.

Index Terms—Induction motor drives, PWM operation, hys-
teresis current controlled converter, vector control, higher order
sliding mode control, FPGA.

I. INTRODUCTION

INDIRECT vector control of squirrel cage induction motor

drives is a very popular control strategy providing high

dynamic performance. Sliding mode control (SMC) is a well

established nonlinear control strategy for enhancing perfor-

mance robustness and offering effective disturbance rejec-

tion [1]. In vector controlled induction motor drives, SMC

is applied in two ways, one as an observer for estimating

machine quantities [2]–[11] and the other as a controller for

error convergence [12]–[17]. Since observers are model-based

which are parameter dependent, sliding mode controllers when

used in observers cannot offer as much disturbance rejection as

they can when used as controllers. A sliding mode controller

can be of first order [12], [13] (a simple signum function

otherwise called hysteresis controller) or of higher order [17]–

[20].

In vector controlled drives, hysteresis current controller fed

PWM technique is widely used to generate the switching

pulses for the inverter. The known advantages of hysteresis

PWM technique are fast response, ease of implementation,

and inherent over-current protection [12], [13]. However, the

dynamics and disturbance rejection ability of such a drive need

to be clearly established. This paper is an attempt to apply

sliding mode concepts to vector controlled induction motor

drive and understand the dynamics and disturbance rejection

properties of the system.

The major problem of hysteresis PWM is variable switching

frequency resulting in distortion of line currents. Researchers

tackled this disadvantage and achieved constant switching

frequency in two ways, one by modifying the hysteresis band

at every load and operating point [13] and the other is by using

PI controllers along with parameter dependent feed forward

terms [21]. As seen, these methods are operating point or

machine parameter dependent, which vary normally during the

operation of the drive. In PI controller based methods, integral

sliding mode control is employed in [21]–[23] to remove the

parameter dependency of the feed forward terms but these

methods suffer from chattering and other performance related

issues.

In literature, some authors have reported the use of higher

order sliding mode controllers for induction machine [2], [9],

[11], [14], [15], [17]. While most of these works used SMC as

an observer [2], [9], [11], the authors in [14], [15], [17] used

an SMC as a controller. In this paper, a vector controlled IM

drive is analyzed from the perspective of sliding mode control.

A unified approach is presented. In addition, the following

contributions are highlighted.

• The disturbance rejection conditions are derived in terms

of closed-form expressions. Influence of matched and

unmatched disturbances on the system is studied.

• It is demonstrated that the drive with second order sliding

mode controllers maintains constant switching frequency.

Effect of increasing the sampling frequency on the per-

formance of the drive is also investigated.

• The propositions are implemented and verified experi-

mentally using a low cost FPGA based hardware setup

developed in the laboratory. Implementation aspects in

FPGA are also presented.

The paper is presented in nine sections. Section-I provides a

brief introduction of the work, whereas a review of the sliding

mode concepts is presented in Section-II. These concepts are

applied to a hysteresis PWM fed indirect vector controlled

induction motor drive in Section-III and its dynamics and

its disturbance rejection properties are studied in Section-IV.

The use of second order sliding modes, their implementation,

dynamics, and disturbance rejection properties are discussed

in Section-V. Section-VII reports the simulation results using

MATLAB/SIMULINK. A low cost FPGA based experimental

setup is developed in the laboratory (Section-VIII) and the
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experimental results are presented in Section-IX. Section-X

concludes the work.

II. REVIEW OF SLIDING MODE CONTROL THEORY

A. Introduction [1]

The first order sliding mode control (SMC) input (u) in a

single input single output system
.
x = u + d to reach sliding

surface ‘s’ is given as

u = −ksign(s± ǫ) (1)

where k > |d|, ‘d’ is the disturbance in the system and ǫ is

the size of the hysteresis band.

The following points can be noted from first order SMC:

• The disturbance must be matched with the input in order

to get rejected.

• The actual quantities of all the states required in the

sliding surface s are sensed and fed to controller for

satisfactory operation of the SMC.

• The kind of SMC in (1) can be applied only to systems

with relative degree one.

Further SMC concepts like equivalent control method for

obtaining the dynamics of the system in sliding mode, hyper-

plane vector transformation for applying SMC in multi-input

case, and cascaded control for using SMC to reject unmatched

disturbances are discussed briefly in the following subsections.

B. Equivalent Control Method

Due to the switching nature of the control input, it is difficult

to study a system under SMC analytically. So, in order to study

about the stability and dynamic response of systems containing

sliding modes, Utkin [1] developed equivalent control method

where we can obtain the equivalent continuous-time control

input applied to the system.

Let us assume a general system as:

.
x = f(x, t) +Bu (2)

where xm×1, f(x, t)m×1, Bm×n, un×1, m,n ∈ ℜ.

For this system with a designed sliding surface s = 0, the

expression for equivalent control input, ueq is given as

ueq = −[GB]−1Gf(x, t) (3)

where G(x)n×m denotes the gradient of the scalar surface i.e.,

the jacobian matrix. Substituting (3) in (2), we get

.
x = [I −B[GB]−1G]f(x, t) (4)

where I is the identity matrix of appropriate order. Therefore,

the dynamics and stability of the system in sliding mode can

be studied using the continuous equivalent system given in (4).

