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Abstract—Dither signals provide an effective way to compensate
for nonlinearities in control systems. The seminal works by Zames
and Shneydor, and more recently, by Mossaheb, present rigorous
tools for systematic design of dithered systems. Their results rely,
however, on a Lipschitz assumption relating to nonlinearity, and
thus, do not cover important applications with discontinuities. This
paper presents initial results on how to analyze and design dither
in nonsmooth systems. In particular, it is shown that a dithered
relay feedback system can be approximated by a smoothed system.
Guidelines are given for tuning the amplitude and the period time
of the dither signal, in order to stabilize the nonsmooth system.

Index Terms—Averaging theory, bound error estimation, dither,
limit cycles, linear matrix inequalities (LMIs), nonsmooth systems,
practical stability, relay feedback.

I. INTRODUCTION

T HE use of dither signals for stabilization of nonlinear con-
trol systems is a well-known and frequently used tech-

nique. The idea is that by injecting a suitably chosen high-fre-
quency signal in the control loop, the nonlinear sector is effec-
tively narrowed and the system can thereby be stabilized. Theo-
retical justification of this idea for systems with continuous non-
linearities has been obtained by Zames and Shneydor [1], [2]
and Mossaheb [3]. Their results rely however, on a crucial Lips-
chitz assumption on the nonlinearity, and thus, do not cover im-
portant applications with discontinuities. Indeed, discontinuous
nonlinearities in feedback-control systems with high-frequency
excitations appear in a large variety of applications, including
systems with adaptive control [4], friction [5], [6], power elec-
tronics [7], pulsewidth modulated converters [8], quantizers [9],
relays [10], and variable-structure controllers [11]. In their paper
on the analysis of the (smooth) LuGre friction model, Pervoz-
vanski and Canudas de Wit [12] pointed out that a rigorous anal-
ysis of dither in discontinuous systems does not exist. Dither
tuning of general nonsmooth systems is, to our knowledge, lim-
ited to approximate design methods mainly based on describing
functions [13], [14]. In power electronic systems such as various
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types of dc-dc converters, averaging theory is applied to sepa-
rate the slow dynamics from the fast dynamics, for example,
imposed by switching elements in pulsewidth modulation. Rig-
orous averaging analysis have been done for this class of non-
smooth systems [7], [15].

The contribution of this paper is a theory for the design of
dither in nonsmooth feedback systems. We limit the analysis
to an important class of nonlinearities, namely, relays. The
reason for this is that these systems are common. Early moti-
vation for studying relay systems come from mechanical and
electromechanical systems [16], [10]. Recently, there has been
renewed interest due to a variety of emerging applications, such
as automatic tuning of proportional integral derivative (PID)
controllers [17], quantized control [18], and supervisory control
[19]. The analysis of relay feedback systems is nontrivial, even
if the dynamical part of the system is linear. Major progress in
the study of various properties of autonomous linear systems
with relay feedback was achieved in the last decade, particu-
larly in the understanding of limit cycles in these systems, e.g.,
[20]–[25]. See [10] and [21] for further historical remarks and
references on relay feedback systems.

In our study of the discontinuous dithered system, we adopt an
averagingapproach,which isawidelyappliedmathematical tool.
The main observation is that the nonlinearity of the dithered
system can be approximated by the smoothed nonlinearity

, where is the dither signal
and its period time. Instead of studying a nonlinear system with
an external high-frequency signal , one can study a smoothed
system with a “nicer” nonlinearity . In the paper, the non-
linearity of the dithered system is a relay (sign function)
and the dither is a triangular signal. This leads to that the
smoothed nonlinearity , where denotes the
saturation function and is the amplitude of the dither signal. A
saturated system is, in general, easier to analyze than a dithered
relay system. In this paper, it is shown how to relate the behavior
of the smoothed system in a precise way to the behavior of the
dithered system. We show that the dither period determines the
accuracy of this approximation: the smaller the dither period,
the closer is the trajectory of the dithered system to the trajectory
of the smoothed system. Since the dither amplitudedetermines
the gain of the saturation, and thus the stability of the smoothed
system, stability of the smoothed system is linked to (practical)
stabilityof the ditheredsystem. Hence, byusing existing stability
results for saturated systems (such as the Zames and Falb crite-
rion), we can draw stability conclusions on the dithered system.
These results are collected into a design procedure for dithered
systems,where the dithersignal isadjusted to the dynamicsof the
linear part of the system.

