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Abstract. In this paper, a disturbance rejection (DR) control with H
∞

optimized observer is developed for
vibration suppression of smart structures considering model uncertainties and measurement noise. An electro-
mechanically coupled dynamic finite element (FE) model of piezoelectric smart structures is firstly built for
control design. Based on the dynamic FEmodel, theH

∞
optimized observer is designed with a dynamic feedback

gain which is calculated byH
∞
mixed sensitivity optimization. Expected response speed and robustness tomodel

uncertainties and measurement noise are obtained by configuring proper weighting functions. In the closed-loop
system, estimated disturbances and state variables are fed back through a conventional DR controller to
counteract disturbances and stabilize the system. In order to validate the DR control with H

∞
optimized

observer, vibration suppression simulations of a piezoelectric smart beam are implemented in the absence and
presence of model uncertainties andmeasurement noise, respectively. Furthermore, DR control with generalized
proportional integral observer and DR control with high-gain proportional integral observer are added for
comparison. Results show that excellent vibration suppression performance and better robustness to model
uncertainties and measurement noise are achieved by the DR control with H

∞
optimized observer.

Keywords: Disturbance rejection control / H
∞
mixed sensitivity optimization / smart structures / vibration

suppression

1 Introduction

Due to the increasing demand of energy saving, light
weight structures are widely applied in the fields of
aerospace and automotive engineering. However, some
light weight structures are very sensitive to dynamic
disturbances because of their low stiffnesses and damping
ratios, which leads to unwanted vibrations. To achieve
better human comfort, mechanical performance and
reliability, many vibration suppression technologies were
developed by researchers in the past few decades [1–3]. As
an active vibration suppression system, piezoelectric smart
structure has advantages such as excellent electromechan-
ical coupling property, wide frequency response, easy
processing and bonding nature. Therefore, the application
of piezoelectric smart structures in the field of active
vibration suppression has attracted the interest of many
researchers.

As a matter of fact, the design of control methods plays
a very important role in the active vibration suppression
systems. In the field of vibration suppression of piezoelec-
tric smart structures, many types of control schemes have
been proposed and developed during the past few decades.
For example, traditional control methods like negative
velocity feedback control [4–6], positive position feedback
control [7–10], PID control [11–14] and bang–bang control
[15–17]; modern control methods such as Lyapunov control
[18,19], linear quadratic regulator (LQR) control [18,20–
22] and linear quadratic Gaussian (LQG) control [20,23–
26]. There are also some advanced control and intelligent
control methods which can be found in the literature, for
instance, sliding model control [27,28], model predictive
control [29,30], fuzzy logic control [31,32] and neural
network control [33–35]. Nevertheless, these control
methods cannot suppress vibrations very efficiently
because external disturbances are not considered in the
design of these control methods, which are exactly the
major cause of vibrations. In most of these control
strategies, only states or outputs are fed back in most* e-mail: zhangsq@shu.edu.cn
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closed-loop systems, it is enough for system stabilization,
but not the most efficient way to suppress vibrations.

Since most vibrations are caused by external dis-
turbances, one efficient way to largely suppress vibrations
is to acquire the disturbance model or signal and use it to
dissipate the vibrations in the closed-loop system. Two
typical control methods are feedforward control and
disturbance rejection (DR) control [36]. The feedforward
control feeds disturbance signals to the feedforward
controller to compensate real disturbances, which works
perfectly when the disturbances are known or can be
measured directly by sensors. However, the feedforward
control cannot be applied to the practical problems in
which the disturbances are unknown and unmeasurable.
On the other hand, the DR control shows advantages in
such situations because known disturbances or accurately
measured disturbance signals are not necessary for the DR
control. Instead, it estimates disturbances through a
specific observer and feeds the estimated disturbances to
the controller, which leads to counteraction of the influence
of disturbances and efficient vibration suppression.