C. Cascaded Control

In order to reject unmatched disturbances, the concept of

cascaded control is proposed in [24]. To understand this, let

us assume a system to be of the form

.
x1 = f1(t, x1) + g1(t, x1)x2 + dd1(t, x)
.
x2 = f2(t, x1, x2) + g2(t, x1, x2)u+ dd2(t, x)

(5)

where dd1(t, x) and dd2(t, x) are the disturbances to be

rejected. If the sliding surface s = x1 − x∗
1
= 0 (x∗

1
is the

reference value), then the relative degree of the system is

two. It can be observed here that dd1(t, x) is an unmatched

disturbance since it does not appear along with the input u
whereas dd2(t, x) is a matched disturbance which can be

rejected. In order to reject both dd1(t, x) and dd2(t, x), the

concept of virtual control is proposed in [24]. According to

this, x2 is defined as a virtual control input for which dd1(t, x)
becomes a matched disturbance and so it can be rejected using

the sliding surface s = x1 − x∗
1

= 0. Then, actual x2 is

forced to match this virtual control input using another sliding

surface, x2 − x∗
2
= 0 (x∗

2
is the virtual control input) using

input u defined in (5) and this can reject matched disturbance

dd2(t, x). Hence, both matched and unmatched disturbances

can be rejected with this technique.

III. HYSTERESIS PWM AND VECTOR CONTROL

The concepts of SMC briefly explained in the previous

section are now applied to a hysteresis PWM fed vector

controlled induction motor drive.

A. Sliding Surfaces in Vector Control

In a vector controlled induction motor drive, current con-

troller errors are chosen as sliding surfaces since they are

directly related with the inputs as:
[.
isd
.
isq

]

=

[

a1isd + ωeisq + a2ψrd + a3ωrψrq

a1isq − ωeisd + a2ψrq − a3ωrψrd

]

+
1

σLs

[

vsd

vsq

]

(6)

Therefore, the sliding hyperplane is given by

s =

[

s1

s2

]

=

[

isd − i∗sd
isq − i∗sq

]

(7)

B. Concept of Cascaded Control in Vector Control

The induction machine is modeled in synchronously rotating

rotor flux reference frame [25] taking stator current and rotor

flux as state variables. The state-space model is given by
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(8)

where

a1 = − 1

σLs

[

Rs +
L2

m

Lrτr

]

, a2 =
1

σLs

Lm

Lrτr
, a3 =

1

σLs

Lm

Lr

(9)

and

ωsl = ωe − ωr =
1

τr

isq
i∗sd

(10)
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The mechanical equation of the machine with electromagnetic

torque (Te) and load torque (TL) is given by

(Te − TL)
P

2
= J

.
ωr + Bωr (11)

where

Te =
3

2

P

2

Lm

Lr

(ψrdisq − ψrqisd) (12)

The core of vector control is the flux control. In rotor flux

oriented reference frame, rotor flux is maintained constant

(ψrd = ψ∗
rd = Lmi

∗
sd) by keeping isd constant at i∗sd. There-

fore, one sliding surface is selected as s1 = isd − i∗sd. This

dynamics can be understood by considering the expression for.
isd from (8) as follows.

.
isd = a1isd + ωeisq + a2ψrd + a3ωrψrq +

1

σLs

vsd (13)

Eqn. (13) can be compared with standard first order system

with matched disturbance,
.
x = u+ d where u = 1

σLs

vsd and

d = a1isd + ωeisq + a2ψrd + a3ωrψrq . Therefore, input u
can be applied such that disturbance d is rejected. Since the

actual machine is in stationary reference frame, the kind of

input defined in (1) cannot be applied directly. We have to go

for hyperplane vector transformation into stationary reference

frame which will be discussed later.

Now for the drive system, the speed/torque control has to

be exercised. For torque control, the sliding surface is chosen

as s2 = isq − i∗sq , the torque current error. For this sliding

surface, the analysis is similar if “isq” is considered instead

of “isd”. For speed control, consider the following equations

obtained from (8),(11), and (12) for a vector controlled drive

under rotor flux orientation (ψrd = ψ∗
rd and ψrq = 0).

.
ωr =

[

3

2

P

2

Lm

Lr

ψ∗
rdisq − TL

]

P

2J
− B

J
ωr

.
isq = −ωeisd + a1isq − a3ωrψrd +

1

σLs

vsq

(14)

Eqn. (14) is of the same form as (5) where x1 = ωr, u = vsq ,

and the virtual control input x2 = isq . Therefore, unmatched

disturbances (not along the input vsq) like load torque variation

as well as matched disturbances can be rejected completely

with this approach of cascaded control. From this, the condi-

tion on the input voltage for satisfactory disturbance rejection

is derived as presented in Section IV.

C. Equivalent Control in Vector Control

Since the system is now defined from SMC principles, we

can now relate the system with the concept of equivalent

control to determine the dynamics of the system in the sliding

mode. Using (6) and (3), the equivalent control input is given

as:

ueq = −[GB]−1Gf(x, t)

= −[GB]−1

[

a1isd + ωeisq + a2ψrd + a3ωrψrq

a1isq − ωeisd + a2ψrq − a3ωrψrd

]

(15)

and the dynamics of the system in sliding mode is given by

(4) as

.
x =

[.
isd
.
isq

]

= [I −B[GB]−1G]f(x, t) =

[

0

0

]

(16)

This means that the system (6) in sliding mode behaves as if

the first derivative of the system states isd and isq are zero. It

is well known that a system under SMC behaves like a reduced

order system. The same applies here also. Since
.
isd and

.
isq

became zero, the system order gets reduced by 2. Therefore,

by the application of sliding modes, the fifth order induction

machine behaves like a third order system.