In this paper, the behavior of the dithered relay feedback
system is shown to be highly affected by the shape of the dither
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signal. This feature is interesting since relay feedback systems
are known to exhibit several complex behaviors, such as quasi-
periodic orbits [26], chattering and sliding periodic orbits [21],
[25], and asymmetric orbits [22]. When the dither signal is a
square wave, the dithered system can exhibit an asymmetric
periodic orbit, though the smoothed system is asymptotically
stable. We even show an example in which, by using a trape-
zoidal dither signal, both systems have a stable oscillation, but
the period time for the oscillation of the smoothed system is dif-
ferent from the one of the dithered system. It seems that dither
signals with zero slope over nonzero time intervals lead to less
predictable systems. This is in stark contrast to systems with
Lipschitz continuous dynamics for which it can be shown that
the form of the dither signal is not critical at all, see [1] and [2].

The outline of the paper is as follows. The preliminaries are
presented in Section II. The main results are given in Section III
showing that the solutions of the dithered system can be arbi-
trarily well approximated by the solutions of a smoothed system.
The section also discusses practical stability. Section IV relates
these results to dither design. Our main design conditions can
be formulated in terms of linear matrix inequalities (LMIs). A
brief discussion on relay feedback systems with other dithers is
given in Section V. The paper is concluded in Section VI.

II. DITHERED RELAY FEEDBACK SYSTEMS

The particular class of nonsmooth dithered system considered
in this paper is the linear system with relay feedback. This sec-
tion presents the notation and a motivating example.

A. Dithered System

Thedithered systemis the relay feedback system

(1)

Here, , , and are constant matrices of dimensions ,
1, and 1 , respectively, where . The nonlinearity

is given by the relay characteristic

.

The reference signal is assumed to be Lipschitz continuous,
i.e., there exists a constant such that

.
The dither signal is periodic and of high fre-

quency compared to the linear dynamics. An example of a dither
signal, which we will study in detail, is a triangular waveform
of amplitude and period , i.e., for
all and

(2)

It should be pointed out that the results in this paper depend on
the shape of the dither signal. Dither signals with zero slope for
nonvanishing time intervals, such as the square wave, are some-
times unpredictable. This is in contrast to systems with Lips-
chitz continuous dynamics, where the form of the dither signal

is not critical [1], [2]. Throughout the paper, we will consider tri-
angular dither and, when needed, we will highlight differences
due to the use of other dither signals.

The relay feedback system is assumed to have a solution
(in a classical sense), which, on every compact

subinterval of [0, ) is everywhere except at finitely many
points. In general, the solution must not be unique. This is not
of interest here, since the results in the paper hold for any of
these solutions. We sometimes use the notation for the
solution of (1). We use to denote the Euclidean norm of
a vector and to denote the corresponding induced matrix
norm. The notation ( ) is used to denote that a
matrix is positive (semi) definite.

B. Smoothed System

Thesmoothed systemis defined as

(3)

where the smoothed nonlinearity is the average
. For the triangular dither, it is

easy to show that

It will be shown below that the smoothed system in many
cases is a good approximation of the dithered relay feedback
system. Therefore, analysis and design can be performed on
the smoothed system, which is often easier to treat, and then be
carried over to the dithered system.

Note that the term “smoothed system” (which is standard in
the literature on dither) refers to the fact that the nonlinear sector
is narrowed by the dither signal. The nonlinearity is not neces-
sarily , as illustrated above by the saturation function.

