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A B S T R A C T

The prevalent spatial distribution of abnormalities reported in cognitive fMRI studies in addiction suggests there are extensive disruptions across whole brain

networks. Studies using resting state have reported disruptions in network connectivity in addiction, but these studies have not revealed characteristics of network

functioning during critical psychological processes that are disrupted in addiction populations. Analytic methods that can capture key features of whole brain

networks during psychological processes may be more sensitive in revealing additional and widespread neural disturbances in addiction, that are the provisions for

relapse risk, and targets for medication development. The current study compared a substance addiction (ADD; n = 83) group in extended abstinence with a control

(CON; n = 68) group on functional MRI (voxel-wise activation) and global network (connectivity) measures related to reward anticipation on a monetary incentive

delay task. In the absence of group differences on MID performance, the ADD group showed reduced activation predominantly across temporal and visual regions, but

not across the striatum. The ADD group also showed disruptions in global network connectivity (lower clustering coefficient and higher characteristic path length),

and significantly less connectivity across a sub-network comprising frontal, temporal, limbic and striatal nodes. These results show that an addiction group in

extended abstinence exhibit localised disruptions in brain activation, but more extensive disturbances in functional connectivity across whole brain networks. We

propose that measures of global network functioning may be more sensitive in highlighting latent and more widespread neural disruptions during critical psycho-

logical processes in addiction and other psychiatric disorders.

1. Introduction

Reward processing is a psychological construct that has evolved to

drive incentive-based learning and the development of goal-directed

behaviours in humans. Reward processing is mediated by a collection of

subcortical and prefrontal cortical regions (Haber and Knutson, 2010;

Knutson et al., 2001; O'Doherty et al., 2001) that are connected to form

a complex neural network encoding various types of rewarding stimuli

(Belin and Everitt, 2008; Draganski et al., 2008; Haber and Knutson,

2010). Substance addiction disorders are associated with disturbances

within this reward network during the processing of non-drug rewards

(Balodis and Potenza, 2015; Hommer et al., 2011; Just et al., 2019;

Koob and Le Moal, 2005; Luijten et al., 2017; Wrase et al., 2007), and

which are associated with drug relapse during abstinence (Gowin et al.,

2015; Stewart et al., 2014). Most studies in addiction populations,

however, only probe regional differences in brain functioning, and do

not attempt to elucidate features of global connectivity across networks

that respond during certain psychological processes, such as reward.

Differences in global network connectivity likely underlie the regional

differences commonly reported in functional MRI studies in addiction

disorders, and therefore, may be more sensitive in revealing widespread

neural disturbances in addiction disorders.

Connectivity across brain networks can be probed by examining

various characteristics that relate to their topology and functioning

(Bullmore and Sporns, 2009). These methods have been used to capture

brain network connectivity during resting state in psychiatric popula-

tions (Baek et al., 2017; Bassett et al., 2008; Luo et al., 2015; Ye et al.,

2015), including those with addiction disorders (Jiang et al., 2013;

Morris et al., 2018; Sjoerds et al., 2017; Tschernegg et al., 2013; Yuan

et al., 2010). These studies, however, have not been able to examine the

characteristics of network functioning during critical psychological

processes known to be disrupted in these populations. Studies ex-

amining connectivity during the psychological processes of cognitive

control (Fornito et al., 2011; Ray et al., 2017) and reward (Manelis

et al., 2016; Nestor et al., 2019; Verdejo-Roman et al., 2017), have been

conducted, providing more precise measures of connectivity across
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networks that relate to these domains. Analytic methods that can reveal

key features of brain network functioning during psychological pro-

cesses may capture disruptions in connectivity that harbour the provi-

sions for relapse risk in addiction disorders, and which may be clinical

targets for medication development.

We have previously shown that abstinent substance-dependent po-

pulations demonstrate regional disturbances during reward processing

(Murphy et al., 2017; Nestor et al., 2017), that likely represent dis-

ruptions in connectivity across global brain networks. This report

documents a novel analytical approach that has attempted to identify

differences in reward-related global network connectivity in an addic-

tion population, an approach that departs from merely attempting to

identify regional disturbances using common voxel-wise analyses. Here

an addiction group in extended abstinence was compared with a control

group on measures of voxel-wise and global network connectivity as-

sociated with reward anticipation on a monetary incentive delay task.

