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Disturbed cingulate glutamate metabolism in adults with

high-functioning autism spectrum disorder: evidence in

support of the excitatory/inhibitory imbalance hypothesis
L Tebartz van Elst1,2,6, S Maier1,6, T Fangmeier1,2, D Endres1, GT Mueller1, K Nickel1, D Ebert1,2, T Lange3,4, J Hennig3, M Biscaldi1,2,5,

A Riedel2,7 and E Perlov1,7

Over the last few years, awareness of autism spectrum disorder (ASD) in adults has increased. The precise etiology of ASD is still

unresolved. Animal research, genetic and postmortem studies suggest that the glutamate (Glu) system has an important role,

possibly related to a cybernetic imbalance between neuronal excitation and inhibition. To clarify the possible disruption of Glu

metabolism in adults with high-functioning autism, we performed a magnetic resonance spectroscopy (MRS) study investigating

the anterior cingulate cortex (ACC) and the cerebellum in adults with high-functioning ASD. Twenty-nine adult patients with

high-functioning ASD and 29 carefully matched healthy volunteers underwent MRS scanning of the pregenual ACC and the left

cerebellar hemisphere. Metabolic data were compared between groups and were correlated with psychometric measures of

autistic features. We found a significant decrease in the cingulate N-acetyl-aspartate (NAA) and the combined Glu and glutamine

(Glx) signals in adults with ASD, whereas we did not find other metabolic abnormalities in the ACC or the cerebellum. The Glx signal

correlated significantly with psychometric measures of autism, particularly with communication deficits. Our data support the

hypothesis that there is a link between disturbances of the cingulate NAA and Glx metabolism, and autism. The findings are

discussed in the context of the hypothesis of excitatory/inhibitory imbalance in autism. Further research should clarify the

specificity and dynamics of these findings regarding other neuropsychiatric disorders and other brain areas.
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INTRODUCTION

Deficits in social cognition and in communication skills, a high

need for routines, and highly circumscribed interests form the

core features of autism spectrum disorders (ASDs). ICD-10 and

DSM-IV distinguish early infantile autism (ICD-10 F84.0, respective

autistic disorder DSM-IV 299.00) from Asperger syndrome (AS;

ICD-10 F84.5, DSM-IV 299.80). Recently, however, there has been a

clear trend in the scientific community to unify these concepts

into a single category called ASD in DSM-5 (http://www.dsm5.org).
Prevalence figures for ASD vary between 1 and 2.7%1–3

depending on the population investigated. The most recent

figures from the Centers for Disease Control and Prevention

estimate a prevalence of 11.3 in 1000 (1.13%) affected children

(range 4.8–21.2 per 10 000).1 Given this prevalence rate and the

fact that ASD is a lifelong condition, it is of importance for adult

psychiatry and psychotherapy. In addition, particularly high-func-

tioning autism is associated with significant psychiatric comorbid-

ities such as depression (53%), anxiety (50%), attention deficit

hyperactivity disorder (ADHD) (43%), obsessive–compulsive dis-

order (24%), tic disorder (20%) and psychotic disorder (12%),4

which illustrates that ASD might be a basic neurodevelopmental

neuropsychiatric disorder, secondary to which many other more
classical psychiatric conditions arise.5

High-functioning idiopathic autism as a possibly more
homogenous subgroup

Traditionally, autism has been conceptualized as a severe form of
neurodevelopmental disorder associated with mental retardation
and severe deficits of intelligence and language in the majority of
cases.6 However, recent research has indicated that there is a
broad variety of different severities and phenotypes of ASD
including those with normal or even above-average intelligence.7

Secondary and syndromal forms of ASD, which often coexist with
subnormal intelligence quotient (IQ) and learning disabilities, are
increasingly distinguished from primary familial but probably not
mono- or oligogenetic forms.6–8 Theoretical considerations as well
as clinical observations support the assumption that the latter
subgroup, that is, familial but nonsyndromal and nonsecondary
variants of ASD, might more often be associated with normal or
even above-average intelligence scores.5,7

On the basis of difficulties in distinguishing the main current
autistic categories, AS and early infantile autism, clinically,9,10

these categories have been unified and called ASD in the DSM-5
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(http://www.dsm5.org). This ASD category does not distinguish
between high-functioning and low-functioning variants or
between autistic disorder and AS. This might make sense from a
clinical perspective.9 From a research perspective, however, study-
ing the category of ASD without distinguishing high-functioning
from low-functioning variants or secondary and syndromal
variants of ASD from primary idiopathic familial variants probably
results in particularly heterogeneous study samples.5 In research,
this approach could blur respective findings. Therefore, in this
study, we concentrated on patients with nonsecondary and
nonsyndromal forms of ASD, who fulfill the diagnostic criteria for
AS according to DSM-IV 299.80 and ICD-10 F84.5, with above-
average IQ, in an attempt to create a possibly homogenous study
sample from an etiological and pathogenetic point of view.