IV. DISTURBANCE REJECTION

One of the major advantages of SMC is disturbance rejec-

tion. This section deals with the effect of disturbances like

load torque variation, parameter variation, etc. on the system.

A. Rejection to matched disturbances

SMC naturally rejects the matched disturbances if the

control input is sufficiently large. The matched disturbances

for the system (6) are given as

[

d1

d2

]

=

[

a1isd + ωeisq + a2ψrd + a3ωrψrq

a1isq − ωeisd + a2ψrq − a3ωrψrd

]

(17)

To reject these disturbances satisfactorily, the control inputs in

d-q frame must satisfy the following condition
[

vsd

vsq

]

>

[

|σLs(a1isd + ωeisq + a2ψrd + a3ωrψrq)|
|σLs(a1isq − ωeisd + a2ψrq − a3ωrψrd)|

]

(18)

Squaring and adding vsd and vsq , we get

v2sd + v2sq > (σLs)
2(d2

1
+ d2

2
) (19)

Using Clarke’s transformation and equating vsa+vsb+vsc = 0,

we get

v2sd + v2sq = (vsa)
2 +

(

vsb√
3
− vsc√

3

)2

≥ v2sa = k2
1

(20)

In a vector controlled drive fed from an inverter, k1 is the

pole voltage which is equal to Vdc/2 (where Vdc is the dc

bus voltage). Therefore, the approximate condition on dc bus

voltage for satisfactory rejection of d1 and d2 is given as

Vdc ≥ 2σLs

√

(d2
1
+ d2

2
) (21)

B. Rejection to unmatched disturbances

SMC cannot directly reject unmatched disturbances but as

shown in previous section, using cascaded control strategy,

these disturbances can be rejected by the use of virtual control.

For understanding this, the first part of (14) is considered again

by replacing isq with uvir (indicating virtual control input) as

.
ωr =

[

3

2

P

2

Lm

Lr

ψ∗
rduvir − TL

]

P

2J
− B

J
ωr (22)
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After the introduction of virtual control, the disturbances

which were unmatched with the actual input became matched

with the virtual control input. The disturbance that can now

be rejected is:

d3 = −TL
P

2J
− B

J
ωr (23)

and the condition on the virtual control input for satisfactory

operation rejecting disturbance d3 is given as

uvir >

∣

∣

∣

∣

(

− TL
P

2J
− B

J
ωr

)

4Lr

3PLmψ∗
rd

∣

∣

∣

∣

(24)

This uvir is considered as the reference q-axis current i∗sq to

form the second sliding surface s2 in the hyperplane s. By

doing so, both the disturbances d2 and d3 are simultaneously

rejected and disturbance d1 is anyway rejected using first

sliding surface s1.

C. Disturbances that cannot be rejected

It is important to note that there are disturbances that

cannot be rejected in a hysteresis PWM fed vector controlled

induction motor drive. It comes from the fact that the feedback

currents isd and isq in the sliding hyperplane s (7) are not

directly available for sensing. If the actual values of isd and

isq are sensed, the entire system could have been free from

all disturbances but unfortunately the machine is in a-b-c
reference frame and currents in this reference frame can only

be sensed. The relation between a-b-c and d-q reference frame

currents is given as

[

isd

isq

]

=

[

2

3
cos θe − cos θe

3
+ sin θe√

3
− cos θe

3
− sin θe√

3

− 2

3
sin θe

sin θe
3

+ cos θe√
3

sin θe
3

− cos θe√
3

]







isa

isb

isc







(25)

As shown in (25), the d-q frame currents are obtained from

the sensed a-b-c frame currents using the position of the rotor

flux vector θe. Therefore, the computation of isd and isq is

sensitive to the parameters involved in the computation of θe.

In indirect vector control, θe is obtained as

θe =

∫

ωedt =

∫

(ωr + ωsl)dt (26)

where ωsl is given by (10). Assuming that the speed signal

ωr is sensed directly, the influencing parameter is the rotor

time constant τr in the slip equation. Any mismatch in the

parameter τr results in wrong estimation of isd and isq which

in turn results in reaching the wrong sliding surfaces. Thus,

the whole system becomes sensitive to τr variation and hence

these disturbances cannot be rejected by SMC. Similarly, if the

rotor speed is estimated, then the system becomes sensitive

to all the parameters present in the rotor speed estimation

algorithm.

V. HIGHER ORDER SLIDING MODE CONTROL

The problem with hysteresis PWM (which is basically a first

order SMC) are chattering and operation at variable switching

frequency. To overcome this without losing the disturbance

I
II

III

IV
V

VI
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Fig. 1. Indirect vector controlled IM drive with second order SMC current
controllers.

rejection properties, higher order sliding mode control [18]–

[20], [26] is recommended. According to higher order sliding

mode control theory [20], for the system (6) with relative

degree one, the order of the sliding modes must be at least two

to eliminate chattering. Also, the system complexity increases

with increase in sliding mode order. Therefore, a second order

sliding mode is used.