We hypothesized that the addiction group would exhibit whole brain

activation and global network connectivity disturbances, but that

measures of connectivity would prove more sensitive to highlighting

neural disturbances during reward processing in addiction.

2. Material and methods

2.1. Participants

Sixty-eight control (CON: mean age 39.79 ± 1.22; 18 females, 50

males) and 83 addiction (ADD: mean age 40.05 ± 0.92; 16 females, 67

males) participants completed the current study. The current dataset

was collected as part of a multi-centre study involving three study sites

in the United Kingdom (Imperial College London, University of

Cambridge and University of Manchester – ICCAM). For a more detailed

description of the ICCAM Platform, see Paterson et al. (2015) and

McGonigle et al. (2017). Inclusion criteria were individuals who met

DSM-IV measures for current or prior substance dependence (e.g., al-

cohol, cocaine, opiates). The ADD group consisted of 29 (35%) pure

alcohol-dependent, 42 (50%) poly substance-dependent (e.g., alcohol

and cocaine, cocaine and opiate) and 12 (15%) mono substance-de-

pendent (e.g., cocaine, opiates) volunteers. While addiction studies

typically recruit volunteers in early abstinence, there was no upper

limit in the current study. The mean abstinence length from alcohol in

the current sample was 15.00 ± 3.50 months, while for cocaine and

opiates it was 27.99 ± 3.72 and 39.04 ± 7.75 months, respectively.

Therefore, the current ADD group was made of a heterogenous sample

with former substance-dependencies, and with variable levels of sub-

stance abstinence at the time of testing. This meant that there was no

substance dependence measure that was shared by all members of the

ADD group. The CON group had no previous history of substance abuse,

as assessed using the Alcohol, Smoking and Substance Involvement

Screening Test (ASSIST) (Group, 2002) and timeline follow-back. All

participants were required to provide a negative breath alcohol test and

a negative urine sample for various drugs of abuse on the day of testing

(screening for the presence of amphetamines, benzodiazepines, canna-

binoids, cocaine and opiates). The Mini-International Neuropsychiatric

Interview (MINI) (Sheehan et al., 1998) was administered to all parti-

cipants by a trained psychiatrist to screen for the presence of Axis I

psychiatric disorders that were part of the study exclusion criteria.

Exclusion criteria included 1) current use of regular prescription or

non-prescription medication that could not be stopped; 2) current pri-

mary axis I diagnosis, past history of psychosis (unless drug-induced);

3) current or past history of enduring severe mental illness (e.g., schi-

zophrenia, bipolar affective disorder); 4) other current or past psy-

chiatric history that, in the opinion of a psychiatrist, contraindicated

participation; 5) history or presence of a significant neurological diag-

nosis that may have influenced the outcome or analysis of the results; 6)

claustrophobia or unable to lie still in the MRI scanner for up to 90 min

and 7) presence of a cardiac pacemaker, other electronic device or other

MRI contraindication, including pregnancy, as assessed by a standard

pre-MRI questionnaire. Secondary or lifetime history of depression or

anxiety was permitted in both the ADD and CON groups since these are

very common psychiatric disorders.

All participants provided written informed consent. The study was

conducted in accordance with the Declaration of Helsinki. Ethical ap-

proval was obtained from West London and Gene Therapy Advisory

Committee National Research Ethics Service Committee (11/H0707/9)

and relevant research governance and Participant Identification Centre

(PIC) approvals obtained.

3. Monetary incentive delay task (MID)

We used a “monetary incentive delay task” (MID), which was based

on that originally employed by Knutson (Knutson et al., 2001), and

which we have used to already publish data from the ICCAM platform

(Murphy et al., 2017; Nestor et al., 2017). At the beginning of each trial,

participants viewed one of three symbols (a cue) that indicated the

potential to gain fifty pence (square containing an ascending arrow),

lose fifty pence (square containing a descending arrow) or experience

no financial outcome (square containing a horizontal line - here re-

ferred to as a neutral trial). Each cue was presented for one second, with

a variable duration (2–4 s) for the subsequent anticipation period.