Etiology of ASD

The precise etiology of ASD is unknown and probably hetero-
geneous.6 Autism can be caused by single genes or in the context
of syndromes, which in turn are probably caused by single non-
recognized gene defects or a small number of gene defects.6,11

In addition, ASD may arise secondary to other acquired central
nervous system diseases such as encephalitis. For this paper, all
these variants are considered secondary or syndromal variants of
autism.5 However, in the majority of cases, there are no such
recognized syndromes or putative causes of autism. Still, the
family history is often positive, and there is obviously a strong
etiological factor of inheritance.11 This group is considered the
idiopathic or primary variant of ASD for this paper.5

The following considerations focus on this group of patients
with primary ASD. There is general agreement that multiple genes
alone or more likely in combination contribute to the pathogen-
esis of autism in these primary idiopathic patients.11 These genes
or subgroups of these genes might also increase the risk for other
neuropsychiatric disorders frequently linked to autism, such as
epilepsy12,13 or schizophrenia.14,15

Several authors have put forward the idea that such genetic
alterations lead to an imbalance of excitation and inhibition in
cortical regions, which might be a critical pathogenetic correlate
of autistic symptoms.16–18 Such an imbalance could also explain
the well-recognized link between epilepsy (as the classical form
of a hyperexcitatory central nervous system disorder) and
autism.19–23

Pathophysiological changes in the glutamate (Glu) and
γ-aminobutyric acid (GABA) metabolism might be critical for such
an excitatory-inhibitory imbalance. Glu is the most important
excitatory and GABA the most important inhibitory neurotrans-
mitter in the brain. In fact, many genetic studies found abnormal
signals in genes with direct links to Glu neurotransmission.24–34

In addition, in animal models of autism, prenatal valproic acid
exposure results in an autistic behavioral animal phenotype
together with altered cerebral Glu metabolism.35,36

Postmortem studies also found evidence of Glu dysfunction in
brain tissue of autistic patients.37 Recently, Shimmura et al.38

reported increased plasma levels of Glu and decreased levels of
glutamine (Gln) in 23 children with high-functioning autism
compared with 22 control subjects. The signal had a strong effect
size of 1.13 and 1.36, respectively, and correctly classified patients
in 91% of cases. In the latest postmortem study by the same
group, the authors describe decreased glutaminase activity (the
enzyme breaking down Glu) in the anterior cingulate cortex (ACC)
of seven individuals with autism.39

In summary, there is a cumulating body of evidence pointing to
the critical role of the Glu system in the pathogenesis of autism.
Changes in Glu metabolism might translate into an imbalance of
the excitation/inhibition equilibrium of cortical networks that in
turn are related to autistic symptoms. From a theoretical point of
view, two contradictory Glu hypotheses have been put forward:

Carlson introduced the idea that autism is a hypoglutamatergic
disorder based on findings in animal research where hypogluta-
matergic animals displayed an autistic behavioral pattern.40

In contrast, Fatemi proposed a hyperglutamatergic hypothesis of
autism.41 This assumption was based on the observation that the
enzyme that converts Glu to GABA showed decreased activity in
autism, therefore resulting in hyperglutamatergic cerebral states.42

These ideas seem to be contradictory at first glance. However,
they might be reconciled within the theory of a disturbed
excitation/inhibition equilibrium in autism, because the hypo- and
the hyperglutamatergic states result in a disturbance of this
equilibrium.

Magnetic resonance spectroscopy as a tool for assessing Glu
activity in vivo

Presently, proton magnetic resonance spectroscopy (1H-MRS or
briefly MRS), the only method available for noninvasive and
nonradioactive in vivo assessment of Glu neurotransmission, is an
ideal tool for investigating cerebral metabolism in autism.43

Although early MRS studies focused on stronger MRS signals, such
as N-acetyl-aspartate (NAA) as a putative marker of neuronal
integrity, progress in MRS acquisition, and postprocessing tech-
nology have enabled researchers to measure Glu and Gln signals
with increasing accuracy.44

Glu is the most important excitatory neurotransmitter in the
human cerebral cortex. Following synaptic release, Glu is
converted to Gln by adjacent astroglia. Gln is then recycled to
Glu via mitochondrial Glu synthesis. Glu–Gln cycling is closely
coupled to glial glucose utilization and lactate production, and Gln
is possibly a more sensitive indicator of Glu neurotransmission
than Glu itself. The spectral peaks of Gln and Glu overlap con-
siderably and therefore are often denoted collectively as the Glu
and Gln (Glx) peak.45 Figure 1 illustrates the Glx signals in a typical
MRS spectrum from the ACC and the cerebellum as assessed in
this study (see Figure 1).

Previous MRS findings in ASD

Thus far, to our knowledge, only 22 MRS studies have been
performed in ASD.46–67 Table 1 summarizes these studies
regarding methods, study samples, regions, and findings.
Many of these studies examined small samples, and quite a few

have serious methodological problems. Most studies tested mixed
groups regarding age (children and adolescents) or IQ, or just
patients with subnormal IQ, and did not analyze Glu signals as this
was too difficult to detect in early MRS research. Most studies that
analyzed the Glu signal also found respective abnormalities.
However, not surprisingly, the direction of these abnormalities
varied depending on the age group, the region investigated and
the sample characteristics. Three recent meta-analyses of all
available MRS data concluded that metabolic abnormalities as
measured with MRS tend to decrease and normalize with age and
therefore are age dependent.43,68,69

Rationale of our study

Taking all presented evidence, the aim of this study was to
investigate the Glu signal in autism using MRS. As there is
evidence of continuous metabolic change during development,
this study focused only on adult patients. Given the possible link
between syndromal and secondary forms of autism and low IQ,
we decided to study only patients with above-average IQ (that is,
IQ4100). As specific changes in Glu metabolism have recently
been reported in the ACC in postmortem research,39 we focused
on this region of interest and chose the cerebellum as another
noncortical comparator region of interest, which has frequently
been implicated in the pathophysiology of autism.6 We chose to
study the left cerebellar hemisphere to enable comparability with
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other spectroscopic findings in a large government-funded study
of more than 100 adults with ADHD by our group.70 As previous
studies had reported increased55 as well as decreased Glu signals
in this region,47 the working hypothesis was not directed, but we
expected Glu signal changes in patients with ASD.