In the literature of control engineering, there are several
different types of DR control. Han [37] developed active
disturbance rejection control (ADRC) for single-input
single-output systems. Li et al. applied ADRC to
piezoelectric multi-mode vibration control for a stiffened
plate numerically and experimentally [38,39]. But there is
still no mature design method for the nonlinear feedback
gains of ADRC, which makes it difficult to calculate proper
gain parameters for expected system performance. Based
on ADRC, Gao [40] developed a linear feedback strategy,
which is called linear active disturbance rejection control
(LADRC). Excellent DR performance can be obtained by
configuring high observer gains in LADRC. However, the
side effect of a high-gain observer is the sensitivity to
measurement noise, which limits the practical applications
of LADRC, to a certain degree. For multi-input multi-
output systems, Müller and Lückel [41] proposed and
developed a DR control with proportional-integral (PI)
observer, which estimates disturbances and feeds the
estimated signals back to the system through a DR
controller. In the framework of DR control, the PI observer
was extended to a generalized proportional-integral (GPI)
observer and then applied to vibration suppression of smart
structures by Zhang et al. [42,43]. With known disturbance
frequencies, the GPI observer is capable to estimate
disturbances very accurately and the DR control with GPI
observer can suppress vibrations of smart structures
perfectly. Nevertheless, system robustness to model
uncertainties and measurement noise is not considered in
the aforementioned DR control methods, which cannot be
neglected in practical problems and may result in unstable
closed-loop systems.

In order to achieve better vibration suppression
performance for smart structures, and keep the control
system robust to model uncertainties and measurement
noise in the mean time, a DR control with H

∞
optimized

observer is proposed and developed in this paper. In the
proposed method, H

∞
mixed sensitivity optimization is

adopted to calculate the dynamic feedback gain of the
observer. The H

∞
optimized observer can obtain expected

response speed and robustness to model uncertainties and
measurement noise through selecting proper weighting
functions. In such a way, disturbances can be estimated
accurately and better counteracted in the closed-loop
systems which suffer model uncertainties or measurement
noise. Through vibration suppression simulations of a
piezoelectric smart beam, the DR control with H

∞

optimized observer is validated and compared with
DR control with GPI observer and DR control with
high-gain PI observer, considering additive model uncer-
tainty and measurement noise, respectively. The simula-
tion results indicate that the DR control with H

∞

optimized observer has excellent vibration suppression
performance and better robustness to model uncertainties
and measurement noise.

2 System modeling

2.1 Constitutive equations

For the piezoelectric materials, due to the assumption of
small strain and weak electric field, linear constitutive
equations are considered as

s ¼ ce � eTE; ð1Þ

D ¼ ee þ ��E ð2Þ

with

e ¼ dc: ð3Þ

In the above equations, s, e, E and D denote the stress
vector, the strain vector, the electric field vector and the
electric displacement vector, respectively.Matrices c,̂ �� and
d represent the elasticity constant matrix, the dielectric
constant matrix and the piezoelectric constant matrix,
respectively. Since the electric field considered here is
relatively week, the electric potential is assumed to be
linearly distributed through the piezoelectric materials.
The value of electric field can be calculated by

E ¼ �gradf ¼ Bff ð4Þ

where f is the electric potential, grad denotes the gradient
operation and Bf is the electric field matrix.

2.2 Dynamic model

Plate and shell structures are the most common light
weight structures, and also the typical type of smart
structures considered in this paper. In small deformation
situations, the geometrically linear first-order shear
deformation (FOSD) hypothesis is capable to describe
the strain-displacement relations. Applying Hamilton’s
principle and finite element (FE) method, the dynamic FE
model of smart structures is obtained as [44–46]

Muu€q þCuu __q þKuuqþKuffa ¼ f ; ð5Þ

KfuqþKfffs ¼ 0: ð6Þ
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Equations (5) and (6) are respectively the motion
equation and sensor equation, in which matricesMuu,Cuu,
Kuu, Kuf, Kfu and Kff denote the mass matrix, the
damping matrix, the stiffness matrix, the piezoelectric
coupled stiffness matrix, the coupled capacity matrix and
the piezoelectric capacity matrix, respectively. Vectors q,
fa, f and fs represent the nodal displacement vector, the
actuation voltage vector, the external force vector and the
sensor voltage vector, respectively.