C. A Motivating Example

A second-order relay feedback system is used as a represen-
tative example. Consider the system (1) with and

(4)

When no dither is present ( ), the relay feedback system
presents a limit cycle as reported in Fig. 1(a). The output of
the linear part of (1) is plotted for a solution with initial
condition . If we apply a triangular dither signal
with amplitude and period , the limit cycle in
Fig. 1(a) is reduced as shown in Fig. 1(b). Hence, the dither in a
sense attenuates the oscillations present in the original system.
Fig. 1(b) also shows the output of the smoothed system
(3). The two systems have different responses. If we decrease
the dither period (e.g., ) the smoothed system and
the original dithered system have practically identical outputs.
Hence, the smoothed system provides an accurate approxima-
tion of the dithered system for . This suggests that the
dither period is related to how accurately the smoothed system
approximates the dithered system. In Section III, it is shown
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(a)

(b)

Fig. 1. Outputs�cx of the dithered relay feedback system (solid) and the
smoothed system (dashed) with triangular dither. (a)A = 0 andp = 1=50. (b)
A = 1 and p = 1=50

that by choosing sufficiently small, the approximation can be
made arbitrarily tight (Theorem III.1). Regarding the dither am-
plitude , note that the smoothed system above is unstable for

, since the closed-loop system is linear with char-
acteristic polynomial equal to when

. The dither amplitude hence defines the response dy-
namics. This is shown in the next section by relatingto the
stability of the dithered system (Theorem III.2).

III. A NALYSIS

This section presents results for the dithered system in (1)
with the triangular dither signal in (2). The first result is on
accurate approximation over compact time intervals and the
second is on practical stability. These two results are then
combined to obtain a result on approximation over infinite
time horizon. The proofs do not fully exploit the particular
structure of the smoothed system in (3) and the resulting
bounds on the dither period are conservative. In Theorem III.4,
we obtain much tighter bounds by using LMIs to characterize
the structural properties of the system.

A. Averaging Theorem

The following theorem states that by choosing the dither pe-
riod of the triangular dither in (2) to be sufficiently small, it is
possible to make the solution of the relay feedback system
arbitrarily close to the solution of the smoothed system on
any compact time interval.

Theorem III.1: Consider systems (1)–(3). Let and
be given. Assume that is Lipschitz on [0, ],

with Lipschitz constant . There exists such that if
, then for all .

Proof: See Appendix I.

Theorem III.1 can be interpreted as an extension of [3, Th. 1]
to a class of nonsmooth systems. The result in [3] relies on conti-
nuity properties of the solutions of the original and the smoothed
systems. This argument cannot be used here. Instead, we pay
particular attention in the proof to the system evolution at and
between relay switchings.

The proof of Theorem III.1 is constructive, so a bound for
is derived. It shows that should be chosen to be of the order
of . The bound on depends on system data and. It is con-
servative and tighter bounds will be obtained in Section III-D
by exploiting more of the problem structure.

Theorem III.1 holds also for the sawtooth dither [27] or skew-
triangular dither.

B. Practical Stability

WeuseTheoremIII.1toobtainconditionsforpracticalstability
of the dithered system (1). The idea is the following. First choose
theamplitude ofthedithersignal,suchthatthesmoothedsystem
in(3) isstable.Then, if theperiodof thedithersignal ischosento
besmallenough, theoutputof theditheredsystemclosely follows
the output of the smoothed system. This implies that the output of
the dithered system converges close to zero. Note that we cannot
obtain convergence strictly to zero, since the dither signal always
cause small fluctuations of the output. We use the following def-
inition of stability.

Definition III.1 (Practical Stability): The system (1) with tri-
angular dither (2) and a given amplitude is practically
(exponentially) stable, if for any , and , there
exist , , and , such that

for any dither period .
Theorem III.2: Suppose and that the smoothed

system (3) is exponentially stable. Then there existssuch that
for the dithered system (1)–(2) is practically stable.

Proof: See Appendix II.
There are many available results for stability analysis of the

smoothed system. We will here use a criterion by Zames and
Falb [28], which generalizes the Popov criterion.

Corollary III.1: Assume that is Hurwitz. Let
and , where

satisfies . If there exists such
that

(5)

then there exists such that for the dithered system
(1) is practically stable.

Proof: Inequality (5) gives a sufficient condition for the
exponential stability of the smoothed system [28], [29]. By ap-
plying Theorem III.2, the corollary is then proven.

Note that the criterion (5) corresponds to one of the least
conservative conditions for stability available for systems with
a slope-restricted nonlinearity. However, it does not give any
immediate information on the performance (e.g., the exponential
decay parameters and ), and it is not convex in the pair
( ). The circle criterion corresponds to . From the
Kalman–Yakubovich–Popov lemma, one can for that case derive
an LMI that verifies (5) and results in explicit estimates of the
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exponential decay parameters. In Section IV, we will show how
a suitable choice of can help to obtain better tuning of.