A. Second Order Sliding Mode Control

There are several second order sliding mode controllers

proposed in literature [18]–[20], [26]. Of these, the one in

[18], [19] can be easily implemented and is given as

.
u = −r1sign(s)− r2sign(

.
s) (27)

where r1 > r2 > 0. As shown in (27), the sign terms

(chattering causing terms) are now present in the derivative

of the input u. Therefore, by proper selection of r1 and r2,

chattering can be removed from actual control input u obtained

by integrating
.
u. The block diagram of the vector controlled

drive [25] with second order sliding mode current controllers is

shown in Fig. 1. As seen, the current controllers are replaced

with second order sliding mode controllers to reach sliding

surfaces s1 = isd−i∗sd and s2 = isq−i∗sq . The speed controller

is a PI controller. From Fig. 1, it can be observed that since the

outputs of a second order SMC are continuous, space vector

PWM modulation is employed to maintain constant switching

frequency and to achieve enhanced dc bus utilization of the

inverter. The outputs of the second order SMC are given as
[

v∗sd
v∗sq

]

=

[

∫

{−r11sign(s1)− r21sign(
.
s1)}dt

∫

{−r12sign(s2)− r22sign(
.
s2)}dt

]

(28)

where s1 and s2 are defined in (7). The tuning procedure of

the sliding mode gains is given in [27].

B. Disturbance Rejection using second order SMC

All the concepts of sliding mode control discussed in

Sections-II, III, and IV hold true even for second order sliding

modes with the only difference that along with the disturbance

d being bounded, the derivative of the disturbance i.e.,
.
d also

must be bounded since the output of the second order sliding
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Fig. 2. Simulation Result with PI control. (a) System state ‘x’. (b) Disturbance ‘d’. (c) input ‘u’.
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Fig. 3. Simulation Result with SOSM control. (a) System state ‘x’. (b) input
‘u’.

mode control is
.
u instead of u. Therefore, the condition on

the derivative of the disturbance is given as

1

σLs

[ .
vsd
.
vsq

]

>

[

|
.
d1|
|
.
d2|

]

(29)

where d1 and d2 are defined in (17).

C. Discretization of the Controller

The controller given in (27) has to be discretized for digital

implementation in FPGA. Discretization is done using Euler’s

method which approximates the continuous domain terms and

hence the twisting control also is expected to approximate the

performance of its corresponding continuous domain. It has

been proved in [18] that the real sliding due to discretization

will converge the sliding surface within |s|< k1T
2

s and

|ds/dt|< k2Ts where k1, k2 > 0 and Ts is the sampling time

used for discretization. This error will be very small if the

sampling time, Ts used is small. Therefore, the value of input

u at kth instant is given as

uk = uk−1 + Ts{−r1sign(sk)− r2sign(sk − sk−1)} (30)

where sk is the sliding surface at kth sampling instant and

Ts is the sampling time of the system. As seen from (30),

for getting the information about sign of the derivative of s,
we need not compute the actual derivative. The sign of sk −
sk−1 is the same as the sign of

.
s and hence the problems

related to practical implementation of derivative operation can

be avoided.

VI. COMPARISON WITH A PI CONTROLLER

PI controllers are traditionally used in the speed and current

loops of vector control in order to maintain constant switching

frequency of the inverter. While PI controllers can also reject

disturbances eventually, they cannot make the closed loop sys-

tem immune to disturbances i.e., they cannot provide reduced

order behavior to the system like a sliding mode controller.

This can be better understood by considering again the simple

system,
.
x = u + d discussed in Section-II applied with a

disturbance as shown in Fig. 2b. Here, the error e = 0− x is

processed through a PI controller (kP =200 and kI =1000)

to get input u and the results are reported in Fig. 2. As shown

in Fig. 2a, the system state is affected for every change in

the disturbance d (Fig. 2b) but it eventually reverts back to

zero due to the PI action. Thus, we can say that the system

is not completely immune to disturbances but can reject them

eventually. This is the disadvantage of using PI as current

controllers because in a vector controlled drive, it is required

that the d- and q-axis current errors remain zero irrespective

of disturbances.

Let us now see the effect of using a SOSM controller (27)

in place of a PI controller. The result is shown in Fig. 3 (for

r1 = 2 × 105 and r2 = 4 × 104) when the same disturbance

(Fig. 2b) is applied on the system. It can be observed from

Fig. 3b that the input has fast dynamics and is continuous.

The system state x is immune to disturbances (x remains zero

even with sudden changes in disturbances) as shown in Fig.

3a thus making an SOSM controller more suitable for use as

current controllers in a vector controlled drive. Also, it can be

observed that the computational burden of an SOSM controller

(27) is almost the same as that of a PI controller requiring

one integration, two gain multiplications, and two add/subtract

operations. In addition, the SOSM controller requires two sign

operations consuming negligible resources of the processor.

In a vector controlled drive, unlike the current controllers,

the speed response depends on the inertia of the machine.