MATERIALS AND METHODS

Participants

After approval was received from the local ethics committee, all patients
were recruited at the Freiburg Center for the Diagnosis and Treatment of
Autism (University center for autism spectrum, Universitäres Zentrum
Autismus Spektrum Freiburg, UZAS; http://www.uniklinik-freiburg.de/
psych/live/patientenversorgung/schwerpunkte/schwerpunkt-asperger.html).
The study included only patients who fulfilled the diagnostic criteria for AS
according to ICD-10 F84.5 and DSM-IV 299.80. The diagnostic process was
organized according to the recommendations of the NICE guidelines for
adult autism (National Institute for Health and Clinical Excellence: Autism in
Adults: full guideline http://guidance.nice.org.uk/CG142/NICEGuidance/
pdf/English). Briefly, the clinical diagnosis of ASD and AS was established
as a consensus diagnosis of a multiprofessional team following a struc-
tured diagnostic procedure. The clinical diagnosis includes a thorough
generally multisession history taking of the patient focusing on the
development of autistic symptoms throughout the biography. In addition,
a history of the caregivers (parents, partners, siblings and so on) and
behavioral observations were essential components of this process, which
usually took several sessions of 2 or more hours. Psychometric tools
included the following instruments in routine use before clinical
assessment: AQ,71 EQ,72 ASAS,73 SRS,74 BVAQ,75 AAA,76 WURS77 and
BDI.78 In addition, instruments such as the ADI-R79 and ADOS80 or
behavioral assessments as an in-patient were used in selected and unclear
cases. The multiprofessional diagnostic team consisted of three experi-
enced senior consultant psychiatrists (DE, AR and LTVE) and two senior
fully qualified psychologists (AF and AL). The final consensus diagnosis was

made by all persons involved in the diagnostic process, which invariably

included at least two experienced consultant psychiatrists or psychologists.

In the present study, the control participants were also assessed clinically

and completed the AQ and EQ questionnaire. To assess general crystalline

intelligence, all participants completed the Multiple-Choice Word Test B.81

Patients with other relevant medical or neurological diseases, particularly

epilepsy and seizures, and patients with a history of schizophrenia, bipolar

disorder or any other psychiatric axis I disorder apart from depression and

anxiety were excluded from the study.

Matching procedures

Control subjects were studied and recruited for an ongoing longitudinal

ADHD multicenter study funded by the German Ministry of Education and

Research (BMBF 01GV0606). When the matched controls were chosen for

the 29 patients with ASD, the pool of control participants consisted of 90

healthy and extensively investigated subjects. On the basis of this sample,

an optimal matching procedure was performed by applying a multi-

dimensional matching approach using in-house software to optimally

account for between-group differences in age, sex and premorbid verbal

intelligence (see CP Kaller, forthcoming/unpublished toolbox). This

resulted in an individually matched control group for the 29 patients

included.

Imaging procedures

MRI scans were acquired following written informed consent.

Image acquisition

A standard magnetization-prepared rapid gradient echo T1-weighted

anatomical scan was obtained (relaxation time= 2200ms, echo time= 4.11

ms, flip angle = 12°, field of view= 256× 256mm2, voxel size = 1 × 1× 1

mm3) on a Siemens Magnetom TIM Trio system (Erlangen, Germany)

equipped with a 12-channel head coil.

Figure 1. Illustration of the voxel position of the pregenual anterior cingulate (upper row) and the cerebellar MRS voxel of interest (lower row)
with respective spectra. Glx, glutamate and glutamine.
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Table 1. Summary of previous MRS findings in ASD

Study Sample n Patients per
control subjects

Method Region(s) Findings

Murphy et al.54 Adults, Asperger syndrome 14 per 18 1.5 T 1H-MRS (PRESS) Right prefrontal and parietal lobes NAA, Cre, Cho higher in prefrontal lobe
Fayed and Modrego53 Children 21 per 12 1.5 T 1H-MRS (PRESS) Left centrum semiovale (white matter) No significant differences
Page et al.55 Adults, normal IQ 25 per 21 1.5 T 1H-MRS (PRESS) Right parietal cortex,

hippocampus-amygdala
Cre and Glx higher in right hippocampus-
amygdala region

Friedman et al.56 Children, 3–4 years 45 per 22 1.5 T CSI TLs, BGs (white and gray matter) NAA, Cho, Cre and Ins lower in gray matter
Endo et al.52 Children, mean 12.9 years 38 per 16 1.5 T 1H-MRS (PRESS) Medial TL, MPFC, cerebellar vermis NAA/Cre lower in MTL
Oner et al.57 Adults, Asperger syndrome 14 per 21 1.5 T CSI Right DLPFC and ACC NAA/Cho higher in ACC
Zeegers et al.60 Boys with and without mental

retardation
25 per 12 Unclear Unclear No differences between groups

Hardan et al.51 Boys 8–15 years, IQ470 18 per 16 1.5 T CSI (STEAM) Thalamus right, left Left thalamus: lower NAA, Cre, Cho
Montag et al.50 Healthy controls, adults 0 per 17 3 T 1H-MRS (PRESS) ACC DLPFC Negative correlation of perspective taking

with Glx level in DLPFC
Vasconcelos et al.59 Children and controls, median

age 9.3 years
10 per 10 1.5 T PRESS Bilateral ACC, left striatum, left cerebellar

hemisphere and left frontal lobe
Increase in mI and Cho in ACC and mI/Cre
ratio in ACC and left striatum

Suzuki et al.49 Adults, high-functioning 12 per 12 1.5 T Left hippocampal region, right cerebellar
hemisphere

Cho and Cre higher in hippocampal region,
NAA lower in cerebellum

Fuji et al.48 Children, 2–13 years, low IQ 31 per 28 1.5 T 1H-MRS (PRESS) ACC DLPFC ACC: NAA/Cre low
Left DLPFC: NAA/Cre low, correlates with
social ability