Following the anticipation period, participants made a button press

response upon the presentation of a visual target (star located within a

circle). Following their response to the visual target, participants re-

ceived feedback (1.5 s) as to whether they were successful (“Hit”) or

unsuccessful (“Miss”) on that trial and saw a running total of their

winnings up to that point in the task. Following feedback, there was an

end fixation period (3–5 s) before the commencement of the next trial.

Because the primary objective of ICCAM was to examine the neural

correlates of reward anticipation, we chose to use a smaller number of

loss trials in order to amplify the incentive salience of the gain trials

during the task. Consequently, there was a total of 18 gain, 6 lose and

18 neutral trials on each run of the task. The MID task was tailored to

adapt to the visual target reaction time of each participant by using a

staircase algorithm, such that the presentation of the visual target be-

came shorter as performance improved during the experiment. This

enabled us to set a limit on the success rate of each participant (∼66%),

which additionally served to incentivize participants to engage in the

task. Participants were instructed to maximize their winnings and were

told they would receive them at the end of the study. Dependent

measures were accuracy (percentage) and mean reaction time (milli-

seconds) to the visual target on each of the gain, lose and neutral trials,

and the amount won (£) on the task. Participants completed two runs of

the task (432 s each) during scanning. The task was programmed using

E-Prime version 2.0 (Psychology Software Tools, Pittsburgh, USA).

4. Statistics

Group demographics were compared using simple independent

samples t-test analyses. For analyses conducted on MID performance,

two (Group: CON vs. ADD) by two (Condition: Gain vs. Neutral) ana-

lyses of variance were conducted. The CON and ADD groups were also

compared on the lose accuracy and lose reaction time performance

measures, as well as the amount of money won (£), using analyses of

variance. These analyses were conducted controlling for study site. For

the graph measures (see below) we conducted two (Group: CON vs.

ADD) by five (1 ⩽ K ⩽ 5) analyses of variance, while also controlling for

study site. All these analyses were conducted using permutation testing

(5000 iterations) in the R statistical software package (www.R-pro-

ject.org).

5. Functional MRI (fMRI) Data acquisition

The ICCAM platform was designed to allow the rapid testing across
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sites of multiple compounds relevant to addiction treatment. Imaging at

multiple sites in parallel on the ICCAM platform accelerated study

completion, through the sharing of expertise, infrastructure and

capacity. For a more comprehensive description of data acquisition

across the three sites on ICCAM, please see McGonigle et al (McGonigle

et al., 2017). Briefly, all centres operated MRI machines with a main

magnetic field of 3 T (T). Centres in London and Cambridge operated

nominally identical 3 T Siemens Tim Trio systems running the syngo

MR B17 software with a Siemens 32 channel receive-only phased-array

head coil. The Manchester centre operated a 3 T Philips Achieva run-

ning version 2.6.3.5 software and an 8 element SENSE head coil. For

anatomical images, 160 high-resolution T1-weighted anatomic

MPRAGE axial images (FOV 256 mm, thickness 1.0 mm, voxel size

1.0 × 1.0 × 1.0) were acquired (total duration 303 s). Functional data

were acquired using a T2* weighted echo-planar imaging sequence

collecting 36 non-contiguous (0% gap) 3.0 mm axial slices covering the

entire brain (TE = 31 ms, TR = 2000 ms, FOV 225 mm, 64 × 64 mm

matrix size in Fourier space). Each run of the MID task produced a total

of 216 volumes of functional MRI data.

6. fMRI Data analyses

Data pre-processing and statistical analysis were conducted using

FEAT (fMRI Expert Analysis Tool) from the FMRIB Software Library

(www.fmrib.ox.ac.uk/fsl). Pre-statistical processing was as follows:

motion correction utilizing FMRIB’s Linear Image Registration Tool

(MCFLIRT; non-brain matter removal using Brain Extraction Tool

(BET); spatial smoothing with a 5-mm full-width half maximum

Gaussian kernel; mean-based intensity normalization; nonlinear high-

pass temporal filtering (Gaussian-weighted least squares straight line

fit, with sigma = 25.0 s). The six rigid body movement parameters

were also included as regressors in the model in FSL FEAT.