Thus, an SOSM controller if used in the speed loop of a vector

controlled IM drive may always give an i∗sq which is beyond

the permissible limits or in other words the output of the speed

loop gets saturated at the maximum values for most of the

time depending on the sudden changes in reference speed and

mechanical time constant of the machine. The sliding mode

controller action is lost whenever it hits saturation. To avoid

this, it is better to use a slow acting PI controller in the outer

speed loop instead of a fast acting SOSM controller. Since

a PI controller can also reject disturbances, the speed loop

PI can reject disturbance d3 (23) but as discussed earlier, the

speed loop will not be immune to disturbances. This is also

good from mechanical stress point of view of the machine
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shaft. Thus, a PI controller in the speed-loop is sufficient to

have desired performance for the overall system. The final

conclusion is to employ an SOSM controller in the inner

current loops and a PI controller in the outer speed loop of

the vector controlled induction motor drive as in Fig. 1.

VII. SIMULATION RESULTS

The disadvantages of using hysteresis current controllers

are well reported in literature [21] and hence these re-

sults are not repeated. The simulation results (using MAT-

LAB/SIMULINK) presented in this section mainly highlight

to show the disturbance rejection and chattering free nature of

second order SMC fed drive (Fig. 1) for sudden speed, load,

and parameter variations. While load varation is an unmatched

disturbance, stator resitance variation is a matched disturbance.

Stator resistance parameter variation is considered in this study

since it is not involved in θe calculation and hence can be

rejected by sliding mode control. Also, stator resistance can be

easily varied in hardware (by connecting external resistances in

series with the stator terminals) to produce the corresponding

experimental result. The machine parameters are given in

Table I.

A. IM drive with second order SMC Current Controller

The performance of the drive with second order SMC

current controllers (Fig. 1) is shown in Fig. 4. Speed, load and

stator resistance variations are considered one after the other in

a single result for conciseness. The speed PI and second order

SMC current controller values are chosen to satisfy (18), (29)

and their values are given in Table II. The sampling frequency

of the system is kept at 6.103 kHz. The system is simulated

for a step change in speed of 20 rad/s applied at 2s from start

(Fig. 4a), followed by a load change to 0.5 pu at 5.4s (Fig. 4c),

and then the stator resistance parameter is suddenly varied to

triple its value at 7.7s and again returned back to its original

value at 9s (Fig. 4f). The speed response is shown in Fig. 4a

where the reference speed matches with actual. A sudden

dip in speed occurs on loading and the actual speed restores

back to reference speed. There is no chattering observed in

isd and isq waveforms as seen in Figs. 4b and 4c. A closer

view showing the dynamic response of torque component of

current is given in Fig. 4d. The isq dynamics take about 10

ms to reach i∗sq as shown but this change has negligible effect

on the d-axis current (Figs. 4b) which is a clean waveform

with no chattering. This is due to continuous nature of the

second order SMC output. Along with this, since the nature

of sliding mode control is to remain immune to disturbances,

decoupling is maintained inherently between isd and isq . Since

the flux component of current isd remained immune to speed,

load, or stator resistance variation disturbances as shown in

Fig. 4b, flux orientation is well maintained irrespective of

disturbances. From Fig. 4c, it can be seen that the torque

component of current, isq varied and matched with reference

i∗sq for speed and load torque variations but remained immune

to stator resistance variation (as in Fig. 4f). In practice, stator

resistance will not vary so much and never in step. Such a

high step is considered here to show the effectiveness of the

proposed algorithm. The output of the second order SMC

current controllers, v∗sd and v∗sq are continuous signals as

shown in Fig. 4e and the rotor flux orientation is maintained

throughout as shown in Fig. 4g. This shows that chattering is

eliminated with the use of second order sliding mode current

controllers and at the same time decoupling is maintained

between torque and flux for speed, load, or stator resistance

parameter variations and thus the disturbances (as discussed

in Section-IV) are rejected satisfactorily.

B. IM drive with second order SMC Current Controller at

High Sampling Rate

As observed from (27), the dynamic response of u i.e.,
.
u can be increased with increasing sliding gains but very

high sliding gains might introduce chattering even with second

order controller. To overcome this problem and simultaneously

achieve high dynamic response, higher sliding gains can be

employed at higher sampling rates (or lower sampling time

period). This can be understood from (30) where it can

be observed that the product of sampling time period (Ts)

and sliding gains contribute to uk. Therefore, by decreasing

Ts, we can have higher sliding gains keeping their product

constant effectively increasing the dynamic response without

introducing chattering. This is demonstrated in simulation

using Fig. 5 where the sampling frequency (Fs = 1/Ts) is

195.312 kHz. Similar reference commands are given here also

as shown in Fig. 5 except that the second order controller gains

are now increased as shown in Table II. Disturbance rejection

is achieved here also as observed from d- and q-axis stator

current waveforms presented in Fig. 5b and Fig. 5c. Along

with this, dynamic response of q-axis current is now improved

to around 2.5 ms as shown in Fig. 5d without disturbing d-axis

current shown in Fig. 5b. Chattering free stator voltages in d-q
frame are shown in Fig. 5e and the stator resistance variation

done is shown in Fig. 5f. The flux orientation is well main-

tained as shown in Fig. 5g. Therefore, similarly the dynamic

response can be further improved at much higher sampling

rates simutaneously maintaining disturbance rejection.