Bernardi et al.47 High-functioning adults 14 per 14 3 T 1H-MRS ACC, thalamus, TPJ, intraparietal sulcus Lower Glx in right ACC, lower Ins in left TPJ.
Harada et al.58 Children 2–11 years 12 per 10 3 T 1H-MRS (MEGA-

PRESS)
Frontal lobe, lenticular nucleus GABA and GABA/NAA lower in frontal lobe

Corrigan et al.46 Children in subgroups 3–4, 6–7
and 9–10 years

109 per 110 1.5 T PEPSI Planar MRS imaging analysis of lactate No differences in lactate level

Kubas et al.61 Autistic children 12–15 years,
matched controls

12 per 16 Details not available Bilateral frontal lobe; details not available Differences in NAA/Cre, GABA/Cre, Glx/Cre
and mI/Cre

Bejjani et al.62 Study 1: children with ASD and
controls matched for age only
Study 2: children and
matched controls

8 per 10,
IQ range 74–137

26/16,
IQ range 65–142

1.5 T PRESS Midline pACC, single-voxel MRS
MRS imaging of bilateral pACC

Elevation of Glx signal, decrement of Cre
Elevation of Glx, Cre, NAA in right pACC

Joshi et al.63 Adolescent males (age range:
12–17 years); mean IQ: 108 (range:
85–127) and controls

7 per 7 4 T ACC and right medial temporal lobe Increased glutamate in ACC and trend to
decreased glutamate in temporal lobe

Aoki et al.64 Adults with high-functioning
ASD and controls

24 per 25 3 T PRESS Medial prefrontal cortex Increased NAA in ASD; NAA loss with age
only in controls not in ASD

Mori et al.65 Autistic children (3–6 years),
age-matched controls, boys and girls

77 per 55 1.5 T STEAM Left amygdala and the bilateral
orbitofrontal cortex

NAA reduction in left amygdala and bilateral
OFC, NAA correlated with social quotient.

Brown et al.66 Adult patients, parents of
patients, healthy controls

13/15 per 15 3 T PRESS Left and right hemisphere auditory
cortical voxels

Higher Glx, NAA and Cre concentrations in
ASD than in control subjects.

Rojas et al.67 Autistic children, siblings, controls 17/14 siblings
per 17 controls

3 T PRESS Auditory cortex in the perisylvian
region of the left hemisphere

Patient GABA/Cre
ratiososiblingsocontrols

Abbreviations: ACC, anterior cingulate cortex; ASD, autism spectrum disorder; BG, basal ganglia; Cho, choline compounds; Cre, creatine and phosphocreatine; CSI, chemical shift imaging; DLPFC, dorsolateral

prefrontal cortex; GABA, γ-aminobutyric acid; Glx, glutamate and glutamine; Ins, myoinositol; IQ, intelligence quotient; MPFC, medial prefrontal cortex; MTL, medial temporal lobe; NAA, N-acetyl-aspartate; OFC,

orbitofrontal cortex; pACC, pregenual ACC; PEPSI, proton echo planar spectroscopic imaging; PRESS, point-resolved spectroscopy; SI, spectroscopic imaging; STEAM, stimulated echo aquisition mode; T, tesla; TL,

temporal lobe; TPJ, temporoparietal junction; 1H-MRS, proton magnetic resonance spectroscopy.
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Spectroscopic data were acquired in the pregenual ACC and the left
cerebellar hemisphere (see Figure 1 for voxel localization) with a standard
PRESS (point-resolved spectroscopy) sequence (echo time= 30ms, relaxa-
tion time=3000ms). The 2.5 × 1.6 × 2 cm3 ACC volume of interest was
located in front of the genu corpus callosum orthogonally to the anterior
commissure–posterior commissure line (see Figure 1) according to the
disposition of the T1-weighted images for voxel location. The geometry of
the volume of interest was defined to cover the maximum amount of gray
matter of Brodmann areas 12 and 32 bilaterally in the pregenual ACC
region. The 2 × 2× 2 cm3 cerebellar voxel was located in the left
hemisphere and comprised parts of lobule VI, lobule VIIa, lobule VIIb,
lobule VIIIa and lobule VIIIb. The voxel location covered the maximum
amount of gray matter and the minimal amount of cerebral fluid to avoid
contact with the macromolecules of the brain surfaces, which contaminate
MRS spectra. We chose the left hemisphere to enable comparability with
other spectroscopic findings in a large cohort of a prospective
government-funded ADHD study in adults.70

For spectral data analysis and absolute metabolite quantification with
the internal water reference method, the well-established and validated
LCModel software was used.82 Voxel segmentation into the cerebral spinal
fluid, gray matter and white matter was performed on the three-dimen-
sional magnetization-prepared rapid gradient echo data set using SPM8
(Statistical Parametric Mapping release 8, London, UK), and metabolite
concentrations were corrected accordingly, accounting for different water
content in the cerebral spinal fluid, white matter and gray matter.

Statistical analyses

Metabolite concentrations as assessed in LCModel were transferred to an
SPSS database together with all clinical and psychometric data.
Metabolites were considered only for further statistical analysis if the
Cramér–Rao bounds were below 20%.83 First, all dependent variables of
interest were tested for normality of distribution using the Kolmogorov-
–Smirnov test. Then, the data were analyzed with multiple analysis of
covariance (MANCOVA). Group was chosen as a factor and the metabolites
(NAA, Cre, Cho, MI, Glu, Glx) as dependent variables. A P-level of 0.05 was
chosen as the criterion for significance. To estimate the possible effect of
the factor gender, we included this item as a cofactor in the same
MANCOVA calculation in the second-level analysis. In addition, to assess
the possible confounding effect of the factor medication, the following
second-level analyses were performed: we compared 14 completely
unmedicated patients with the control group of 29 age-, gender- and IQ-
matched control subjects using a t-test procedure and calculated the
factorial analysis of variance with medication as the cofactor. All
metabolites that were significant in the first-level group comparison were
correlated with psychometric measures of autism (AQ and EQ scores) using
Pearson correlations. Significant findings in overall group correlations were
further analyzed in the patient and control groups alone.