2.3 State space model

In order to build a state space model for control design, the
state vector x, input vector u, measured output vector y
and controlled output vector z are firstly defined as

x ¼
q

_q

� �

;u ¼ fa;y ¼ fs þ n; z ¼ fs ð7Þ

where n is the measurement noise vector. Subsequently,
based on the dynamic FE model given in equations (5) and
(6), the state space model of smart structures is obtained as

__x_tð Þ ¼ AxþBuþNf ; ð8Þ

yðtÞ ¼ C1xþD1uþ n; ð9Þ

zðtÞ ¼ C2xþD2u ð10Þ

where A, B, N, C1, D1, C2 and D2 denote the system
matrix, the control input matrix, the disturbance input
matrix, the measured system output matrix, the measured
output feed-through matrix, the controlled system output
matrix and the controlled output feed-through matrix,
respectively. The matrices above are calculated by

A ¼
0 I

�M�1
uuKuu �M�1

uuCuu

� �

; ð11Þ

B ¼
0

�M�1
uuKuf

� �

; ð12Þ

N ¼
0

M�1
uu

� �

; ð13Þ

C1 ¼ C2 ¼ �K�1
ffKfu 0

h i

; ð14Þ

D1 ¼ D2 ¼ 0: ð15Þ

In order to describe the system with model uncertain-
ties, the transfer function of the system in equations (8) and
(9) is defined as

GðsÞ ¼ C1ðsI�AÞ�1
BþD1 ð16Þ

where GðsÞ is the transfer function, s denotes the complex
variable. Common model uncertainties like parameter

perturbation and unmodeled dynamics can be described by
additive uncertainty. Therefore, the system with model
uncertainties can be described by

GuðsÞ ¼ GðsÞ þ DaðsÞ ð17Þ

where GuðsÞ and DaðsÞ represent the transfer function of
system with model uncertainties and the transfer function
of additive uncertainty, respectively.

3 Disturbance rejection control with H
∞

optimized observer

To get a better comprehension of DR control, a schematic
diagram of DR control is given in Figure 1 to show the
working mechanism of DR control system. The core idea of
DR control is to counteract disturbances by feeding
estimated disturbances back to the system. For that
reason, firstly, disturbances and state variables of the plant
are estimated through a specific observer, as shown in
Figure 1. Thereafter the estimated state vector ^̂x and the
estimated disturbance vector ^̂f are fed back to the system
with properly designed control gains Kx and Kv, which
leads to a stable closed-loop system and disturbance
counteraction. Therefore, the DR control needs not only a
stable controller to stabilize the system, but also an
observer with fast convergence speed to supply accurately
estimated disturbances.

3.1 Fictitious disturbance model

Generally speaking, most observers are designed for
observing system state variables but not disturbances.
Therefore, the external disturbances are approximated by
state variables of a fictitious disturbance model first, which
is expressed as

f tð Þ ¼ Hv tð Þ þ Dr tð Þ; ð18Þ

__v_tð Þ ¼ Vv tð Þ: ð19Þ

It can be seen that the linear relation between vectors f and
v is described by matrixH, and the dynamic characteristic

Fig. 1. The schematic diagram of DR control system.
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of vector v is described by matrix V. Vector Dr represents
the residual error between the real disturbance f and linear
part Hv. The residual error Dr is assumed to be small and
can be neglected.

When choosing the fictitious disturbance model, the
dynamic information of real disturbances should be
involved in the disturbance model if it is known. The
reason is that the dynamic characteristics of the distur-
bance model have great influence on the disturbance
tracking performance of the observer, especially for
disturbances with similar dynamic characteristics. There-
fore, a fictitious disturbance model containing disturbance
frequency information is adopted in this paper. This
fictitious disturbance model was firstly used in the GPI
observer [42,43], in which disturbances are approximated
by combinations of constant terms and cosine terms. For
example, the ith disturbance fi can be approximated by

fi ≈ ai0 þ ai1cosðvitÞ ð20Þ

wherevi can be given by the disturbance frequency. If there
is only one disturbance applied on the smart structure,
vector v and matrices H, V can be obtained as

v ¼

a10

a11cosðv1tÞ

a11sinðv1tÞ

8

>

>

<

>

>

:

9

>

>

=

>

>

;