For each participant, first level whole-brain mixed-effects analyses

were performed by modelling the MID anticipation periods (i.e. gain,

neutral) as explanatory variables within the context of the general

linear model on a voxel-by-voxel basis (variable boxcar functions for

the cue + variable anticipation period regressors were convolved with

the haemodynamic response function). The gain and neutral outcome

periods (“Hit” and “Miss”) were regressed out of the functional time

series as conditions of no interest for the analyses reported here. During

these first level analyses, the gain anticipation > neutral anticipation

contrast was formulated. Owing to the small number of loss trials in the

current task, the lose cue + anticipation and outcome periods (“Hit”

and “Miss”) were additionally regressed out of the functional time

series as conditions of no interest. Therefore, the fewer number of lose

trials on the MID task meant we were unable to examine voxel-wise

group differences in loss anticipation. The end fixation period of the

task served as the implicit baseline. Registration was conducted through

a two-step procedure, whereby EPI images were first registered to the

high-resolution T1 structural image, then into standard (Montreal

Neurological Institute, MNI avg152 template) space, with 12-parameter

affine transformations.

Higher-level (within group one-sample t-tests and between-group

independent samples t-tests) were conducted on the gain anticipa-

tion > neutral anticipation contrast using the randomise programme

in FSL (Winkler et al., 2014). Randomise employs a permutation ap-

proach through resampling. Significance (PFWE < 0.05) for the gain

anticipation > neutral anticipation contrast on both the one-sample

and independent samples t-tests was conducted taking a threshold-free

cluster enhancement (TFCE) approach (Smith and Nichols, 2009) and

using 5000 permutations. TFCE aims to maintain the sensitivity of

cluster-based thresholding, while avoiding the arbitrary nature of

threshold choice. Given the differences in scanners across the three

sites, these analyses were conducted while also controlling for study

site.

7. Trial-Wise beta value image analyses

Data pre-processing was also initially conducted using FEAT (fMRI

Expert Analysis Tool) from the FMRIB Software Library (www.fmri-

b.ox.ac.uk/fsl) as described above. For each participant, each in-

dividual gain and neutral anticipation epoch (cue + variable antici-

pation period) was separately modelled within the context of the

general linear model. This approach yielded a total of 18 unique beta

value images for each of the gain and neutral anticipation conditions on

each run of the MID task. This meant that each voxel-wise beta value

image reflected the magnitude of the hemodynamic response evoked by

each of the gain and neutral anticipation epochs. Each beta value image

for each MID run was then subsequently registered into standard (MNI

avg152 template) space before being concatenated to generate a beta

value “trial-wise” (e.g., gain anticipation) time series. Each beta value

trial-wise time series for each MID run was further concatenated across

runs to generate a single beta value trial-wise time series for the gain

and neutral MID anticipation conditions. This procedure yielded a

thirty-six beta value trial-wise time series image for each participant for

the gain and neutral anticipation conditions. The neutral trial-wise time

series was then simply subtracted from the gain trial-wise time series to

yield a gain anticipation > neutral anticipation contrast time series

(see Supplementary Fig. 1). This beta value trial-wise time series

method has been previously used to examine connectivity during cog-

nitive tasks (Fornito et al., 2011; Ray et al., 2017), including the MID

task (Nestor et al., 2019; Verdejo-Roman et al., 2017). The small,

variable (performance-dependent) number of events for the outcome

periods (“hits” and “misses”), and the small number of loss trials in the

task, meant that we could not generate trial-wise beta value images for

these events. Therefore, gain and neutral outcome (well as lose antici-

pation and outcome) events were regressed out of the functional time

series as conditions of no interest during the first level analyses. This

meant that the same end fixation period of the task also served as the

implicit baseline for these analyses.

8. Time series Extraction and correlation matrices

Using the Harvard-Oxford atlas (96 cortical and 14 subcortical

nodes/regions) as our connectome of interest, we used the fslmeants

programme to extract the mean beta value time series from each of 110

anatomical regions of interest (ROI) for the gain anticipation >

neutral contrast beta image for each participant. Using these mean ROI

time series outputs, we then conducted Pearson correlation coefficient

analyses to construct whole brain ROI‐to‐ROI pairwise matrices (see

Supplementary Fig. 1). Each matrix was made up of 5995

(=N*(N − 1)/2, with N = 110 nodes) pairwise connections (edges).

These matrices were generated in MATLAB (The MathWorks, Inc.,

Natick, Massachusetts, United States) and used to compare network

connectivity between the CON and ADD groups (see below).