C. Infinite Time Horizon

The next result shows that the dithered system can track the
averaged system arbitrarily well over an infinite time horizon
provided that the dither signal is chosen appropriately.

Let us call the solution of (1)–(2) with reference
and the solution of (3).

Definition III.2: The smoothed system (3) is incrementally
exponentially stable if there exists and such that
for any given initial conditions and , the corresponding
solutions satisfy

(6)

A simple and often very useful criterion for incremental ex-
ponential stability is given by the next lemma.

Lemma 1: Assume that there exists a matrix and
such that the matrix inequality

(7)

holds. Then, the smoothed system (3) is incremen-
tally exponentially stable with decay rate and gain

.
Theorem III.3: Consider systems (1)–(3). Let and

be given. Suppose that has Lipschitz constant
and the smoothed system (3) is incrementally exponentially

stable. Then, there exists such that if , then
for all .

Proof: See Appendix III.

D. Improved Bound

We first improve the bound on obtained in the proof of
Theorem III.1. A much tighter bound is then obtained when the
smoothed system is incrementally stable.

Theorem III.4: Assume has Lipschitz constant . Sup-
pose there exist and such that

(8)

Then, the bound on the dither period in Theorem III.1 can be
chosen to be

where

Proof: See Appendix IV.
By combining Theorems III.3 and Theorem III.4 we obtain

much better bounds for the dither frequency, also in the case of
infinite time horizon. We state this as the following theorem.
Here, we assume that we have an estimate1 of the norm

.
Theorem III.5: Let and be given. Assume

that has Lipschitz constant . Suppose that the smoothed
system (3) is incrementally exponentially stable with decay rate

and gain . Then, the bound on the dither period in The-
orem III.3 can be chosen to be

(9)

where ,

(10)

where solves the LMI in (8) and

, and .
Proof: The proof follows by using Theorem III.4 in an

analogous reasoning as in Remark 1 in the proof of Theorem
III.3.

Note that the parameter is a bound on the Lipschitz con-
stant of . The bounds suggested in Theorems III.4
and III.5 can be conservative. The more knowledge we have
about the trajectory of the smoothed system and the reference
signal, the better bound we are able to obtain.

IV. DESIGN

In this section, we use Theorems III.1 and III.2 to tune the
dither signal. The purpose can, for example, be to stabilize an
oscillating system. We use Theorem III.5 to obtain an LMI-
based design methodology of the dither parameters. This re-
sults in an exponentially stable system with a state that tracks
the state of the smoothed system with arbitrary precision. We
finally present a heuristic method, which often gives less con-
servative designs. The design methods are illustrated in the ex-
ample in Section II-C.

A. First Tuning Algorithm

The dither design will necessarily be a compromise between
conflicting consequences of the dither amplitudeand period

1Such a bound is easy to obtain for a given reference signal. If we have a class
of reference signals, then we can obtain a bound by exploiting the incremental
exponential stability of the smoothed system.
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on the control performance. Based on our results we obtain
the following algorithm for tuning the previous parameters of
the dither signal.

Step 1 Choose based on Corollary III.1,
so that the smoothed system is exponen-
tially stable.
Step 2 Estimate the exponential stability
parameters , for the smoothed system
by using the Kalman–Yakubovich–Popov
Lemma. Let , with .
Step 3 Choose based on and the
smoothed dynamics.

In Step 1, we need to choose the amplitudeof the dither
signal to be large enough to allow the smoothed system to be
stable and to have a fast enough exponential decay rate. At the
same time, we want to keep as small as possible in order to
avoid injecting too large a signal in the control loop.

In Step 2, we compute the time-interval length, which is an
auxiliary variable in the proof of Theorem III.2 and it depends
on the parameters , , and , a free parameter which rep-
resents a tradeoff between a low-ripple and a high-decay rate
of the dithered system ( ) and a low-dither frequency
( ). The time length gives a bound on the period of the
dither signal through (36) in the proof of Theorem III.1. Better
bounds can be derived if we use the structure of the saturation
nonlinearity and that the smoothed dynamics is chosen to be ex-
ponentially stable. The bound derived in Theorem III.4 is taking
several of these structural aspects into account.