; ð21Þ

H ¼ 1 1 0½ �; ð22Þ

V ¼
0 0 0

0 0 �v1

0 v1 0

2

4

3

5: ð23Þ

3.2 Observer design

3.2.1 Extended system

In order to estimate disturbances through an observer, the
system needs to be extended with the fictitious state
variables. Substituting equations (18) and (19) into
equations (8)–(10) yields an extended system as

__x_

__v_

� �

¼ Ae
x

v

� �

þBeuþ
N

0

� �

Dr; ð24Þ

y ¼ Ce
x

v

� �

þDeuþ n ð25Þ

where matrices Ae, Be, Ce and De denote the system
matrix, the control input matrix, the measured system
output matrix and the measured output feed-through
matrix, respectively. The matrices in equations (24) and
(25) can be calculated by

Ae ¼
A NH

0 V

� �

; ð26Þ

Be ¼
B

0

� �

; ð27Þ

Ce ¼ C 0½ �; ð28Þ

De ¼ 0: ð29Þ

According to the structure of Luenberger observer, one
obtains an observer for the extended system as

_̂x_̂_

_̂v_̂̂_

� �

¼ Ae
x̂

^̂v̂

� �

þBeuþKo y� ^̂ŷð Þ; ð30Þ

^̂ŷ ¼ Ce
^̂x̂

^̂v̂

� �

þDeu ð31Þ

where x̂, v̂, ŷ are the estimated values of x, v, y,
respectively. The feedback gain Ko can be static or
dynamic, as long as it can stabilize the observer system,
which leads to the convergence of x̂, v̂, ŷ.

3.2.2 Dynamic feedback design

To achieve excellent control performance for DR control,
the observer needs not only convergence but also fast
responding speed, which means accurate and rapid
estimation of disturbances and state variables. Simulta-
neously, the observer is also required to be robust to
measurement noise and model uncertainties which exist
extensively in practical applications. In this paper, H

∞

mixed sensitivity optimization is used to design the
dynamic feedback gain Ko. The observer system in
equations (30) and (31) can be regarded as an H

∞
mixed

sensitivity tracking control problem depicted in Figure 2,
in which Go is the controlled observer system. Vectors e,
uo, d, n and yw denote the tracking error vector, the
feedback input vector, the output disturbance vector, the
measurement noise vector and the weighted output
vector, respectively. Furthermore, W1, W2 and W3 are
the weighting functions of the signals in yw. The transfer
function of Go is expressed as

Fig. 2. The H
∞

mixed sensitivity tracking control problem of
observer.
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GoðsÞ ¼ CeðsI�AeÞ
�1
Be þDe: ð32Þ

Accordingly, the open-loop transfer function from y to
ŷ̂ is obtained as

LðsÞ ¼ GoðsÞKoðsÞ: ð33Þ

The closed-loop transfer functions from y to e, u and ^̂y,
are calculated by

SðsÞ ¼ ðIþ LðsÞÞ�1
; ð34Þ

RðsÞ ¼ KoðsÞðIþ LðsÞÞ�1
; ð35Þ

TðsÞ ¼ I� SðsÞ ð36Þ

where SðsÞ andT(s) are usually called sensitivity function
and complementary sensitivity function of the system,
respectively. Since R(s) is the transfer function from the
reference input to the feedback input, the feedback effort
can be measured by R(s). The sensitivity function SðsÞ
also represents the closed-loop transfer function from d to
^̂y, which means that a smaller gain of SðsÞ would result in
better tracking performance and smaller influence of
output disturbances on system outputs. On the other
hand, the complementary sensitivity function T(s) is the
closed-loop transfer function from n to ^̂y, hence measure-
ment noises can be attenuated in the closed-loop system if
the gain of T(s) is small enough. However, SðsÞ and T(s)
cannot be simultaneously small at the same frequency
because they are complementary functions to each other.
Therefore, to achieve desired tracking performance and
robustness, trade-offs have to be made between the
conflicting goals in different frequency ranges. One simple
way is setting proper weighting functions to shape SðsÞ
and T(s) as

s̄ ðSðjvÞÞ � s̄ ðW�1
1 ðjvÞÞ; ð37Þ

s̄ ðTðjvÞÞ � s̄ ðW�1
3 ðjvÞÞ ð38Þ

where s̄ represents the maximum singular value. Moreover,
for robust stability in the presence of model uncertainties
like parameter perturbation and unmodeled dynamics,
etc., which can be represented by additive model
uncertainty, s̄ðRðjvÞÞ should be made small, i.e.,