RESULTS

Demographic and psychometric data

In Table 2, the demographic and psychometric data of all
participants are summarized.
We included 29 patients with high-functioning ASD respective

AS and 29 individually matched healthy control subjects into this

study, 19 men and 10 women in each group. Both groups had
clearly above-average IQs with an average full IQ score of 125 in
each group. None of the patients had a primary other axis I
psychiatric disorder; however, 9 patients suffered from depression,
3 from nonorganic sleeping disorders and 4 from other psychiatric
disorders (1 anxiety disorder, 1 personality disorder, 1 obsessive
compulsive disorder, 1 atypical eating disorder). On the basis of a
carefully performed longitudinal biographical and developmental
analysis of these syndromes, they were all judged to be secondary
to ASD. That means that they arose as a consequence of chronic
psychosocial stress and life events such as interpersonal problems
in private relationships and at school, university or work based on
clinical judgment (equivalent to the old concept of reactive
depression or reactive anxiety). None of the included patients had
a history of seizures, epilepsy, psychosis or symptoms reminiscent
of psychosis, bipolar disorder or substance abuse. As a conse-
quence of this high psychiatric comorbidity, only 14 of the 29
patients were completely free of any medication. Fifteen patients
were taking psychotropic medication, mostly SSRI or SSNRI
(n= 12), and atypical or low potent neuroleptics (n= 4) as sleeping
pills. One patient used clonazepam as a sleeping pill until 2 weeks
before scanning.

Psychosocial, school and occupational performance

Table 3 illustrates that in line with high IQ, the school performance
of our study sample was above average. Twenty-two patients
(75.9%) and 24 controls (82.8%) had successfully finished the highest
school grade (Abitur) in the German school system. Twelve patients
(41.4%) and 7 controls (24.1%) had acquired a university degree.
However, in spite of this education, only 13 patients (44.8%) held a
regular job, and even fewer (n=9, 31.0%) held a job that adequately
matched their formal qualifications. Six patients (20.7%) had entered
early retirement and were living on social support. Six patients
(20.7%) were married or living in a stable relationship, two were in
an unstable relationship (6.9%), whereas 21 had no relationship
(72.4%). Four patients (13.8%) had children.

Matching results

After matching, all patient-control pairs were comparable accord-
ing to gender, IQ and age as can be seen in Table 2.

MRS results

Table 4 summarizes the spectroscopic findings. Patients with
ASD displayed significantly decreased NAA, Glu and Glx signals
(MANCOVA: Wilks’ lambda= 0.762, F = 2.659, df = 6, dfE = 51,
P= 0.025; between-subject effects: NAA MANCOVA: F = 4.150,
P= 0.046, Glu MANCOVA: F = 9.870, P= 0.003 and Glx MANCOVA:
F = 11.772, P= 0.001) compared with the healthy control group in
the pregenual ACC. The scatterplot in Figure 2 shows this main
finding. Including the factor gender as a cofactor in the MANCOVA

Table 2. Summary of demographic and psychometric data of participants

ASD (n= 29) mean (s.d.) Control (n=29) mean (s.d.) Statistics

Age 35.31 (9.1) 35.79 (8.5) T=− 0.209; df= 56, P= 0.836
Gender 19:10 19:10 χ

2
= 0.000, df= 1, P= 1

IQ 125.1 (12.0) 124.97 (13.4) T= 0.41; df= 56, P= 0.967
AQ 37.66 (6.096) 13.17 (6.398) T= 14.92; df= 56, Po0.000
EQ 16.83 (8.984) 44.38 (9.734) T=− 11.2; df= 56, Po0.000
BDI 14.69 (12.1) 1.72 (2.5) T= 5.63; df= 56, Po0.000
WURS 31.59 (13.14) 9.69 (8.45) T= 7.55; df= 56, Po0.000

Abbreviations: AQ, autism quotient; ASD, autism spectrum disorder; BDI, Beck Depression Inventory score; EQ, empathy quotient; IQ, intelligence quotient;

WURS, Wender-Utah Rating scale. For reference see text.
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calculation did not result in a relevant change in the findings
(MANCOVA: Wilks’ lambda = 0.762, F = 2.607, df = 6, dfE = 50,
P= 0.028; between-subject effects: NAA MANCOVA: F = 4.090,
P= 0.048, Glu MANCOVA: F = 9.694, P= 0.003 and Glx MANCOVA:
F = 12.249, P= 0.001). Other than that, there were no significant
spectroscopic differences in the ACC or in the cerebellum.
To assess the possible confounding relevance of the factor

medication, we compared only fully unmedicated patients (n= 14)

with the control group. Both groups were still matched for age
(T=− 0.758, df = 41, P= 0.453), IQ (T= 0.025, df = 41, P= 0.981) and
gender (χ2= 0.006, df = 1, P= 0.937). Although the finding of the
decreased NAA signal failed to reach a level of significance in this
constellation (T=− 1.309, P= 0.212), the Glx finding was still highly
significant (T=− 2.889, P= 0.006). In the factorial analysis of
variance with medication as the cofactor, the dependent variable
NAA just failed to reach a level of significance (F = 3.940, P= 0.052),

Table 3. Psychosocial characteristics of the patient and control sample

ASD Controls

Number Percentage Number Percentage

Highest school degree
No degree 0 0 0 0
Low degree 1 3.5 0 0
Medium degree 6 20.7 5 17.2
High degree 22 75.9 24 82.8