B. A Second Tuning Algorithm

We use Theorem III.5 to derive a tuning algorithm that gives
an exponentially stable dither system, which tracks the state of
the smoothed system over an infinite time horizon with any de-
sired accuracy. We assume that we have derived a boundof

. For given tracking accuracy
, Theorem III.5 gives . We would like to optimize the free pa-

rameters such that becomes as small as possible. This is hard
since the dependence on the free parameters in (9)–(10) is non-
convex. One way to obtain a solution is to pick and

, and then choose a desired exponential decay rate such that
the LMIs (7) and (8) are feasible. We see thatand
should be as small as possible to makesmall. This can be
done by solving the following coupled optimization problems:

(11a)

(11b)

(12a)

(12b)

The first problem can be solved by bisection on and the
second by bisection on. From the last optimization problem,
we obtain . Note that the constraints of these
two optimization problems are LMIs for fixed and , respec-
tively. We have arrived at the following tuning algorithm.

Step 1) Choose .
Step 2) Choose a desired exponential decay rateand then

select the dither amplitude so that the LMIs(11b)
and(12b) are feasible.

Step 3) Solve the optimization problem(11a), which gives
and and then problem(12a), which gives and .

Step 4) Compute from (9).

C. A Heuristic Tuning Algorithm

A practical issue that can be taken into account when tuning
the dither period is how much fluctuation on the output we can
allow due to the dither signal. We derive a heuristic bound on
these fluctuations. Assume the transients have decayed so that
we can consider the linear range of the smoothed nonlinearity.
Then, the transfer function

where approximately describes the
mapping from the dither signal to the output . Choose

such that

(13)

for some small . Then, we can expect for
sufficiently large , if the dither period is chosen such that

. The following heuristic tuning rule follows.

Step 1) Choose an output bound .
Step 2) Choose based on Theorem III.2.
Step 3) Choose , where satisfies(13).

We have assumed the dither signal to be approximately sinu-
soidal while deriving this bound. Analytical expressions for the
stationary periodic oscillation in a dithered relay system can be
derived using the same approach as for relay feedback systems
with no dither [20]–[22], [24], [25]. This gives the exact dither
ripple, see [27].

D. Example Revisited

Let us continue discussing the example in Section II-C. Recall
that

In all the tuning algorithms, the first step is to choose the dither
amplitude . Consider Theorem III.2 with , which
corresponds to the circle criterion. For , we have

. Hence, the dithered system
is practically stable for and sufficiently small. By
using Theorem III.2 with instead, we can
prove practical stability for . The first two tuning al-
gorithms with give and , respec-
tively, which are both quite conservative bounds. The heuristic
tuning algorithm gives the better estimate .
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Fig. 2. Output of the dithered system with� having periodp = 1=50. The
amplitude isA = 0:56 (upper) andA = 0:70 (lower), respectively. A smaller
A thus gives a less oscillating response.

The effect of the dither period on the responses of the
dithered and smoothed systems are shown in Fig. 1. The effects
of the dither amplitude are shown in Fig. 2. It is possible to
obtain a fast convergence by increasing.

V. COUNTEREXAMPLES FOROTHER DITHER SIGNALS

The averaging theorems in Section III cannot be directly ex-
tended to dither signals that have zero slope in a time interval of
nonzero measure. Indeed, a closer look at the proof of Theorem
III.1 shows that the approximation error is larger than of order
. One would therefore conjecture that averaging may not apply

to such dither signals. We next give two examples that support
this conjecture.

In the first example, we consider system (1) with squarewave
dither of period and amplitude , and a constant external
reference . In this case, the smoothed nonlinearity is a
dead-band relay. Fig. 3(a) shows the output of the relay feed-
back system dithered with a squarewave and the output of the
corresponding smoothed system. The waveforms do not change
when the dither period is decreased. There remains a limit cycle
in the dithered system for all periodswe investigated. This
example indicates that the error between the dithered and the
smoothed system is not of order, which would be the case if
we use a triangular dither signal.

In our second example, we consider a trapezoidal dither
signal with slope equal to 1000. It can be shown that the corre-
sponding smoothed nonlinearity is discontinuous in
and but is linear in the region [27], [30], [31].
The smoothed and the dithered systems have output waveforms
that are highly different in time, see Fig. 3(b). We can see that
the stationary behaviors of the systems are periodic but the
period of the smoothed system is different from the period of
the dithered system.