C. IM drive with second order SMC Current Controller at

High Sampling Rate with Rr variation

As discussed in Section IV-C, the rotor time constant

disturbances cannot be rejected in indirect vector controlled

induction motor drive. Though it is not possible to access

the rotor winding to experiment in a squirrel cage induction

motor, it is possible to verify this in simulation which uses

the mathematical model of the machine. This is demonstrated

in Fig. 6 where rotor time constant is varied by varying

rotor resistance Rr as shown in Fig. 6e. It can be observed

from Figs. 6b and 6c that both d- and q-axis currents are

matching their reference values at all times. Therefore, the

sliding controllers are working fine but as seen from the d-

q axis flux waveforms presented in Fig. 6f, the rotor flux

orientation is completely lost when Rr is varied from its

nominal value. This is because the actual sensed currents are

transformed to d-q frame using rotor time constant dependent
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transformation and fed to the sliding controller which blindly

matches the reference with actual and hence this disturbance

cannot be rejected. The reference voltages are shown in Fig. 6d

and the speed response can be observed from Fig. 6a where the

actual speed also varied with Rr disturbance. The results are

in coherence with the explanation presented in Section IV-C.

VIII. EXPERIMENTAL SET-UP

A. Prototype Description

A laboratory prototype is developed to validate the proposed

scheme. A Xilinx based FPGA (SPARTAN XC3S1400an)

controller board is used for this purpose. The photographic

view of the hardware set-up is shown in Fig. 9. The FPGA

board consists of logic gates, external ADC (ADS8361) and

DAC (DAC8554) and dedicated I/O ports. The PWM pulses

generated from FPGA board are fed to the gate driver of the

IGBT inverter through an op-amp circuit that shifts the voltage

level of 3.3V (from FPGA) to 15V. The motor currents are

sensed through current sensors (LA-55P) and given to the

controller board (FPGA) with the help of ADC. Speed of

the motor is obtained from the speed encoder. The encoder

pulses are given to the I/O pins of FPGA board via a

buffer circuit. The induction machine (details in Table I) is

coupled with a separately excited dc machine. For loading

the induction machine, the dc machine armature is current

controlled through a four quadrant dc chopper.

IX. EXPERIMENTAL RESULTS

Experimental results are obtained from a laboratory de-

veloped prototype, as discussed in Section-VIII. The FPGA

resource utilization for implementing the entire algorithm is

found to be about 25% and hence this algorithm can be easily

implemented in much cheaper FPGAs. It must be noted that

the code complexity remains same whatever the sampling

frequency since it is parallel implementation and the highest

sampling rate is only limited by the ADC sampling rate and

the FPGA clock whichever is lower. In this case, the ADC

conversion rate was lower and approximately equal to 250

kHz. All the results are observed through DACs interfaced

with the FPGA board. In the waveforms presented, 1V corre-

spond to 10rad/s of speed, 1.018Wb of flux, 80V of voltage,

and 1.697A of current. Similar loading and stator resistance

parameter variation conditions are maintained as detailed in

simulation and the machine parameters are the same as given

in Table I.

A. IM drive with second order SMC Current Controller

The experimental result for the second order SMC current

controller fed IM drive corresponding to the simulation in Fig.

4 is shown in Fig. 7. The switching frequency of the inverter

and sampling frequency of the system are chosen to be same

and equal to be 6.103 kHz (same value as in simulation).

The reference and actual speeds are matching as shown in

Fig. 7a. Chattering free decoupled isd and isq waveforms are

shown in Figs. 7b and 7c respectively where they match their

corresponding simulation results. The magnified response of

isq current dynamics is shown in Fig. 7d. Rotor flux (as seen
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Fig. 4. Simulation result for second order SMC current controller fed IM
drive. (a) ω∗

r and ωr vs. time. (b) i∗
sd

and isd vs. time. (c) i∗sq and isq vs.
time. (d) i∗sq and isq vs. time. (e) v∗

sd
and v∗sq vs. time. (f) Rs vs. time. (g)

ψrd and ψrq vs. time.

from isd waveform in Fig. 7b and from d-q flux waveforms

in Fig. 7f) is well oriented irrespective of speed, load, or

stator resistance parameter variation (Fig. 4f). The outputs of

the second order SMC, v∗sd and v∗sq are shown in Fig. 7e.

It can be observed from Fig. 7e that v∗sd and v∗sq vary almost

instantaneously for speed, load, and stator resistance parameter

variation thus maintaining decoupling between isd and isq
waveforms. This proves the superiority of using second order

SMC current controllers over hysteresis current controllers

because the switching frequency is constant and decoupling

is inherently maintained by rejecting disturbances.

B. IM drive with second order SMC Current Controller at

High Sampling Rate

The experimental result corresponding to the higher sam-

pling rate implementation of the same algorithm is shown

in Fig. 8. While the sampling rate is increased to 195.312

kHz (same as in simulation), the switching frequency of

the inverter is kept constant at 6.103 kHz itself. Therefore,

only difference is in the algorithm implementation in FPGA
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Fig. 5. Simulation result for second order SMC Current Controller at High
Sampling Rate. (a) ω∗

r and ωr vs. time. (b) i∗
sd

and isd vs. time. (c) i∗sq and
isq vs. time. (d) i∗sq and isq vs. time. (e) v∗

sd
and v∗sq vs. time. (f) Rs vs.

time. (g) ψrd and ψrq vs. time.

and there is absolutely no change in the power circuit i.e,

the inverter and machine operation. FPGA, being a parallel

processor is the best candidate for such implementation and the

controller gains are as shown in Table II. Similar conditions are

maintained as in the corresponding simulation result (Fig. 5)

where the drive is tested for both matched and un-matched

disturbances. The d-axis stator current (reference and actual)

are shown in Fig. 8b where the actual tracks the reference

and stays there irrespective of disturbances (load torque and

Rs variation). The isq reference and actual waveforms are

shown in Fig. 8c where it rejects Rs variation disturbance

(Fig. 5f). The dynamic response of torque (isq)is now im-

proved to 2.5 ms as shown in Fig. 8d. Thus, the d- and q-

axes maintain decoupling between each other while rejecting

disturbances and this can be reaffirmed from the d- and q-flux

waveforms shown in Fig. 8f. All these advantages combine

with high dynamic response at higher sampling rates as shown.