s̄ðRðjvÞÞ � s̄ ðW�1
2 ðjvÞÞ: ð39Þ

Then the dynamic controller Ko can be derived by solving
an H

∞
optimal problem expressed as

ming; s:t: kPðsÞ k
∞
< g ð40Þ

where g is the performance index, PðsÞ is the weighted
system expressed as

PðsÞ ¼
W1SðsÞ
W2RðsÞ
W3TðsÞ

2

4

3

5: ð41Þ

The H
∞

optimal problem can be solved by the two
Riccati equations [47]. According to the transfer function
PðsÞ, the state space model of P can be obtained as

P ¼

¯A ¯B1
¯B2

¯C1
¯D11

¯D12
¯C2

¯D21
¯D22

2

4

3

5: ð42Þ

For detailed calculation of the matrices in equation
(42), one can refer to [48]. Solving the twoRiccati equations
expressed as

¯ATXþX¯AþXðg2 ¯B1
¯BT
1 � ¯B2

¯BT
2 ÞXþ ¯C1

¯CT
1 ¼ 0; ð43Þ

ĀYþYĀT þYðg2C̄T
1C̄1 � C̄T

2C̄2ÞYþ B̄T
1 B̄1 ¼ 0; ð44Þ

one yields the state space model of controller Ko as

__x_k ¼ A∞xk � Z∞L∞uk; ð45Þ

yk ¼ F∞xk ð46Þ

where

A∞ ¼ Āþ g�2B̄1B̄
T
1Xþ B̄2F∞ þ Z∞L∞C̄2; ð47Þ

F∞ ¼ � ¯BT
2X; ð48Þ

L∞ ¼ �Y ¯CT
2 ; ð49Þ

Z∞ ¼ ðI� g�2YXÞ�1
: ð50Þ

3.3 Controller design

As described before, the estimated disturbances and state
variables need to be fed back to the system to counteract
disturbances and stabilize the system, through a DR
controller with the control law defined as

u ¼ �Kx ^̂x̂ �Kv ^̂v̂ ð51Þ

where Kx and Kv denote the feedback gain matrices for ^̂x
and ^̂v, respectively. To construct a stable closed-loop
system, the state feedback gain Kx can be designed by
many methods such as LQR, pole placement method, H

∞

optimization, etc. Considering the convenience of com-
parisons with other DR control methods in later
simulations, LQR is employed in this paper, which is
also used in the DR control with PI observer and DR

X.-Y. Zhang et al.: Mechanics & Industry 20, 202 (2019) 5



control with GPI observer [42,43]. The feedback gainKx is
calculated by

Kx ¼ R�1
r BTPx ð52Þ

where the symmetric positive definite matrix P can be
obtained by solving an algebraic Riccati equation
expressed as

ATPþPAþQr �PBR�1
r BTP ¼ 0 ð53Þ

with

Qr ¼ CTQC;Rr ¼ R: ð54Þ

The symmetric positive definite matrices Q and R are
the weightingmatrices that penalize the system output and
system input signals, respectively, which can be approxi-
mated by Bryson’s rule [49].

For disturbance counteraction, the feedback gain Kv

can be designed by assuming a linear relation between x
and v [43] as

x ¼ Xvv ð55Þ

where Xv is the linear mapping matrix. Considering
equation (19), one obtains

__x_¼ Xv __v_¼ XvVv: ð56Þ

Substituting equations (51), (55) and (56) into the state
space model (8) and (10) and assuming the controlled
output z as zero, one obtains

ðA�BKxÞXv �XvV�BKv þNH ¼ 0; ð57Þ

ðC2 �D2KxÞXv �D2Kv ¼ 0: ð58Þ

Considering the matrices X, Kv and H are constituted
of three parts as

X ¼ X1 X2 X3½ �; ð59Þ

Kv ¼ Kv1 Kv2 Kv3½ �; ð60Þ

H ¼ H1 H2 H3½ �; ð61Þ

meanwhile, substituting equations (22), (23) into equa-
tions (57) and (58), one obtains

See equation (62) at the bottom

Then Kv can be derived by solving equation (62).