These simulation studies show that averaging may not take
place when we use dither signals that have zero slope on inter-
vals of nonzero measure. Indeed, the examples show that the
behavior of the dithered and the smoothed systems can be very

(a)

(b)

Fig. 3. Outputs of the dithered relay feedback system (solid) and the smoothed
system (dashed) with square and trapezoidal dither signals (p = 1=50,A = 1).
(a) Square dither andr(t) = 1. (b) Trapezoidal dither andr(t) = 1:02.

different when such dither signals are used. A detailed analysis
of such behaviors is out of the scope of this paper. We have done
some preliminary work in this direction [27], [30] and we have
verified that these type of phenomena also can appear in labo-
ratory experiments [31]. However, further investigation on the
behavior of relay feedback systems with various dither signals
is needed.

VI. CONCLUSION

In this paper, we have shown how dither can be analyzed in
nonsmooth systems. The main approach is that a relay feedback
system with a triangular dither signal at the input of the relay
can be viewed as a feedback system without dither in which the
relay is replaced by a saturation. The amplitude of the dither
signal affects the slope of the saturation. The approximation of
the dithered system by the smoothed system depends on the fre-
quency of the dither signal. Explicit algorithms to achieve a de-
sired approximation error have been given. Furthermore, ana-
lytical and practical guidelines to design dithered systems have
been presented. These were verified by simulations. Finally, it
has been shown that for the class of dither signals with zero
slope in nonzero time intervals the averaging might not work as
for dither signals like triangular, sawtooth, or skew triangular.

APPENDIX I
PROOF OFTHEOREM III.1

Consider the dithered system (1) and the smoothed system (3)
on the time interval [0, ] and with

(14a)

(14b)
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Note that the right-hand side of (14a) is bounded on every com-
pact time interval [0, , so that there exists a positive constant

such that , for almost every

(15)
Moreover, by hypothesis is Lipschitz

Then, we introduce . By integrating the two
members of (14), we obtain

(16)

The idea now is to show that the integral
can be approximated by . The

error introduced by this approximation is a function of the dither
period . We will show that it can be made small by decreasing
the period .

We first evaluate the term . If
we introduce , the largest integer such that ,
then

(17)

with . Since is a bounded function and the time
interval of the last integral in (17) has a Lebesgue measure less
than , we can write

(18)

with . Each term in the sum can be written as

(19)

Fig. 4 illustrates the evolution for one dither period interval. In
the top diagram, the solid lines bound

, . The dashed line is . The
figure presents all possible cases for the evolution of ,
in the sense that the envelope has the same characteristics as

Fig. 4. Time diagrams of the signals.

long as the pointR is above the pointS. It is not difficult to
show that this is equivalent to

(20)

In the following, we assume thatis chosen such that (20) holds.
All possible cases correspond to different values of

or, equivalently, all possible cases can be obtained by
shifting the horizontal axis upward and downward in the top
diagram of Fig. 4. We have three cases

Region
Region
Region .

The regions are illustrated to the right in Fig. 4 by the location
of the axis for the three cases. The partition identifies the time
intervals, during which the signal

can have a zero crossing. It is only during these intervals
that the sum of two integrals in (19) can be different from zero.
Introduce to denote the sum of the lengths of these intervals
for Region , as further described below. Next, we discuss each
region separately.

Region 1: For the first region, is equal to

(21)

Region 3: In this case

(22)

Note that both and are independent from the
value of .