9. Graph measures

Global (characteristic path length and clustering coefficient) graph

measures were estimated from each correlation matrix using the

GraphVar (www.rfmri.org/GraphVar) toolbox for functional brain

connectivity (Kruschwitz et al., 2015) in MATLAB (The MathWorks,

Inc., Natick, Massachusetts, United States). More detailed descriptions

of brain network graph measures can be found elsewhere (Bullmore and

Sporns, 2009), but we will briefly describe these metrics here. Char-

acteristic path length is the minimum number of edges that must be

traversed to go from one node (brain region) to another in a network.

For a pair of nodes that are nearest neighbours, the path length is 1. The

clustering coefficient, by contrast, quantifies the density of connections

between the nearest neighbour of a node, and describes how segregated

the network is. The path and clustering measures are first estimated at

each node of the connectome before an average (global value) is
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computed for the entire connectome for each participant’s correlation

matrix.

Graph measures for each participant were then estimated by

thresholding each matrix at a selection of proportional cost (K)

thresholds – i.e. thresholds that retain only a percentage of the strongest

connections (edges) in the network. Biological networks are re-

presented by sparse connections (Latora and Marchiori, 2003), how-

ever, and thresholding is a necessary step to extract the appropriate

topological properties of networks (Achard and Bullmore, 2007). Be-

cause graph measures can also be sensitive to threshold value (van Wijk

et al., 2010), we have reported our measures across a range of K

thresholds (1 ⩽ K ⩽ 5, increments of 1). Here K represents the per-

centage (e.g., 1 = 10%) number of edges in each matrix that are

maintained following thresholding. We employed a range of thresholds

to represent the lower and upper bound of a small-world system

(Achard and Bullmore, 2007; Bullmore and Bassett, 2011), and that

preserve only the strongest functional connections for efficient parallel

information processing at a relatively low wiring cost (Latora and

Marchiori, 2001). All graph measures were computed from matrices in

their weighted form following this thresholding procedure.

10. Functional connectivity

Group comparisons in ROI‐to‐ROI connectivity across matrices were

assessed using the Networks Based Statistics (NBS) Toolbox (Zalesky

et al., 2010) for MATLAB (The MathWorks, Inc., Natick, Massachusetts,

United States). Comparisons between the CON and ADD groups were

conducted to identify those nodes across the connectome that showed

differences in connectivity. Independent groups t-tests were first per-

formed to test for a between-group difference in the correlation coef-

ficients at each of the 110 × (110–1)/2 = 5995 regional pairings.

Graph sub-components were identified among the connections using a

t-statistic threshold t > 3.1. From here, a family-wise error (FWE)

corrected p-value (p < 0.05) was calculated for the size of each re-

sulting component using permutation testing (5000 permutations). Two

(CON > ADD and ADD > CON) analyses were conducted in-

dependently on the gain anticipation > neutral anticipation contrast

matrices. Given the differences in scanners across the three sites, these

NBS analyses were conducted while controlling for study site. NBS has

previously been used to identify specific networks of nodes across a

connectome that differ between clinical populations during different

psychological processes (Fornito et al., 2011; Nestor et al., 2019; Ray

et al., 2017).

11. Network visualisation

Networks that emerged from group comparisons in NBS were vi-

sualised and presented using brain connectivity maps and circular

connectograms using the NeuroMArVL software (www.immersi-

ve.erc.monash.edu.au/neuromarvl).

12. Results

12.1. Demographics

Table 1 (supplementary section) shows the demographic and sub-

stance use measures for the CON and ADD groups. The groups were

balanced for gender and age, but did significantly differ on other

measures, such as reported education, IQ, anxiety, depression, MINI

score, and the number of participants who were nicotine-dependent.

While we cannot dismiss the potential influence of these demographic

differences on brain activation changes or connectivity during reward

anticipation, we did not use any of these variables as covariates in any

of the analyses reported.