4 Vibration suppression simulation

4.1 Simulation model

To validate the proposed DR control with H
∞

optimized
observer, a cantilevered smart beam bonded with two
collocated piezoceramic patches is employed for numerical
simulations of vibration suppression, as pictured in
Figure 3. The polarization directions of the two piezocer-
amic patches are opposite along the u3 axis, hence the two
patches can function as an actuator and a sensor,
respectively. A concentrated disturbance force is applied
at the tip node of the smart beam, in the direction of axis u3.
The specific geometrical and material data of the smart
beam can be found in Tables 1 and 2, respectively.

The electromechanically coupled FEmodel of the smart
beam is built using a 14� 1 mesh and eight-node
serendipity shell elements with quadratic shape functions.
As shown in Figure 4a, the smart beam is modeled by 14
shell elements with a size of 25mm� 25mm each. The shell
elements are placed in the mid-surface of the smart beam
and arranged in line along the beam. The steel beam and
PZT patches are regarded as different material layers of the
shell elements. Integrals along the thickness direction
are calculated separately in each layer when computing the

Fig. 3. Cantilevered smart beam bonded with piezoelectric
patches.

Table 1. Geometrical data of the steel beam and piezo-
ceramic patches.

Steel beam Piezoceramic patches

l ¼ 350mm a ¼ 75 mm

w ¼ 25mm c ¼ 50mm

h1 ¼ 0:8mm h2 ¼ 0:25mm

A−BKx 0 0 −B 0 0

0 A−BKx −!1I 0 −B 0

0 !1I A−BKx 0 0 −B

C2 −D2Kx 0 0 −D2 0 0

0 C2 −D2Kx 0 0 −D2 0

0 0 C2 −D2Kx 0 0 −D2

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

X1

X2

X3

Kv1

Kv2

Kv3

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼

−NH1

−NH2

−NH3

0

0

0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: ð62Þ
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stiffness and mass matrices. To avoid the membrane and
shear locking problems, uniformly reduced integration
scheme is employed in the integral calculations. Since
the shell thickness does not change during deformation in
the FOSD hypothesis, and the electric field through the
thickness is assumed as constant, the electric field in the
PZT material can be regarded as a uniform field.
The dynamic model is coded and calculated in Matlab,
and so are the following vibration control algorithms and
simulations.

To satisfy the equivalent of the Nyquist criteria in mesh
design, i.e. at least six elements per wavelength are
necessary to detect the corresponding modal frequency
[50,51], the mesh density and model accuracy must be
evaluated. For the smart beam with fixed-free boundary
condition, the first five bending modes in u

3 direction
consist of, in turn, one quarter, three quarters, one and a
quarter, one and three quarters, two and a quarter of a
structural wavelength. Clearly, the 14� 1 mesh fulfills the
above criteria for the first five bending modes in u

3

direction. To verify the accuracy of the FE model with
14� 1 mesh, a reference model of the smart beam is built
and analyzed in ANSYS. The FE model in ANSYS is
constituted of 14144 hexahedral solid elements with
quadratic shape functions, including the elements of the
steel beam and PZT patches. As shown in Figure 4b, the
numbers of elements in three dimensions of the steel beam
are 381� 16� 2. Through modal analysis in ANSYS, the
modal information of the smart beam is obtained. Besides,

to test the convergency of the 381� 16� 2 mesh, the smart
beam is also analyzed in ANSYS using 257� 11� 1 and
314� 13� 1 meshes. Eigenfrequencies of the first five
bending modes of the smart beam with four different
meshes are listed in Table 3. Regarding the model with
381� 16� 2 mesh as a reference, the maximum errors of
the five eigenfrequencies of the models with other meshes
are calculated and listed in Table 3. For the models
analyzed in ANSYS, it can be seen from Table 3 that both
the maximum errors of the five eigenfrequencies of models
with 257� 11� 1 and 314� 13� 1 meshes are less than
0.05%, therefore the 381� 16� 2 mesh is believed to be
convergent. The error of the five eigenfrequencies of model
with 14� 1 mesh is 0.08%. Considering the first eigenfre-
quency of the smart beam is the highest vibration
frequency simulated in this paper; therefore, the mesh
density and model accuracy satisfy the requirements of the
following simulations.