Sampling rates higher than 195.312 kHz as shown could not

be achieved due to ADC limitation otherwise much faster

dynamic response is practically possible.
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Fig. 6. Simulation result for second order SMC Current Controller at High
Sampling Rate with Rr variation. (a) ω∗

r and ωr vs. time. (b) i∗
sd

and isd
vs. time. (c) i∗sq and isq vs. time. (d) i∗sq and isq vs. time. (e) v∗

sd
and v∗sq

vs. time. (f) Rs vs. time. (g) ψrd and ψrq vs. time.

TABLE I
INDUCTION MACHINE RATING AND PARAMETERS

Parameter Symbol Nominal Value

Rated Shaft Power - 1.3 kW

Line to Line Voltage - 400 V

Phase Current - 3 A

Rated Speed - 1430 rpm

Number of Poles p 4

Stator Self-Inductance Ls 0.4525 H/ph

Rotor Self-Inductance Lr 0.4525 H/ph

Magnetizing Inductance Lm 0.4381 H/ph

Stator Resistance Rs 5.24 Ω/ph

Rotor Resistance Rr 2.67 Ω/ph

Machine Inertia J 0.011 kg-m2

Viscous Coefficient B 0.0015

X. CONCLUSION

This paper has investigated in deep details the important

issues of sliding mode control and presented the disturbance

rejection ability of such controller (first or second order) in

vector controlled induction motor drive. It is shown that the

drive can reject matched (parameter variations) as well as

unmatched disturbances (load torque variations) as long as

the conditions for disturbance rejection are satisfied. Also, it

is shown that there are disturbances that cannot be rejected

for such systems. This is due to the fact that the sensed

signals (currents) are not directly fed into the sliding controller.
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Fig. 7. Experimental result for second order SMC current controller fed IM
drive. (a) ω∗

r and ωr vs. time. (b) i∗
sd

and isd vs. time. (c) i∗sq and isq vs.
time. (d) i∗sq and isq vs. time. (e) v∗

sd
and v∗sq vs. time. (f) ψrd and ψrq vs.

time.

TABLE II
CONTROLLER VALUES

Symbol Parameter
Fs =

6.103 kHz

Fs =
195.3 kHz

kp1, ki1 Speed PI Controller 0.25, 0.52 0.25, 0.52

r12, r22 d-controller (SMC) 2400, 80 51200, 1280

r11, r21 q-controller (SMC) 1800, 100 25200, 1400

MATLAB/Simulink based simulations and experimental ver-

ifications confirmed the usefulness of the proposed system.

Issues related to development of low cost controller using

FPGA are presented. Improvement in dynamic response using

higher sampling rate is experimentally demonstrated.
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Loukianov, “High-Order Sliding Mode Block Control of Single-Phase
Induction Motor,” IEEE Trans. Control Syst. Technol., vol. 22, no. 5,
pp. 1828–1836, Sep. 2014.

[11] M. T. Angulo and R. V. Carrillo-Serrano, “Estimating rotor parameters in
induction motors using high-order sliding mode algorithms,” IET Control

Theory Appl., vol. 9, no. 4, pp. 573–578, 2015.
[12] K. Corzine, “A hysteresis current-regulated control for multi-level

drives,” IEEE Trans. Energy Convers., vol. 15, no. 2, Jun. 2000.
[13] F. Wu, F. Feng, L. Luo, J. Duan, and L. Sun, “Sampling Period

Online Adjusting-Based Hysteresis Current Control Without Band With
Constant Switching Frequency,” IEEE Trans. Ind. Electron., vol. 62,
no. 1, pp. 270–277, Jan. 2015.

[14] D. Traore, F. Plestan, A. Glumineau, and J. De Leon, “Sensorless
Induction Motor: High-Order Sliding-Mode Controller and Adaptive
Interconnected Observer,” IEEE Trans. Ind. Electron., vol. 55, no. 11,
pp. 3818–3827, Nov. 2008.

[15] M. Rashed, K. B. Goh, M. W. Dunnigan, P. F. A. MacConnell, A. F.
Stronach, and B. W. Williams, “Sensorless second-order sliding-mode
speed control of a voltage-fed induction-motor drive using nonlinear
state feedback,” IEE Proc. on Elect. Pow. Appl., vol. 152, no. 5, pp.
1127–1136, Sep. 2005.

[16] C. Lascu, S. Jafarzadeh, M. S. Fadali, and F. Blaabjerg, “Direct Torque
Control With Feedback Linearization for Induction Motor Drives,” IEEE

Trans. Power Electron., vol. 32, no. 3, pp. 2072–2080, Mar. 2017.
[17] A. Pisano, A. Davila, L. Fridman, and E. Usai, “Cascade Control of PM

DC Drives Via Second-Order Sliding-Mode Technique,” IEEE Trans.