Professional degree
None 3 10.4 0 0
Professional training 11 37.9 13 44.8
University of applied sciences 4 13.8 0 0
University degree 8 27.6 7 24.1
In vocational training/studying at university 3 10.4 9 31.0

Professional status
Unemployed 7 24.1 0 0
Never been employed structurally 6 of 7 20.7 — —

Employed 17 58.6 20 69.0
Short-time employment 4 13.8 Not inquired —

Structured employment, less ambitious 4 13.8 Not inquired —

Regular job adequate to formal qualification 9 31.0 Not inquired —

In vocational training/studying at university 5 17.2 9 31.0

Personal background
Actually no partnership 21 72.4 Not inquired —

Never had a relationship 10 of 21 34.5 Not inquired —

Insecure partnership 2 6.9 Not inquired —

Close partnered or married 6 20.7 Not inquired —

Children 4 13.8 Not inquired —

Abbreviation: ASD, autism spectrum disorder.

Table 4. Spectroscopic findings in pregenual ACC (n= 29) and cerebellum (n= 24) in patients with ASD and control subjects

ASD (IU) Controls (IU) Statistics MANCOVA ASD (IU) Controls (IU) Statistics MANCOVA

Cerebellum Pregenual ACC

N-acetyl-aspartate 8.7820
0.90541

9.1737
0.80986

NS 10.7955
2.36460

11.7288
0.70366

F= 4.150
P= 0.046

Creatine 9.1924
1.24528

9.5265
0.91922

NS 8.7101
1.97411

9.1661
1.00472

NS

Choline 2.2917
0.38749

2.3287
0.26289

NS 2.3102
0.53321

2.3463
0.32521

NS

Myoinositol 5.1265
0.77710

5.1008
0.89321

NS 6.1680
1.09450

6.2477
0.94463

NS

Glutamate 7.2863
1.13160

7.5396
0.94118

NS 10.0240
2.10100

11.4823
1.35408

F= 9.870
P= 0.003

Glutaminea 4.0494
0.46342

4.1463
0.54071

NS 5.1819
1.25356

5.5690
1.43995

NS

Glutamate and
glutamine

10.6424
1.54804

11.1369
1.30998

NS 14.1885
3.04758

16.6872
2.46852

F= 11.772
P= 0.001

Abbreviations: ACC, anterior cingulate cortex; ASD, autism spectrum disorder; IU, institutional unit; MANCOVA, multiple analysis of covariance; NS,

nonsignificant. aGlutamine was calculated separately in a factorial analysis of variance (see text).
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whereas the Glx signal again remained highly significant
(F = 9.913, P= 0.003).

Analysis of dimensional associations

Correlation analysis revealed a significant correlation between the
ACC Glx signal and the AQ sum score (r=− 0.307, n= 58, P= 0.019),
the AQ sub-score social skills (r=− 0.299, n= 58, P= 0.023) and the
AQ sub-score sum communication (r=− 0.393, n= 58, P= 0.002).
The Glu signal correlated with the AQ sum score (r=− 0.283,
n= 58, P= 0.031), the AQ sub-score communication (r=− 0.345,
n= 58, P= 0.008) and the AQ sub-score imagination (r=− 0.291,
n= 58, P= 0.027). When the patient and control groups were
examined separately, no significant correlation between Glx and
AQ or EQ scores was observed in either group. However, a
significant correlation between the Glu signal and the EQ score
remained in patients (EQ: r=− 0.378, n= 29, P= 0.043). In the
control group, the Glu signal was correlated with the AQ sub-score
social skills (r= 0.369, n= 29, P= 0.049) and imagination (r=
− 0.396, n= 29, P= 0.033).

DISCUSSION

Thus far, this is the largest MRS study in adult patients with ASD.
In addition, this is the first study in autism that examined only
patients with above-average IQ in an attempt to generate a
possibly homogenous study group. The main finding is decreased
pregenual anterior cingulate NAA and Glx signals in patients with
ASD. The decreased Glx signal but not the NAA signal was
correlated with the social skills and communication measures.
There was no evidence of altered neurochemistry in the
cerebellum.

Possible implications of the main finding

To assess the possible relevance and implications of these
findings, we first reviewed the literature on the ACC.

The role of the ACC in autism and social cognition

The ACC is a large limbic structure situated in the center of the
brain and known to integrate information from various other brain
areas.84 The ACC has been linked to functions such as attention
control, empathy, performance and error monitoring, pain percep-

tion, theory-of-mind faculties and behavioral adaptation to a
changing environment.85–87 The rostral division consisting of
Brodmann areas 12 and 32 ( = pregenual ACC in this study)
with predominantly affective functions can be distinguished from
the caudal ACC (Brodmann area 32 and partly 24), which often
is related to integrative cognitive aspects of information
processing.84

The ACC has been shown to be of critical importance for joint
attention mechanisms in chimpanzees.88 Deficits in joint attention
are a critical early symptom in autism. Similar findings have been
reported in human fMRI research.89 Related to this finding, Chang
et al. analyzed the firing pattern of the ACC in social reward
situations and found that it encoded complex reward allocations
to other monkeys in group constellations. The authors concluded
that the ACC is critical for computing shared experiences and
social reward,90 which again relates well to our findings. Abnormal
findings in ACC activity in ASD have also been reported in several
fMRI studies.91–93 Furthermore, early as well as recent SPECT and
PET studies in autism reported abnormalities in the ACC in terms
of reduced blood flow, glucose metabolism and serotonin as well
as dopamine receptor binding.94–97

Finally, postmortem research involving patients with ASD also
pointed to decreased ACC cell density98 and abnormalities of the
GABA receptors in the ACC99 with the GABA system being the
natural antagonist to Glu in keeping the excitatory-inhibitory
homeostasis of the cerebral cortex. Taken together, these findings
relate well to our observation of disrupted NAA and Glu
metabolism in the ACC.