4.2 Simulation results

4.2.1 Vibration suppression with model uncertainties

The two simulations in this section are implemented
considering additive model uncertainty and harmonic
disturbances with different frequencies, which are 2p rad/s
and the first eigenfrequency of the smart beam, respective-
ly. Furthermore, DR control with GPI observer is also
applied in these two simulations for comparison. Since the
LQR is employed in both the DR control with H

∞

Table 2. Material data of the steel beam and piezoceramic
patches.

Property Symbol Steel
beam

Piezoceramic
patches

Young’s modulus
(GPa)

Y 210 67

Density (kg/m3) r 7900 7800
Poisson’s ratio v 0:3 0:3

Piezoelectric coefficient
(C/N)

d31; d32 – �2:1 � 10�10

Permittivity (F/m) �33 – 2:13 � 10�8

Node PZT patch Steel beam

2

16

(a)

(b)

Fig. 4. Mesh details of the smart beam: (a) mesh of 14� 1 shell
elements, (b) mesh of 381� 16� 2 solid elements.

Table 3. Eigenfrequencies of the first five bending modes of the smart beam (Hz).

Mesh Element Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Maximal error

14 � 1 Shell 6.0672 33.2706 95.0806 190.5112 312.7494 0.08%
257 � 11 � 1 Solid 6.0735 33.302 95.115 190.57 312.61 0.04%
314 � 13 � 1 Solid 6.0730 33.299 95.109 190.55 312.58 0.03%
381 � 16 � 2 Solid 6.0711 33.291 95.088 190.51 312.50 –
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optimized observer and DR control with GPI observer, the
same controller gains are configured in the two DR control
methods to analyze the influences of different observers on
vibration suppression performance and robustness to
model uncertainties.

In the first simulation, a harmonic disturbance with a
frequency of 2p rad/s is applied and the maximum gain of
the additive uncertainty is assumed to be 40% of the
nominal system gain from control input to system
output. The simulation results are displayed in
Figures 5a and 5b, including the sensor and actuator
voltages of uncontrolled smart beam, controlled smart
beams using DR control with GPI observer not
considering additive model uncertainty (DR-GPI), DR
control with GPI observer considering additive model
uncertainty (DR-GPI Uncertainty), DR control with H

∞

optimized observer not considering additive model
uncertainty (DR-Hinf) and DR control with H

∞
opti-

mized observer considering additive model uncertainty
(DR-Hinf Uncertainty). It can be seen from Figure 5a
that both two DR control methods can suppress
vibration successfully and the DR control with H

∞

optimized observer has fast convergence speed. When
additive uncertainty is considered in the simulation, the
convergence speed of DR control with GPI observer
clearly slows down. On the other hand, the sensor voltage

of DR control with H
∞

optimized observer shows no
visible difference whether additive uncertainty is consid-
ered or not, which means robustness of the closed-loop
system.

In the second simulation, a harmonic disturbance with
the first eigenfrequency of the smart beam is applied. Since
the closed-loop system of the smart beam is very sensitive
at its first eigenfrequency, the maximum gain of the
additive model uncertainty considered here is adjusted to
10% of the nominal system gain from control input to
system output. Besides, to keep enough robustness of the
controller, lower controller gains are configured in this
simulation, which leads to smaller control input, i.e. the
actuator voltage. The simulation results can be found in
Figures 6a and 6b, which contains the sensor and actuator
voltages of controlled and uncontrolled smart beams with
additive model uncertainty considered and not considered.
As shown in Figure 6a, it is clear that the DR control with
H
∞

optimized observer can successfully suppress the
vibration of the smart beam with or without additive
model uncertainty. However, the DR control with GPI
observer becomes divergent when there is additive model
uncertainty in the system, which is mainly because the GPI
observer is not robust enough to additive uncertainty,
given the fact that the same gain is used in the controllers of
the two DR control methods.
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Fig. 5. The vibration responses of the controlled and uncontrolled smart beams influenced by additive model uncertainty and a
harmonic disturbance with a frequency of 2p rad/s: (a) sensor output, (b) control input.
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4.2.2 Vibration suppression with measurement noise