Ind. Electron., vol. 55, no. 11, pp. 3846–3854, Nov. 2008.
[18] A. Levant, “Sliding order and sliding accuracy in sliding mode control,”

International Journal of Control, vol. 58, no. 6, pp. 1247–1263, 1993.
[19] G. Bartolini, A. Ferrara, and E. Usani, “Chattering avoidance by second-

order sliding mode control,” IEEE Trans. Autom. Control, vol. 43, no. 2,
pp. 241–246, Feb. 1998.

[20] A. Levant, “Higher-order sliding modes, differentiation and output-
feedback control,” International Journal of Control, vol. 76, no. 9-10,
pp. 924–941, 2003.

[21] M. Comanescu, L. Xu, and T. Batzel, “Decoupled Current Control of
Sensorless Induction-Motor Drives by Integral Sliding Mode,” IEEE

Trans. Ind. Electron., vol. 55, no. 11, pp. 3836–3845, Nov. 2008.
[22] J. Ye, P. Malysz, and A. Emadi, “A fixed-switching-frequency integral

sliding mode current controller for switched reluctance motor drives,”
IEEE Journal of Emerging and Selected Topics in Power Electronics,
vol. 3, no. 2, pp. 381–394, Jun. 2015.

[23] S. K. Kommuri, J. J. Rath, K. C. Veluvolu, M. Defoort, and Y. C. Soh,
“Decoupled current control and sensor fault detection with second-order
sliding mode for induction motor,” IET Control Theory Appl., vol. 9,
no. 4, pp. 608–617, Feb. 2015.

[24] A. Estrada and L. Fridman, “Integral HOSM Semiglobal Controller for
Finite-Time Exact Compensation of Unmatched Perturbations,” IEEE

Trans. Autom. Control, vol. 55, no. 11, pp. 2645–2649, Nov. 2010.
[25] A. V. Ravi Teja, C. Chakraborty, S. Maiti, and Y. Hori, “A New Model

Reference Adaptive Controller for Four Quadrant Vector Controlled
Induction Motor Drives,” IEEE Trans. Ind. Electron., vol. 59, no. 10,
pp. 3757–3767, Oct. 2012.

[26] A. Levant, “Quasi-continuous high-order sliding-mode controllers,”
IEEE Trans. Autom. Control, vol. 50, no. 11, pp. 1812–1816, Nov. 2005.

[27] H. Oza, Y. Orlov, and S. Spurgeon, “Tuning rules for second order
sliding mode based output feedback synthesis,” in Proc. of the 12th

International Workshop on Variable Structure Systems, VSS 2012, Jan.
2012, pp. 130–135.

A. V. Ravi Teja (M’17) received the B.E. degree
in Electrical and Electronics Engineering from Os-
mania University, Hyderabad, India in 2008, the
M. Tech. and Ph.D. degree in Electrical Engineer-
ing from Indian Institute of Technology Kharagpur,
Kharagpur, India in 2010 and 2016, respectively. He
is currently working as an Assistant Professor in the
Department of Electrical Engineering at IIT Ropar,
India. His research areas of interest include electric
machine drives, power electronics, and control sys-
tems.

Chandan Chakraborty (S’92-M’97-SM’01-F’15)
received the B.E. and M.E. degrees in electrical en-
gineering from Jadavpur University, Kolkata, India,
in 1987 and 1989, respectively,and Ph.D. degrees
from the Indian Institute of Technology Kharagpur,
Kharagpur, India, and Mie University, Tsu, Japan,
in 1997 and 2000, respectively. He is a Professor
with the Department of Electrical Engineering, In-
dian Institute of Technology Kharagpur, Kharagpur,
India. His research interests include power convert-
ers, motor drives, electric vehicles, and renewable

energy. Dr. Chakraborty was awarded the Japan Society for the Promotion
of Science Fellowship to work at The University of Tokyo, Tokyo, Japan,
during 2000–2002. He received the Bimal Bose Award in power electronics
from the Institution of Electronics and Telecommunication Engineers (India)
in 2006. He is an Administrative Committee Member of the IEEE Industrial
Electronics Society. He is one of the Editors of the IEEE TRANSACTIONS
ON SUSTAINABLE ENERGY and IEEE Power Engineering Letters and
an Associate Editor of IEEE TRANSACTIONS ON INDUSTRIAL ELEC-
TRONICS and the IEEE Industrial Electronics Magazine. He is a Fellow of
the Indian National Academy of Engineering.

Bikash C. Pal (M’00-SM’02-F’13) received B.E.E.
(with honors) degree from Jadavpur University, Cal-
cutta, India, M.E. degree from the Indian Institute
of Science, Bangalore, India, and Ph.D. degree
from Imperial College London, London, U.K., in
1990, 1992, and 1999, respectively, all in electrical
engineering. Currently, he is a Professor in the
Department of Electrical and Electronic Engineer-
ing, Imperial College London. He was Editor-in-
Chief of IEEE Transactions on Sustainable Energy
(2012-2017) and Editor-in-Chief of IET Generation,

Transmission and Distribution (2005-2012) and is a Fellow of IEEE for
his contribution to power system stability and control. His current research
interests include renewable energy modelling and control, state estimation,
and power system dynamics.