13. MID task

Two (Group: CON vs. ADD) by two (Condition: Gain vs. Neutral)

permutation analyses of variance showed only a significant effect of

condition for MID accuracy (F = 7.8, p < 0.01 - Gain > Neutral) and
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Fig. 1. MID performance results for the CON and ADD group showing a) mean accuracy (**p < 0.01 Gain > Neutral); b) mean reaction time (**p < 0.01

Gain < Neutral); c) mean lose accuracy and d) mean lose reaction time. Data were analysed with permutation analyses of variance (5000 permutations), controlling

for study site. Data are expressed as means and standard error means.
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MID reaction time (F = 8.49, p < 0.01 - Gain < Neutral - Fig. 1a and

b). Permutation analyses did not reveal any significant effect of group

on the MID lose accuracy (F = 0.01, p = 0.94) or reaction time

(F = 0.09, p = 0.77) measures (Fig. 1c and d), or the amount won (£)

on the task (F = 0.45, p = 0.50). These results suggest that the CON

and ADD groups were well matched with respect to MID performance,

while also validating the task with respect to its effects on instrumental

responding for monetary reward.

14. fMRI

One-sample permutation t-test analyses showed that both the CON

and ADD groups activated a mostly frontostriatal network of regions for

gain anticipation > neutral anticipation contrast (TFCE,

PFWE < 0.05) – although these activation changes were weaker in the

ADD group (see Supplementary Fig. 2). Independent samples permu-

tation t-test analyses on the same contrast detected significant differ-

ences between the two groups. The ADD group showed significantly less

activation change compared with the CON group (TFCE, PFWE < 0.05),

particularly across temporal (including the amygdala, hippocampus)

and visual regions. There were also less pronounced differences across

frontal (insula, inferior frontal gyrus) and limbic-associated (anterior

cingulate gyrus, thalamus) regions (Fig. 2). These between groups

analyses, however, did not reveal any differences in activation change

across striatal regions.

15. Graph measures

The results from all permutation tests are provided in the

Supplementary results section. Here we report only the main effects of

Group. Two (Group: CON vs. ADD) by five (1 ⩽ K ⩽ 5) permutation

analyses of variance showed a significant effect of Group on both the

clustering coefficient (F = 29.98, p < 0.001 - ADD < CON) and

characteristic path length (F = 7.30, p < 0.001 – ADD > CON)

measures (Fig. 3a and b).

16. Functional connectivity

The network based statistics (NBS) analyses detected a graph sub-

network comprising 153 edges between 59 nodes of the connectome

where the ADD group demonstrated significantly less connectivity

(p < 0.01) compared with the CON group. These differences in con-

nectivity were mostly intra-hemispheric (55%), the majority (38%)

being in the right hemisphere. The anatomical distribution of these

connectivity differences between the two groups involved frontal (in-

sula, inferior frontal gyrus, orbitofrontal cortex), limbic-associated

(anterior cingulate gyrus, thalamus), visual (lateral occipital cortex,

lingual gyrus, intracalcarine cortex); and unlike the voxel-wise ana-

lyses, striatal (accumbens, caudate, pallidum) regions (Fig. 4).

17. Discussion

We compared a control (CON) and an addiction (ADD) group in

extended abstinence on behavioural and neural measures of a Monetary

Incentive Delay (MID) task. Behaviourally, the two groups were well

matched, enabling us to discount performance as a potential confound

on group differences in brain activation and connectivity. These per-

formance effects showed that both groups were equally incentivized to

maximize monetary gains, as revealed by significant differences be-

tween the gain and neutral conditions. These results, therefore, validate

the incentivizing effects of our MID task on instrumental responding for

rewards. The two groups did, however, show significant differences in

brain activation, and to a greater degree, global network connectivity

related to the anticipation of monetary reward. These differences,

particularly in global connectivity, point to the preservation of wide-

spread neural disturbances in an addiction population, despite being in

extended abstinence.

18. Disruptions to whole brain activation in the ADD group

Here we report that the ADD group showed significantly less acti-

vation change compared with the CON group, most robustly across

temporal and visual cortical regions during the anticipation of mone-

tary reward. Addiction disorders are commonly associated with dis-

turbances in the reward network (Balodis and Potenza, 2015; Hommer

et al., 2011; Just et al., 2019; Koob and Le Moal, 2005; Luijten et al.,

2017; Wrase et al., 2007), and the present results did also show some

evidence for less activation change across reward-associated regions,

the most pronounced of which were in the anterior cingulate gyrus

(ACG) and amygdala. Disturbances in ACG functioning have been

commonly reported in addiction populations (Goldstein and Volkow,

2002; Peoples, 2002; Volkow et al., 2002), which persist into ab-

stinence (Bolla et al., 2004; Eldreth et al., 2004; Nestor et al., 2011;