In ideal situations where measurement noise is absent, the
convergence speed is positively correlated with the observer
gains.However, for the state spacemodel of the second-order
dynamic system in equation (5), the state variables of its
state space system are composed of the displacement
vector q and its derivative __q, which makes the observer
asymptotically approach a differentiator as the observer
gains grow to infinity [52]. Therefore, the high-frequency
measurement noise can be amplified enormously in a high-
gain observer, which leads to corruption of the observed
signals and a non-convergent closed-loop system. In the
following two simulations, a Gaussian white noise with 1%
peak value of the system output signal is considered as
measurement noise, and a DR control with high-gain PI
observer [42,53] is also implemented for comparison.

Similarly, two harmonic disturbances with a low
frequency at 2p rad/s and the first eigenfrequency of the
smart beam are applied in the following two simulations,
respectively. The simulation results are shown in
Figures 7a, 7b and Figures 8a, 8b, including the sensor
and actuator voltages of uncontrolled smart beam,
controlled smart beams using DR control with high-gain
PI observer not considering measurement noise (DR-
HGPI), DR control with high-gain PI observer considering

measurement noise (DR-HGPINoise), DR control withH
∞

optimized observer not considering measurement noise
(DR-Hinf) and DR control with H

∞
optimized observer

considering measurement noise (DR-Hinf Noise). When
there is no noise in the system, the two DR control methods
both suppress the vibration successfully. Due to the high
feedback gains, the DR control with high-gain PI observer
has faster response speed and performs better at the
beginning of both two simulations. However, when
measurement noise exists in the closed-loop system, the
DR control with high-gain PI observer became divergent
and the values of its sensor and actuator voltages just
rocket up abnormally. On the other hand, the DR control
with H

∞
optimized observer is convergent and performs

almost equally whether the measurement noise is consid-
ered or not. This is because the measurement noise is
attenuated in the H

∞
optimized observer, by setting the

infinite norm of complementary sensitivity function small
in high frequency range using properly configured weight-
ing functions.

5 Conclusion

Aiming at suppressing vibrations of piezoelectric smart
structures in the presence of model uncertainties and
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Fig. 6. The vibration responses of the controlled and uncontrolled smart beams influenced by additive model uncertainty and a
harmonic disturbance with the first eigenfrequency of the smart beam: (a) sensor output, (b) control input.

X.-Y. Zhang et al.: Mechanics & Industry 20, 202 (2019) 9



measurement noise, a DR control with H
∞

optimized
observer is developed in this paper. Based on FOSD
hypothesis, the electro-mechanically coupled dynamic FE
model of piezoelectric smart structures and the corre-
sponding state space model are built. The state space
model is extended by a fictitious disturbance model
containing frequency information of disturbances. Based
on the extended state space model, the H

∞
optimized

observer is constructed with a dynamic feedback gain to
estimate disturbances and state variables. The dynamic
feedback gain of the observer is calculated by H

∞
mixed

sensitivity optimization in which proper weighting func-

tions are selected to achieve desired response speed and
robustness to model uncertainties and measurement noise.
The estimated state variables and disturbances are fed
back to the system through a conventional DR controller to
form a stable closed-loop system and counteract dis-
turbances. Vibration suppression simulations of a piezo-
electric smart beam are implemented to validate the
DR control with H

∞
optimized observer and compare

with DR control with GPI observer and DR control with
high-gain PI observer. It can be concluded from the
simulation results that (i) in the absence of model
uncertainties and measurement noise, the DR control with
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Fig. 7. The vibration responses of the controlled and uncontrolled smart beams influenced by measurement noise and a harmonic
disturbance with a frequency of 2p rad/s: (a) sensor output, (b) control input.

10 X.-Y. Zhang et al.: Mechanics & Industry 20, 202 (2019)



H
∞
optimized observer has excellent vibration suppression

performance which is similar to the other two DR control
methods; (ii) in the presence of model uncertainties and
measurement noise, the DR control with H

∞
optimized

observer has better robustness than the other two DR
control methods.
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