Relationship to other findings

As summarized in Table 1, up to now only 22 MRS studies have
been conducted in autism. Quite a few of these studies are
hampered by methodological limitations, and in early MRS
research, it was not possible to reliably measure the Glu signal.
The first study that analyzed ACC neurochemistry in adults with

AS was that by Oner et al.57 In contrast to our finding of a
decreased absolute NAA signal, they reported an increase in the
NAA/Cho ratio in the ACC. However, they measured only the
metabolite/Cho ratios. In MRS research, metabolite ratios over Cre
are often reported based on the assumption that the Cre
concentration is stable, and thus represents a kind of constant
reference measure. However, early MRS research raised doubts
regarding whether this is really the case.100,101 Recent MRS meta-
analyses clearly demonstrated differences in Cre as a function of
age and the brain region.43,68,69 Therefore, metabolite/Cre ratios
are very difficult to interpret. This is also true for metabolite ratios
over Cho, as the variability of the Cho signal is even larger than
that of the Cre signal. Therefore, Oner et al.’s data cannot answer
the question if the observed changed ratio is due to a decreased
NAA signal or alternatively to an increased Cho signal. Probably
due to the methodological standard at that time, they were not
able to report Glx signals at all.
In line with our finding, Bernardi et al.47 found decreased Glx

signals in the right ACC in 14 adult patients with high-functioning
ASD compared with 14 control subjects. In contrast, Bejjani et al.62

and Joshi et al.63 reported elevated Glu and Glx signals in the ACC.
However, in contrast to our study, they investigated children and
adolescents with a wide IQ range62 and a very small number of
seven participants in the case of Joshi et al.63 study. Still, the
question arises how these seemingly contradictory findings may
be reconciled.

The hypothesis of excitatory/inhibitory imbalance in autism

These findings could well be integrated within the theoretical
framework of the hypothesis of excitatory/inhibitory imbalance in
autism. As presented in the introduction, several authors have put
forward the idea that such an imbalance between neuronal

Figure 2. Illustration of decreased Glx signals in patients with ASD.
ASD, autism spectrum disorder; CI, confidence interval; Glx,
glutamate and glutamine.
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network excitation and inhibition might be a critical component in
the pathogenesis of autism.16–18,102–105 This process, that is, the
excitation/inhibition equilibrium (called neuronal homeostasis),
can be defined as the ability of a neural system to return to a
stable equilibrium following perturbation.104

From a theoretical point of view, it makes sense that the ACC is
involved in the pathogenesis of ASD, as the ACC is important for
mental faculties such as joint attention, attention to social reward,
mental process and error monitoring, consciousness dissociation
and affect regulation.106 Patients with ASD typically have
problems in all these domains.
Our finding of a decreased ACC NAA concentration points to a

relevant disturbance of the overall integrity of this region.
Decreased NAA concentrations are seen, for example, in patients
with neurodegenerative disorders.107 From this perspective, our
finding is related to the report of decreased ACC cell density in
postmortem research.98 It might also be related to reports of
abnormalities in the histological organization of the isocortex in
autism where the peripheral surroundings of minicolumns
(composed primarily of inhibitory cells) have been reported to be
altered,108 which in turn might cause an effective inhibitory deficit
in that brain area.18 However, NAA decreases are also seen in
transient disturbances of neuronal network integrity, such as
ischemia or in other neuropsychiatric disorders,100,101,109,110 and
may normalize following remission from a brain insult.109 From
this perspective, our NAA finding is in line with reports of altered
ACC blood flow and glucose metabolism in SPECT and PET
studies.94–97 Although the decreased NAA signal represents only a
marker of the overall compromised neuronal health of whatever
cause in the measured region of interest, the compromised Glx
signal might characterize the nature of the dysfunction more
specifically.
When it comes to guarding the functional homeostasis of the

cerebral cortex, the most important neurotransmitters for
regulating neuronal network excitation and inhibition are Glu
and GABA. In line with this hypothesis, almost all MRS studies
investigating Glu and GABA found evidence of abnormal signals
(see Table 1). However, although two studies in children and
adolescents found increased Glx signals, we and Bernardi et al.47

found decreased Glx signals in adults.
In this context, the question arises as to what the Glx signal

means in terms of pathophysiology. This issue has been addressed

in many studies in epilepsy research. For example, Doelken
et al.111 found increased Glx signals in a patient sample with high-
frequency generalized tonic clonic seizures among other regions
in the ACC. Peca et al.112 showed that experimentally induced
epileptic activity led to an increase in the Glu and Gln signals as
measured with MRS during the first 10 min of stimulation and
then returned to baseline. Zahr et al.113 followed the MRS signal in
Wistar rats with five kainic acid-induced seizures and showed that
seizure activity causes a decrease in the Glu signal in the long run.
Summarizing these findings, at least in animals, excitatory seizure
activity results in an acute increase in the Glx signal and a
decrease in this signal in the long run.
Against the background of these observations, the increased

Glx signals reported in children and adolescents with ASD could
be understood as an indicator of ACC overexcitation. Whereas the
decreased ACC Glx signals we and others measured in adults
might point to over-inhibition of this brain area. From this
perspective, the MRS Glx signal might serve as a surrogate marker
of the functional equilibrium of ACC networks, with increased
signals pointing to pathological overactivation and decreased
signals hinting at over-inhibition. Figure 3 illustrates the essence
of this hypothesis of ACC imbalance in ASD.
This hypothesis has been put forward by several researchers

in cognitive neuroscience.17,102–105 The idea that pathological
inhibition in the context of neuronal network instability and
disturbed functional homeostasis might represent a relevant
pathomechanism at least in subgroups of different neuropsychia-
tric disorders has also been put forward by our group to explain
the role of pathological EEG findings in different psychiatric
disorders.23,106