Nestor et al., 2017; Salloum et al., 2007). The differences observed in

the current sample were within the dorsal ACG, a region implicated in

motivation and cognitive control (Kouneiher et al., 2009). The amyg-

dala also encodes stimulus value (Jenison et al., 2011), with disruptions

also evident in addiction (Lesscher and Vanderschuren, 2012; See et al.,

2003). These results point to localised neural disturbances in regions

implicated in motivational, executive functioning and reward evalua-

tion, that endure into extended abstinence.

This current set of results, however, was in the absence of group

-12 -2 8 18 28 38

ADD < CON

PFWE <0.05
R

Fig. 2. Permutation independent samples t-test analyses showing that ADD < CON group activation differences on the MID gain anticipation > neutral antici-

pation contrast. Images were produced after 5000 permutations in randomise using TFCE (PFWE < 0.05), controlling for study site. The bar corresponds to

PFWE < 0.05 and lower. The structural image represents the MNI152 average normal brain with corresponding horizontal coordinates (inferior–superior). R = right

hemisphere.
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differences in striatal activation between the ADD and CON groups.

This does not appear to concur with previous research findings of al-

tered striatal responses for non-drug rewards in substance dependence

(Buhler et al., 2010; Bustamante et al., 2014; Diekhof et al., 2008;

Gradin et al., 2014; Murphy et al., 2017; Nestor et al., 2017; Peters

et al., 2011; Wrase et al., 2007), and does not demonstrate evidence of a

sustained striatal “reward deficiency syndrome” (Blum et al., 2000;

Koob et al., 2004) in this particular sample. The heterogenous nature of

the ADD sample with respect to mono- and multiple- drug dependencies

and the variable abstinence length from these substances, may have

been a constraining factor, reflecting varying levels of restoration of

function in the striatum (and other regions). For example, studies have

shown there are deficits in markers of striatal dopamine functioning

during early abstinence (Boileau et al., 2016; Martinez et al., 2005;

Wang et al., 2012), with the variable abstinence length in the current

sample masking possible disturbances in this region. Another possibility

is that a voxel-wise approach was insufficiently sensitive to detect

group differences across smaller regions such as the striatum. The re-

sults from the network analyses (discussed below) did reveal striatal

regions (e.g., accumbens, caudate) that were part of a sub-network of

Fig. 3. Global network differences between groups showing a) clustering (***p < 0.001, ADD < CON) and b) path length (**p < 0.01, ADD > CON) during the

gain > neutral contrast of the MID task. Data were analysed using two (group: CON vs. ADD) × five (1 ⩽ K ⩽ 5) permutation anova analyses, controlling for study

site. Data are expressed as means and standard error means.

 

a) b)

Fig. 4. Non-parametric network based statistics (NBS) analysis results showing a graph sub-component comprising 153 edges (p < 0.01) where the ADD group

demonstrated significantly less connectivity compared to the CON group during the gain > neutral anticipation contrast of the MID task. Graph sub-components

were identified among all node pairwise connections with a t-statistic threshold of t > 3.1, corrected for multiple comparisons, while controlling for study site using

permutation (5000) analyses. Reductions in connectivity in the ADD group are represented by a) brain connectivity maps and b) a circular connectogram. Brain

regions are grouped on the connectogram circumference according to lobes and centres in the left and right hemispheres (left frontal [dark blue]; left temporal [light

blue]; left parietal [dark orange], left occipital [light orange]); left limbic [dark green]; right frontal [light green]; right temporal [dark red]; right parietal [pink];

right occipital [dark purple]; right limbic [light purple]; left striatal [dark brown] and right striatal [light brown]. Brain connectivity maps and the circular

connectogram were generated using NeuroMArVL (http://immersive.erc.monash.edu.au/neuromarvl). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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nodes demonstrating less connectivity in the ADD group. This may

further endorse the sensitivity of exploring measures of functional

network connectivity over voxel-wise approaches for detecting more

extensive disruptions in neural processing. Finally, it is possible that the

ADD and CON groups simply did not differ in the striatum, which has

recently been shown in other studies of stimulant users (e.g. Just et al.,

2019).