Region 2: Finally, we consider the second region. It is pos-
sible to derive the following bound:

(23)

To conclude the discussion on Regions 1–3, note that the
worst case , say, for all three of them is bounded by the
right-hand side of (23). It is easy to see that there exists
such that for all , we have of ordo , i.e., .
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In particular, we may choose

(24)

so that

(25)

Note that (25) follows from (20). In conclusion, the estimate of
the upperbound (25) is valid for all cases, hence we have that
(19) is equal to

(26)

with .
So far, we have mainly considered one period. Since in (18),

we have terms, we have

(27)

with . For a sufficiently small value of
, (or equivalently, for a sufficiently large value of), the sum

can be approximated by an integral. The maximum error of the
approximation is related to the maximum slope of the signal

. However, satisfies the slope condition

(28)
for all , which implies

(29)
(with ) and, thus

(30)

with and
We have up to now proved that (16) can be written as

(31)

for all where
and

Since has the Lipschitz constant equal to , we get

(32)
for where

(33)

Now, by applying the Grönvall–Bellman lemma [32] to (32), we
get for all

(34)

Hence

(35)

This concludes the proof of the theorem.
Note that from (33), we have an estimate ofof the theorem,

namely

(36)

APPENDIX II
PROOF OFTHEOREM III.2

By hypothesis, (3), with , is exponentially stable.
Hence, there exists and such that

We will use this to prove the practical stability of (1). We itera-
tively consider time intervals of length
where . Then, if is sufficiently small (see (36)),
we have

on . If we consider a sequence of variables,
, each defined on an interval [ ] and satis-

fying (3) with , then it follows that

By applying Theorem III.1 again

(37)

on . By evaluating (37) in

(38)

Hence

(39)
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Then, (37) becomes

(40)

where . We have thus shown practical
stability with and .

APPENDIX III
PROOF OFTHEOREM III.3

We will need to consider the dithered and the smoothed
system from arbitrary initial time . Hence, for the proof
we consider the dithered system

(41)

and the smoothed system

(42)

where . We suppress the variable and
denote the solution of (41) with initial condition

and the solution of (42) with initial
condition . We want to evaluate the approximation
error . For this, we will make
critical use of the incremental exponential stability assumption
which means that

(43)

Let us indicate as , the solution of the problem
(42). In the following, we will denote the time instant as
and the time instant as . The idea is to show that
for each time interval [ ], , the approxima-
tion error is bounded by
a function of order .

Let us call the solution of the
smoothed system (42) when the initial condition (at the time
instant ) is equal to the value that the state of dithered
system assumes at . In other words, during each time in-
terval [ ], is the solution of the smoothed system
when the initial condition is equal to .

By the triangle inequality we have

(44)
for all . Let us consider the first time interval [0,

]. In this case, since the initial condition is the
same for both the solutions. Hence, (44) reduces to

WecanapplyTheoremIII.1andchoosea
(where , , , and are the parameters that define
in (36) since and is defined in (15))
such that the approximation error isbounded by the valuewith

and

(45)
In particular, .

Now, let us consider a generic time interval [ ] with
(note that this inequality holds for

)

for all . For the first term, we apply Theorem
III.1 on the finite time horizon on the interval [ ]. It
shows that there exists , which gives the
upper bound . For the second term, we use the incremental
exponential stability condition in (43), which implies

for all . In the time instant , we have

(46)

If we choose a , then, the inequality
(46) can be written as

(47)

We have shown that there exists and
such that if ,

then, the approximation error is bounded from
above by the value on [ ] and

. The infinite horizon theorem
now follows by continuing this process inductively. Indeed,
the incremental exponential stability assumption can be used
to show that and
a corresponding bound of can be derived.
Hence, we can use the bound in
each inductive step.

Remark 1: If we introduce and
use , by using (33) and (35), we obtain
the approximation error

(48)

where , where is defined in (15).
The approximation error is independent from the length of the
time interval, and depends only on the free parameterthat can
be chosen such that the expression (48) is minimized.

APPENDIX IV
PROOF OFTHEOREM III.4

The differential form of (31) is

where . This
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system can equivalently be written

(49)

where .
Lemma 2: We have

for all . Moreover,

where

Proof: Let , then
and

For the first term, we have . Each term of can
be split into two terms

For the first, we get the bound and for the second,
we get

which follows from (26) in the proof of Theorem III.1. If we put
these bounds together and sum, we get

for all . Finally, since the Lipschitz constant of
can be bounded as

and a similar argument as in (28)–(30) gives

If we put everything together, we get

A state–space realization of (49) is

We will use the slope condition on the saturation nonlinearity
, which gives the relation

(50)

Now, let us multiply the LMI with on the left,
and by its transpose on the right. This gives

If we integrate this inequality and use that the second term is
positive due to (50) then we get

Hence, using

We see that on if ,
which is the case if where
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