One strength of this hypothesis is that it could not only
integrate the findings summarized in MRS research but also
explain the well-known link of ASD to epilepsy.6,114 In addition, as
ASD has been linked to discrete neuroinflammatory processes and
microglia activation,115 and neuroinflammation in turn has been
associated with neuronal network excitation via glutamatergic
mechanisms,116,117 Glu signal abnormalities in the ACC could be
interpreted as a result of such pathomechanisms.
Further support of this assumption comes from data that show

that proinflammatory cytokines correlate with 1H-MRS Glx signals
in patients with liver failure.118 Finally, increased cerebral
glutamatergic activity has been linked to discrete inflammatory

Figure 3. Illustration of the hypothesis of excitation/inhibition imbalance in autism. Glx, glutamate and glutamine.
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mechanisms in other neuropsychiatric disorders such as Alzheimer
disease and epilepsy.114,119,120

In summary, our MRS findings and those of many other
authors as well as many clinical phenomena could be integrated
within the theoretical framework of the excitation/inhibition
imbalance theory of autism. Optogenetic methods might be a
promising tool for further validating this theory with the first
encouraging results already published.102 In this context, MRS
might turn out to be a critical translational research tool, as it can
be used in animal and human research alike without any relevant
side effects.

Methodological issues

Finally, methodological issues and limitations of this study must
be considered. The present study was implemented following
high methodological standards. The diagnosis of ASD was
established in a multiprofessional diagnostic team in one leading
German center for the diagnosis and treatment of ASDs in adults
(Universitäres Zentrum Autismus Spektrum Freiburg, UZAS; http://
www.uniklinik-freiburg.de/psych/live/patientenversorgung/schwer
punkte/schwerpunkt-asperger.html). In childhood and adoles-
cence psychiatry and psychotherapy, the psychometric instru-
ments ADI-R79 and ADOS80 are generally accepted as the gold
standard for diagnosing ASD (http://guidance.nice.org.uk/CG128/
NICEGuidance/pdf/English). In adulthood, this type of gold
standard has not yet been established. Empirical research proved
that there is only moderate agreement between clinical consensus
diagnoses and ADOS-based ratings for adults.121 In particular, the
discrimination regarding schizophrenia can be a problem.122 In
line with these observations, in a German sample that compared
ADOS with expert-consent rating, there were relevant false-
positive and false-negative ADOS ratings.123 Given this back-
ground, we followed the diagnostic principles laid out for
diagnostic process in adulthood by the NICE guidelines for adults
closely (http://guidance.nice.org.uk/CG142/NICEGuidance/pdf/Eng
lish) and used consent expert rating rather than ADOS and ADI-R
as the decisive criteria for caseness.
Including patients only with above-average IQ may be regarded

as a disadvantage or as an advantage. Obviously, the general-
izability of our findings and the ecological validity are compro-
mised by this approach, as only a subgroup of patients with ASD
have above-average IQs. However, it might be regarded as an
advantage that the issue of mental handicap and learning
difficulties must not be considered an important confounding
factor. Following the line of thought laid out in the introduction,
the aim was to create a neurobiologically homogenous study
sample.
The MRS data acquisition and analysis followed long-

established procedures at the Freiburg Brain Imaging Center
(http://www.uniklinik-freiburg.de/fbi/live/index_en.html) and was
parallelized to a large government-funded study of patients with
ADHD (BMBF 01GV0606). This fact also enabled us to match the
control subjects from an available database of 90 controls. This
allowed a one-to-one matching procedure in terms of gender and
a very close individual match in terms of age and IQ.
We opted for single-voxel spectroscopy to avoid the problem of

interpreting metabolite/Cre ratios. Several meta-analyses have
pointed out that there is a relevant variance in Cre signals across
age groups and brain areas, and therefore the commonly used
procedure for calculating such ratios can lead to relevant
problems when it comes to interpreting findings.43,68,69 All Glu-
related MRS signals (Glu, Gln and Glx) measure the integrity of
regional cerebral Glu metabolism.44 We present the figures for
these signals but focused on the Glx signal because the spectral
peaks of Gln and Glu overlap considerably, and therefore the
collectively denoted Glx signal is more robust.45 In MRS research,
neurometabolite signals, in particular Glx and NAA, generally are

correlated.124 Therefore, such correlations are not informative
regarding the underlying pathomechanism of interest. The
statistical procedure was straightforward, and individual raw data
for all relevant findings have been presented as scatterplot figures.
Therefore, all results are transparent to the reader.
In addition to the limited generalizability due to the high mean

IQ of our sample, a larger sample size would have been desirable.
However, to our knowledge, this is presently still the largest MRS
study in adults and the first to focus on patients with above-
average IQ.

Summary

In summary, in this study, we found decreased NAA and Glx
signals in the ACC of adult patients with ASD and above-average
IQ. The Glx signal correlated with psychometric measures of
autism, particularly with deficits in communication skills. The Glx
finding is in line with the only other MRS study in adults, both
reporting Glx reductions in the ACC. This is in contrast to two
studies in children and adolescents that reported a Glx signal
increase rather than a signal reduction in the ACC. Regarding the
excitation/inhibition-imbalance hypothesis in autism, we interpret
this signal as an expression of functional over-inhibition of this
brain area in our patient sample. If replicated and validated in
further research, the MRS-detectable Glx signals might be a
valuable marker for assessing cerebral overexcitation or over-
inhibition in autism and other neuropsychiatric research. In this
case, it could also be used as an objective surrogate marker of
change and therapy response in psychotherapeutic and pharma-
cological interventions.
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