19. Disruptions in global network connectivity in the ADD group

The ADD group had an increased mean global characteristic path

length compared to the CON group. As described above, path length is a

topological measure indicating the average shortest path length be-

tween all node pairs in a network, whereby fewer processing steps

across the network has the advantage of propagating more rapid and

accurate communication (Kaiser and Hilgetag, 2006). We observed this

metric to be elevated in the ADD group, representing a possible re-

duction in processing efficiency. This may be due to a loss of long range

connections between remote brain regions, which are critical for

minimising path lengths and maintaining network efficiency. This dis-

ruption in processing efficiency concurs with that reported in other

addiction populations during rest (Holla et al., 2017; Lin et al., 2015;

Morris et al., 2018; Wang et al., 2015), but not during reward proces-

sing (Nestor et al., 2019).

We further report that the ADD group demonstrated a lower clus-

tering coefficient across the network. Clustering quantifies the number

of connections existing between a node’s nearest neighbours, which has

been proposed as an index of local specialised processing and economic

pressure for minimal wiring cost (Bullmore and Bassett, 2011; Kaiser

and Hilgetag, 2006; Rubinov and Sporns, 2010; Sporns et al., 2004).

The reduction in clustering we report here contrasts with the increased

clustering found in an addiction population during resting state, and

which was reversed by acute naltrexone (Morris et al., 2018). Altera-

tions in clustering observed during reward anticipation may suggest

less interconnectedness in local networks for specialised or segregated

information processing, which could be more economically costly for

brain functioning (Bullmore and Sporns, 2012). Significantly, these

global functional alterations could be due to changes in anatomical

network architecture, as functional connectivity is generally tightly

aligned with anatomical connectivity (Honey et al., 2009; Sporns, 2011;

van den Heuvel et al., 2009).

20. Decreased reward-related connectivity in the ADD group

Taking a network based statistics (NBS) analysis approach, we

showed that the ADD group exhibited reduced connectivity across a

sub-network of nodes during the anticipation of reward. This reduction

in connectivity comprised a total of 153 connections, the majority of

which were confined to the right hemisphere. The anatomical dis-

tribution of these between-group connectivity differences involved

frontal (insula, inferior frontal gyrus, orbitofrontal cortex), striatal

(accumbens, caudate), limbic-associated (ACG, amygdala, hippo-

campus) and visual (lateral occipital cortex, lingual gyrus, in-

tracalcarine cortex) regions. Similar analysis approaches have also re-

vealed differences across sub-networks in addiction, however, during

resting state (Hong et al., 2013; Morris et al., 2018; Wee et al., 2014).

The connectivity differences reported in this ADD sample indicate al-

terations between cognitive, striatal and limbic-associated regions

during reward anticipation that persist into extended abstinence. Fur-

thermore, the emergence of a more extensive network of regions in this

connectivity analysis highlights a more sensitive approach for detecting

widespread disruptions across neural networks in addiction, that may

fail to emerge through conventional voxel-wise analysis approaches.

The presence of these connectivity differences across a distributed

sub-network of nodes, concomitant with differences on global topolo-

gical measures, is also noteworthy. Previous studies using combined

graph- and network-based approaches have failed to report differences

using both types of measures (Cocchi et al., 2012; Fornito et al., 2011;

Hong et al., 2013). While topological and network-based measures of

connectivity may be distinct, there does appear to be some convergence

across both analyses that suggests the preservation of functional dis-

ruptions in a latent and more widespread network in this addiction

group.

21. Conclusion

The spatial distribution of functional disturbances reported in ad-

diction populations during functional MRI studies is commonplace, and

is likely driven by extensive disruptions in connectivity across the

whole brain network. The current study, taking a novel analytical ap-

proach, has revealed reward-related functional alterations across a

global network in an addiction disorder population who are in extended

abstinence. These differences in connectivity feature in the presence of

more localised activation disruptions that emerge from a conventional

voxel-wise analytic approach. We propose that examining measures of

global network functioning may be more sensitive for highlighting la-

tent and more widespread disruptions to neural functioning during

critical psychological processes in addiction and other psychiatric dis-

orders. Alterations in functioning across global networks could act as

markers for relapse risk during abstinence, that may be potential targets

for medication development in addiction disorders.
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